Жидкостно-газовый сепаратор

Изобретение относится к сепараторам, предназначенным для разделения газожидкостных сред, воды и углеводородных жидкостей, имеющих различный удельный вес, а также для выделения из этих жидкостей газообразной среды. Жидкостно-газовый сепаратор содержит корпус с входной и выходной секциями, гидроциклон с трубопроводом ввода жидкостно-газовой смеси, патрубки вывода газообразной среды, более легкой и более тяжелой фракции жидкой среды. Гидроциклон размещен в корпусе с возможностью нахождения ниже уровня жидкостно-газовой смеси в сепараторе и выполнен в виде стакана, в нижнюю часть которого тангенциально подведен трубопровод ввода жидкостно-газовой смеси. При этом сепаратор оснащен трубопроводом ввода свежей дизельной фракции из вакуумной колонны и трубопроводом вывода рабочей дизельной фракции на рециркуляцию, а в нижней выходной части корпуса сепаратора установлен успокоительный экран, связанный с пакетом жалюзийных пластин. Технический результат заключается в повышении качества разделения газожидкостной смеси на газ, более тяжелую и более легкую фракции жидкой среды, а также повышении надежности работы сепаратора. 4 з.п. ф-лы, 1 ил.

 

Изобретение относится к области разделения газожидкостных сред, воды и углеводородных жидкостей, имеющих различный удельный вес, а также для выделения из этих жидкостей в процессе их разделения накопившейся в них газообразной среды, в частности к сепараторам, предназначенным для работы в составе жидкостных вакуум-создающих систем (ЖВС) на установках АВТ.

Известен жидкостно-газовый сепаратор, содержащий корпус, вертикальную разделительную перегородку, установленную в корпусе с разделением последнего на входную и выходную секции, сообщенные между собой в верхней части корпуса, трубопровод ввода газожидкостной смеси, установленный во входной секции, патрубки вывода газообразной и жидкой сред, пакет фазоразделительных насадок в виде системы параллельно установленных перфорированных пластин и переливную перегородку, установленную в выходной секции с формированием зоны отвода более легкой жидкой фракции между вертикальной разделительной перегородкой и зоны отвода более тяжелой жидкой фракции, при этом сепаратор снабжен сливным лотком и жалюзийным пакетом, причем входное сечение трубопровода ввода газожидкостной смеси расположено ниже верхней кромки вертикальной разделительной перегородки, сливной лоток совмещен своим верхним краем с верхней кромкой вертикальной разделительной перегородки и своим нижнем краем - с пакетом фазоразделительных насадок со стороны входа в него, жалюзийный пакет установлен в выходной секции между вертикальной разделительной перегородкой, а зона отвода более тяжелой фракции расположена между переливной перегородкой и жалюзийным пакетом. (Пат. РФ №2153383, МПК B01D 19/00, опубл. 27.07.2000 г.)

Недостатками конструкции данного сепаратора являются низкая интенсивность отделения газа от жидкой среды, так как основное отделение газа происходит при течении газожидкостной смеси по лотку, что снижает качество жидкой среды.

Известен жидкостно-газовый сепаратор, содержащий корпус, входную и выходную секции, трубопровод ввода газожидкостной смеси, сообщенный с входной секцией, патрубки вывода газообразной среды, более легкой и более тяжелой фракций жидкой среды. Кроме того, в корпусе размещены пакет фазоразделительных насадок в виде перфорированных пластин, переливная перегородка в выходной секции, сливной лоток и вертикальный гидроциклон, герметично встроенный в корпус и оснащенный концентрично установленной каплеотбойной камерой, внутреннее пространство которой выше уровня жидкости сообщено с патрубком вывода газообразной среды, при этом трубопровод ввода газожидкостной смеси тангенциально встроен в корпус гидроциклона. (Пат. РФ №2308313, МПК B01D 19/00, опубл. 20.10.2007 г.)

Известный сепаратор предназначен для качественного разделения газожидкостной смеси на газ, более тяжелую фракцию (воду) и менее тяжелую (нефть - углеводородную жидкость), однако он не обеспечивает необходимый минимум концентрации воды в углеводородной жидкости (дизельной фракции) - ~0,1% масс., применяемой в струйных аппаратах ЖВС для создания вакуума на установках АВТ.

Кроме того, работа известного сепаратора в условиях вакуума может быть небезопасной в случае создания аварийной ситуации, например при остановке насоса.

Технической задачей изобретения является повышение качества разделения газожидкостной смеси на газ, более тяжелую и более легкую фракции жидкой среды, а также повышение надежности работы сепаратора.

Вышеуказанная задача решается жидкостно-газовым сепаратором, включающим корпус с входной и выходной секциями, гидроциклон с трубопроводом ввода жидкостно-газовой смеси, патрубки вывода газообразной среды, более легкой и более тяжелой фракции жидкой среды, в котором согласно изобретению гидроциклон размещен в корпусе с возможностью нахождения ниже уровня жидкостно-газовой смеси в сепараторе и выполнен в виде стакана, в нижнюю часть которого тангенциально подведен трубопровод ввода жидкостно-газовой смеси, при этом сепаратор оснащен трубопроводом ввода свежей дизельной фракции и трубопроводом вывода рабочей дизельной фракции на рециркуляцию, а в нижней выходной части корпуса сепаратора установлен успокоительный экран, связанный с пакетом жалюзийных пластин.

Трубопровод ввода жидкостно-газовой смеси выполнен вертикальным.

Диаметр рабочей камеры гидроциклона составляет 0,1-0,3 диаметра корпуса сепаратора.

Трубопровод отвода рабочей дизельной фракции на рециркуляцию снабжен заборником, сообщенным с трубопроводом ввода свежей дизельной фракции.

Успокоительный экран выполнен в виде горизонтальной перфорированной перегородки.

Устройство сепаратора с гидроциклоном представлено на прилагаемой фигуре.

Жидкостно-газовый сепаратор содержит корпус 1, входную секцию 2 и выходную секцию 3. Входная секция 2 снабжена вертикальным трубопроводом 4 ввода жидкостно-газовой смеси на разделение, выходная секция - трубопроводом 5 подвода свежей дизельной фракции из вакуумной колонны (на фиг. не показана), связанным с заборником 6 и трубопроводом 7 вывода рабочей дизельной фракции на рециркуляцию. В верхней части сепаратора размещен патрубок 8 с каплеотбойником 9 для вывода газа на утилизацию, в нижней части сепаратора расположен отстойник 10 с патрубком 11 дренажа для воды и патрубком 12 для отвода избыточной дизельной фракции на регенерацию. Внутри корпуса сепаратора размещены гидроциклон 13, представляющий собой цилиндрический стакан, в нижней части которого тангенциально установлен патрубок 14. В центральной части сепаратора размещен пакет жалюзийных пластин 15. Гидроциклон 13 установлен таким образом, чтобы его верхний край был ниже уровня жидкостно-газовой смеси в сепараторе 1. В нижней части сепаратора горизонтально размещен успокоительный экран 16, выполненный в виде перфорированной перегородки, связанной с пакетом жалюзийных пластин 15.

Диаметр рабочей камеры гидроциклона зависит от заданной производительности установки и колеблется от 0,3 до 1,0 метра. Проходное сечение тангенциально установленного патрубка и канал вертикальной сливной магистрали рассчитываются с учетом параметров смеси на выходе из камеры смешения струйного аппарата, с учетом эффекта частичной конденсации компонентов смеси и эффекта влияния повышения давления в зависимости от высоты столба смеси в канале сливной магистрали. Скорость потока на выходе из патрубка тангенциального подвода смеси в центробежную камеру гидроциклона при использовании сепаратора в ЖВС может составлять . Поэтому, в случае необходимости, (при минимальном диаметре рабочей камеры и максимальной скорости ввода смеси в гидроциклон) может быть получен коэффициент центробежного ускорения Кц (иначе фактор разделения), достигающий 50 g, что дает возможность при разделении газо-жидкостной смеси снизить содержание воды в углеводородной жидкости - дизельной фракции до необходимого минимума - ~0,1% масс., позволяющего использовать ее в вакуум-создающем устройстве.

Жидкостно-газовый сепаратор работает следующим образом.

Жидкостно-газовая смесь из вакуумного жидкостно-газового струйного аппарата ЖВС, подлежащая разделению, поступает по трубопроводу 4 и входному тангенциальному патрубку 14 в рабочую камеру гидроциклона 13, затопленного под уровень жидкости.

При вращении жидкостно-газовой смеси в рабочей камере гидроциклона с окружной скоростью 3-10 м/с, создается поле центробежных сил, в котором фактор разделения Кц достигает 20-50 g, что в десятки раз превышает его величину, достижимую в существующих сепараторах, работающих в естественном гравитационном поле. При работе гидроциклона отделяющиеся газы сосредотачиваются в области оси его рабочей камеры и из «воронки», образованной жидкостью, поступают в пространство над уровнем жидкости, откуда через патрубок 8 и каплеотбойник 9 направляются на утилизацию. В процессе работы гидроциклона 13 происходит не только эффективное сепарирование и сосредоточение газовой фазы в приосевой зоне, но и разделение компонентов, составляющих жидкую фазу, по плотностям. Так, вода, находящаяся во вращающемся потоке смеси в свободном состоянии при работе гидроциклона концентрируется и начинает коалесцироваться в пристеночном слое его рабочей камеры. Жидкая фаза, состоящая из дизельной фракции, с водой и растворенными в ней легкими углеводородами, выйдя из рабочей камеры гидроциклона, проходит через жалюзийный пакет 15, способствующий дальнейшей коалесценции капель свободной воды и переливается в выходную секцию 3, в которой происходит отстаивание воды под успокоительным экраном 16, который образует придонную застойную зону, где продолжается коалесценция и оседание свободной воды, затем стекающей в отстойник 10 и далее в дренаж 11. Дизельная фракция с легкими углеводородами и остаточным содержанием воды направляется на регенерацию из отстойника 10 по трубопроводу 12.

Для снижения заброса легких углеводородных фракций и остатков воды с рабочей дизельной фракцией после ее сепарирования в вакуумный струйный аппарат, по трубопроводу 5 осуществляют подачу свежей дизельной фракции из вакуумной колонны ABT непосредственно в зону заборника 6, откуда ее направляют на рециркуляцию по трубопроводу 7 напорным насосом (на фиг. не показан). Обычно на обновление в емкость сепаратора подается 5-15% свежей фракции от циркулирующего потока и столько же отбирается на регенерацию или в товарный парк. При установившемся режиме работы установки, через некоторое время после пуска, состав и концентрация воды и легких углеводородов стабилизируется.

В случае аварийной ситуации (например, остановки насоса) происходит самопроизвольная блокировка вакуумной системы за счет гидростатического затвора, образованного вертикальным трубопроводом 4 подачи жидкостно-газовой смеси в гидроциклон 13.

Таким образом, предлагаемый сепаратор обеспечивает необходимое разделение жидкостно-газовой смеси с получением дизельной фракции - рабочей жидкости, используемой в жидкостно-газовых эжекторах вакуум-создающих систем, и, кроме того, повышает надежность системы в процессе ее эксплуатации.

1. Жидкостно-газовый сепаратор, включающий корпус с входной и выходной секциями, гидроциклон с трубопроводом ввода жидкостно-газовой смеси, патрубки вывода газообразной среды, более легкой и более тяжелой фракции жидкой среды, отличающийся тем, что гидроциклон размещен в корпусе с возможностью нахождения ниже уровня жидкостно-газовой смеси в сепараторе и выполнен в виде стакана, в нижнюю часть которого тангенциально подведен трубопровод ввода жидкостно-газовой смеси, при этом сепаратор оснащен трубопроводом ввода свежей дизельной фракции и трубопроводом вывода рабочей дизельной фракции на рециркуляцию, а в нижней выходной части корпуса сепаратора установлен успокоительный экран, связанный с пакетом жалюзийных пластин.

2. Жидкостно-газовый сепаратор по п.1, отличающийся тем, что трубопровод ввода жидкостно-газовой смеси выполнен вертикальным.

3. Жидкостно-газовый сепаратор по п.1, отличающийся тем, что диаметр рабочей камеры гидроциклона составляет 0,10,3 диаметра корпуса сепаратора.

4. Жидкостно-газовый сепаратор по п.1, отличающийся тем, что трубопровод отвода рабочей дизельной фракции на рециркуляцию снабжен заборником, сообщенным с трубопроводом ввода свежей дизельной фракции.

5. Жидкостно-газовый сепаратор по п.1, отличающийся тем, что успокоительный экран выполнен в виде горизонтальной перфорированной перегородки.



 

Похожие патенты:

Изобретение относится к области нефтегазовой промышленности и может быть использовано для определения коэффициентов сепарации установок очистки флюидов, а также сепараторов, предназначенных для контроля содержания примесей в потоке флюида.

Изобретение может быть использовано в области нефтяной и газовой промышленности для дегазации буровых растворов, насыщенных пластовым газом и воздухом. Для осуществления способа буровой раствор подают снизу вверх по установленному в закрытом резервуаре (1) манифольду (2).

Изобретение может быть использовано в химической промышленности для дегазации жидкой серы. Способ осуществляют в разных, не полностью изолированных друг от друга камерах, каждая из которых имеет заполненную жидкой серой первую зону и заполненную газом вторую зону.

Изобретение относится к гидроавиации и касается оборудования пожарных самолетов-амфибий, используемых при тушении лесных пожаров, жилых и производственных помещений, возгораний на нефте- и газопроводах.

Группа изобретений относится к области очистки питьевых, технических, сточных вод и жидкостей от содержащихся в них газов и может быть использована в коммунальном водоснабжении, водоподготовке и промышленности.

Группа изобретений предназначена для удаления твердых примесей из нижней части аппаратов, работающих под избыточным давлением газа, в частности из скважинных приустьевых отбойников, и может применяться в нефтяной, газовой, химической и других отраслях промышленности.

Изобретение относится к разделению и нагреву водонефтяных эмульсий и может быть использовано в нефтегазодобывающей промышленности. Установка для разделения и нагрева водонефтяной эмульсии содержит емкость 1 с патрубками 2, 3, 4, 5 ввода нефтяной эмульсии, вывода нефти, вывода воды, нефтяного газа, расположенный снаружи емкости 1 цилиндрический кожух 6 с патрубками 7, 8 ввода и вывода теплоносителя и с размещенной в нем жаровой трубой 9, циркуляционный насос 10 и нагреватель 11.

Изобретения могут быть использованы в пищевой промышленности для деаэрации жидких пищевых продуктов. Способ деаэрации жидкости включает этапы, на которых сжимают жидкость до давления выше атмосферного, нагревают жидкость до заданной температуры, направляют сжатую жидкость к месту смешения, подмешивают инертный газ в сжатую жидкость, направляют сжатую жидкость, содержащую инертный газ, в разделительный резервуар через декомпрессионный клапан, снижают давление в разделительном резервуаре до давления выше давления пара для данной жидкости при указанной заданной температуре, откачивают выделившиеся газы из разделительного резервуара и откачивают деаэрированную жидкость из разделительного резервуара для дальнейшей обработки.

Изобретение относится к устройствам для сепарации сырой нефти на нефтяную и газовую фракции. Нефтегазосепаратор содержит емкость с патрубком подвода нефтегазовой смеси и патрубками отвода нефтяной и газовой фракций и установленные внутри емкости сливные полки, предназначенные для выделения газа из нефтегазовой смеси.

Изобретение относится к устройствам для дегазации воды и может быть использовано в технологиях очистки природных вод. Дегазатор воды для удаления углекислоты содержит прямоугольный или круглый в плане корпус 1, подводящий 2 трубопровод воды, отводящий 3 трубопровод дегазированной воды, коллектор подачи воздуха 4, воздухораспределительные трубы 5 с отверстиями, дырчатое днище 6 для равномерного отвода воды, поддонное пространство 8, дренажный трубопровод 9, ряды горизонтальных перегородок 7 с проходами в шахматном порядке, установленных по высоте дегазатора.

Изобретение относится к водоподготовке. Способ фотохимической очистки воды включает процесс усиленного окисления загрязнений с использованием озона и ультрафиолетового излучения - фотолитического озонирования в гетерогенной системе вода - озонокислородная смесь. В воду пропорционально количеству подаваемого озона вводят перекись водорода. Контролируют и поддерживают заданное значение величины рН. Воду пропускают через каталитический фильтр. После обработки воду снова подают на вход системы очистки. Озонирование в гетерогенной системе осуществляют на границе раздела фаз газ/жидкость. В качестве альтернативы гетерогенной системы используют водо-озоновоздушную смесь. Устройство для гетерогенной фотохимической очистки воды содержит блок озонатора 1, систему 2 ввода озона в воду, фотохимический реактор 3, систему газоотделения 4, аппаратно-программный комплекс управления 8, систему циркуляции обрабатываемой воды, каталитический фильтр 5, узел коррекции рН 6, узел дозирования перекиси водорода 7. Система 2 ввода озона в воду соединена непосредственно с входом в фотохимический реактор 3. Изобретение позволяет эффективно обеззараживать воду от микробиологических загрязнений, обеспечить глубокое окисление органических соединений, детоксикацию неорганических загрязнений, а также очистку воды в широком диапазоне концентраций загрязнителей при отсутствии загрязнений, вносимых в очищаемую среду самой технологией очистки воды. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к насосостроению и предназначено для перекачки различных сред, например, для выделения воздуха, растворенного в воде. Выделение растворенных газов из перекачиваемой жидкости методом понижения давления в потоке газа с использованием явления кавитации выполняется благодаря подаче жидкости через патрубок ввода на диаметральный дисковый ротор, разделению потока жидкости за счет центробежных сил в междисковом пространстве на области с повышенным и пониженным давлением и раздельный вывод жидкости и выделенного газа через патрубки. В междисковом пространстве ротора, за счет перепада давления от оси ротора к периферии, создают регулируемую кавитационную область пониженного давления, размер которой в радиальном направлении зависит от числа оборотов ротора и пропорционален квадрату числа оборотов, при этом выделенный газ принудительно отводят через центральный полый канал. Центральный полый канал дискового ротора для отвода газа выполнен в виде трубы с перфорированными стенками или образован пакетом дисков с центральными отверстиями и связан в нижней части с патрубком принудительного отвода газа, а в верхней части с крайним сплошным диском ротора и валом двигателя. Изобретение позволяет совместить функцию перекачивающего насоса и устройства выделения растворенных газов из перекачиваемой жидкости и обеспечивает возможность изменения режима обработки жидкости. 3 н.п. ф-лы, 4 ил.

Изобретение относится к области энергетики, а точнее к способам подготовки воды для энергетических установок. Каталитический способ удаления кислорода из воды, согласно которому исходную воду очищают от механических примесей и подают в инжектор, где ее смешивают с газообразным водородом, получают водо-водородную смесь и производят ее обескислороживание путем взаимодействия с ионообменным материалом, содержащим палладиевый катализатор, отличающийся тем, что пузырьки газообразного водорода в водо-водородной смеси дробят и полностью растворяют в воде с помощью аппарата вихревого слоя с ферромагнитными иголками, установленными с возможностью вращения под воздействием переменного электромагнитного поля. Технический результат - повышение эффективности каталитического способа удаления кислорода из воды при ее взаимодействии с растворенным газообразным водородом на зернах высокоосновного анионита, покрытых слоем металлизированного палладия. 1 ил.

Изобретение может быть использовано в области водоочистки и водоподготовки. Установка очистки воды содержит дегазатор в виде колонны (1) с крышкой (2) и с патрубками для подачи очищаемой воды (3) и отвода газов (4) в верхней части колонны и патрубками для подачи воздуха (5) и отвода очищенной воды (6) в нижней части колонны, заполненной насадкой (7), бак-сборник (8), аппарат для подачи воздуха (9). Установка снабжена дополнительным патрубком (10) в нижней части колонны (1) ниже слоя насадки и вторым патрубком (11) в средней части колонны (1) выше слоя насадки (7), причем один из патрубков присоединен к подаче промывной воды (12), а второй патрубок присоединен к отводу промывных вод или баку-накопителю. На патрубке отвода очищенной воды установлена запорная арматура (13). Насадка размещена между двумя перфорированными диафрагмами (14) и (15). Колонна снабжена ультразвуковыми излучателями (16), размещенными по периметру объема, заполненного насадкой. Установка обеспечивает повышенную радиационную безопасность при эксплуатации, повышенную эффективность очистки воды и отмывки материала насадки с последующим отведением радиоактивных осадков на утилизацию. 1 з.п. ф-лы, 1 ил.

Изобретение относится к области разделения водонефтяных эмульсий и может быть использовано в нефтяной, химической, нефтегазодобывающей и нефтеперерабатывающей промышленности. Устройство для разделения водонефтяной эмульсии содержит корпус (1), дозатор постоянного расхода смеси (8), установленный на входе, входной штуцер (2), сообщающийся с камерой подачи смеси (15), сливные полки (6) с поочередно совпадающими отверстиями (17), штуцеры (3,4,5) отвода газа, нефти и воды, причем сливные полки (6) прикреплены к валу (14), приводимому в движение при помощи привода (11) и передачи (12). Эмульсию с постоянным расходом по напорному трубопроводу (7) через камеру подачи (15) подают в зазор между двумя поверхностями сливных полок (6). Для создания критической резонансной толщины пограничного слоя эмульсии одной из поверхностей придают возвратно поступательные или крутильные колебания. Смесь подвергают напряжению сдвига путем параллельного относительно друг друга взаимно-противоположного движения сливных полок (6). При проходе через отверстия (17) сливных полок (6) эмульсия приобретает пульсирующее движение, генерирующее в ней акустические колебания. Скорость выходного потока между сливными полками (6) не должна превышать критической скорости развития кавитации. Обеспечивается повышение эффективности обезвоживания и обессоливания водонефтяной эмульсии. 2 н. и 4 з.п. ф-лы, 7 ил.

Изобретение относится к области рельсового транспорта. Вентиляционное устройство масляного бака для узла тормоза с гидравлическим приводом трамвайного вагона содержит вентиляционную пробку, уплотнительное кольцо, газопроводный канал и газопроводную трубку. Газопроводный канал представляет собой конструкцию типа сквозного отверстия, расположенную в верхнем конце внутри встроенного клапанного блока. Сообщение защитного кожуха электрического элемента, встроенного клапанного блока и масляного бака реализовано посредством газопроводной трубки, вытянутой в воздушную камеру масляного бака, и посредством вентиляционной пробки, предусмотренной в защитном кожухе электрического элемента. Достигается повышение безопасности вождения состава и предотвращение попадание снега и дождя на корпус вентиляционной пробки. 10 з.п. ф-лы, 8 ил.

Изобретение относится к подводной обработке флюида, добываемого из скважины. Подводное устройство содержит трубопровод, выполненный с возможностью вмещения потока указанного флюида, содержащего жидкость и газ, отвод, проходящий через стенку трубопровода, компрессор, выполненный с возможностью сжатия отделенного газа. Отвод выполнен с возможностью выпуска через него газа из трубопровода для отделения газа от жидкости и получения отделенного газа и отделенной жидкости. Часть трубопровода, расположенная ниже по потоку относительно указанного отвода, выполнена с возможностью приема отделенной жидкости. При этом указанная часть трубопровода наклонена по меньшей мере на участке своей длины, а трубопровод выполнен с возможностью размещения на морском дне или вблизи от него. Наклонная часть трубопровода наклонена в направлении движения потока между первой точкой трубопровода и второй точкой трубопровода. При этом морское дно во второй точке ниже, чем в первой точке, и во второй точке на морском дне присутствует впадина рельефа. Поток флюида подают внутрь трубопровода. Выпускают газ из трубопровода через отвод. Отделенный газ сжимают. Технический результат: уменьшение расходов на реализацию технического решения, простота и эффективность обработки флюида, предотвращение повреждения оборудования. 2 н. и 21 з.п. ф-лы, 3 ил.

Изобретение относится к устройствам предварительного разделения нефти и газа и обеспечивает устойчивую стабилизацию давления в напорном нефтепроводе. Устройство, стабилизирующее давление в напорном нефтепроводе, включает цилиндрические горизонтальный и восходящий участки напорного нефтепровода с двумя нефтеотводящими трубопроводами и газоотводящим патрубком, причем первый по ходу потока нефтеотводящий трубопровод подключен к концу горизонтального участка. Восходящий участок напорного трубопровода выполнен в виде цилиндрической емкости диаметром 0,5 и длиной 12 м, наклоненной к горизонтальному участку напорного нефтепровода под углом 15°, причем внутри емкости со стороны горизонтального участка напорного нефтепровода жестко уставлены шесть поперечных диафрагм на расстоянии 1 м друг от друга, при этом поперечные диафрагмы оснащены центральными щелевыми отверстиями, а каждое последующее щелевое отверстие поперечной диафрагмы смещено на угол 60° против часовой стрелки и выполнено с уменьшением пропускной способности по направлению потока жидкости. Внутренняя поверхность емкости со стороны горизонтального участка напорного нефтепровода напротив поперечных диафрагм покрыта гасителем пульсации в виде эластичной оболочки из вспененного пенополиуретана, при этом второй по ходу потока нефтеотводящий трубопровод установлен в емкость после поперечных диафрагм, причем в верхней части внутри емкости установлен каплеулавливатель в виде пакета сеток для сепарации газа. На верхнем конце цилиндрической емкости установлен газовый отсекатель, выполненный в виде трубы диаметром 0,3 м и длиной 1,5 м, сообщающейся снизу с емкостью, а сверху с газоотводящим патрубком, при этом внутри трубы размещен поплавок, соединенный с регулируемой задвижкой, установленной в газоотводящем патрубке, выше поплавка выполнены каплеотбойники в виде конусов, сужающихся снизу вверх, в нижней части трубы выполнен отвод для слива жидкости, причем при попадании жидкости в газовый отсекатель поплавок поднимается вверх и регулируемая задвижка отсекает газоотводящий патрубок. Изобретение позволяет повысить эффективность и надежность работы, исключить отказ в работе напорного нефтепровода и снизить пульсацию давления внутри устройства. 1 ил.

Изобретение относится к опреснительным установкам. Подаваемая жидкость подается в камеру увлажнения второй ступени, в результате чего образуется ванна увлажнения второй ступени. Первый остаток подаваемой жидкости из камеры увлажнения второй ступени затем подается в камеру увлажнения первой ступени, в результате чего образуется ванна увлажнения первой ступени, температура которой ниже температуры ванны увлажнения второй ступени. Затем из камеры увлажнения первой ступени удаляется второй остаток подаваемой жидкости. При этом газ-носитель нагнетается в ванну увлажнения первой ступени и барботируется через нее, собирая испаряемый компонент в виде пара из первого остатка подаваемой жидкости, что обеспечивает частичное увлажнение газа-носителя. Частично увлажненный газ-носитель затем барботируется через ванну увлажнения второй ступени, где газ-носитель собирает дополнительное количество испаряемого компонента из подаваемой жидкости, в результате чего обеспечивается дополнительное увлажнение газа-носителя перед удалением из камеры увлажнения второй ступени. 2 н. 17 з.п. ф-лы, 4 ил.

Изобретение относится к сепараторам, предназначенным для разделения газожидкостных сред, воды и углеводородных жидкостей, имеющих различный удельный вес, а также для выделения из этих жидкостей газообразной среды. Жидкостно-газовый сепаратор содержит корпус с входной и выходной секциями, гидроциклон с трубопроводом ввода жидкостно-газовой смеси, патрубки вывода газообразной среды, более легкой и более тяжелой фракции жидкой среды. Гидроциклон размещен в корпусе с возможностью нахождения ниже уровня жидкостно-газовой смеси в сепараторе и выполнен в виде стакана, в нижнюю часть которого тангенциально подведен трубопровод ввода жидкостно-газовой смеси. При этом сепаратор оснащен трубопроводом ввода свежей дизельной фракции из вакуумной колонны и трубопроводом вывода рабочей дизельной фракции на рециркуляцию, а в нижней выходной части корпуса сепаратора установлен успокоительный экран, связанный с пакетом жалюзийных пластин. Технический результат заключается в повышении качества разделения газожидкостной смеси на газ, более тяжелую и более легкую фракции жидкой среды, а также повышении надежности работы сепаратора. 4 з.п. ф-лы, 1 ил.

Наверх