Способ повышения производительности активируемой воды и устройство для его осуществления

Изобретение относится к электрохимической обработке воды и может быть использовано в хозяйственно-бытовой деятельности. Способ повышения производительности активируемой воды заключается в том, что между обкладками-электродами активатора-конденсатора с первичным локализированным внутри него выпрямленным пульсирующим электрическим полем повышенной напряженности со скважностью пульсаций, равной 2, размещают второй конденсатор с перфорированными обкладками-электродами, образующими вторичное электрическое поле, импульсы которого сдвинуты по фазе на ширину импульсов первичного поля, причем оба поля имеют регулировку напряженностей полей, которая регулируется конденсаторами переменной емкости с большим значением диэлектрической проницаемости. Способ осуществляют в устройстве, содержащем две коаксиальные соосно расположенные ячейки, у которых неперфорированный и перфорированный электроды большего диаметра первой ячейки электрически связаны с неперфорированным и перфорированным электродами меньшего диаметра второй ячейки, и, наоборот, не перфорированный и перфорированный электроды меньшего диаметра первой ячейки электрически связаны с перфорированным и неперфорированным электродами большего диаметра второй ячейки, при этом подачу питьевой воды осуществляют последовательным прохождением в полость, образованную перфорированными электродами первой и второй ячеек, а выход анолита и католита осуществляют путем последовательного прохождения катодных и анодных полостей ячеек. Технический результат - расширение качественных и количественных показателей активируемой воды. 2 н. и 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к медицинскому оборудованию для оздоровительно-лечебных и водных процедур, очистки воды, а также может быть использовано в хозяйственно-бытовой деятельности. Так, проведенные исследования установили, что активируемая вода быстро и эффективно способствует лечению многих болезней, при этом без всякой «химии». Долголетняя практика применения активируемой воды подтвердила выводы ученых о том, что именно положительные и отрицательные заряды этой воды весьма способствуют поддержанию энергетического баланса клеток. Эта вода совершенно не опасна ни для внешнего, ни для внутреннего применения. Это еще в 1988 г. подтвердил Фармакологический комитет СССР (решение Мо. 211-252*/791). Активируемую воду рекомендуется использовать в косметических целях (восстанавливает, смягчает и омолаживает кожу): применять в быту: дезинфицировать жилые и подвальные помещения, сантехнику, бороться с накипью посуды и радиатора автомобиля. Добавлять при стирке, использовать при консервации банок. Вода полезна дачникам и огородникам в борьбе с вредителями и при выращивании рассады, замачивании семян, обработки комнатных растений, стимуляции роста.

Известно, что действие на организм человека, например при принятии душа, сначала анолита - анодно обработанной воды с рН 2.5-5.0 ед., имеющей кислотную среду, оказывает мощное дезинфицирующее и стерилизующее действие, а потом католита - катодно обработанной воды с рН 9.0-11.0 ед., имеющей щелочную среду и являющейся мощным биостимулятором, благотворно действует на здоровье человека, усиливает его защитные механизмы. При принятии активируемой воды внутрь излечиваются множество болезней, при этом сама активируемая вода для организма человека является абсолютно безвредной. Указанные свойства активируемой воды значительно расширяются и качественно увеличиваются как при обработке воды электрическим полем, так и при одновременной ее обработке электрическим и магнитным полями (см. Патент России №2543738).

В природе, где концентрируются водяные атмосферные образования, происходит действие на них как электрического, так и магнитного полей Земли. В результате этого действия дождевая вода обладает улучшенными характеристиками в сравнении с обыкновенной водой.

При проведении поиска бытового устройства - активатора с непрерывным приготовлением активируемой воды и высокой производительностью автором не обнаружено.

Наиболее близким к заявляемому техническому решению является Патент России №2350692 «Электрохимическая модульная ячейка для обработки растворов электролитов». Она содержит внутренний полый трубчатый анод, внешний цилиндрический катод, расположенную между ними проницаемую трубчатую керамическую диафрагму, разделяющую межэлектродное пространство на анодную и катодную камеры. Катод, анод и диафрагма установлены в узлах и соединены с приспособлениями для подачи и отвода обрабатываемых растворов из электродных камер с образованием рабочей части ячейки, по всей длине которой сохраняется постоянство гидродинамических характеристик электродных камер и характеристик электрического поля. Катод и анод выполнены из титановых трубок, при этом отношение площади поперечного сечения катодной камеры к сумме площадей поперечного сечения анодной камеры и диафрагме составляет 0,9-1,0, а длина рабочей части ячейки составляет 15-25 внешних диаметров анода.

Недостатками указанного изобретения являются то, что при подаче на вход ячейки, заполненной, например, питьевой водой, напряжения происходит образование ионов Н+ и ОН- по всему объему ячейки. Образованные ионы притягиваются с некоторым ускорением к своим противоположным по знаку ионов электродам, представляющим собой катодно-анодные обкладки конденсатора, диэлектриком которого служит вода. Сила притяжения ионов, а значит, и их скорость, определяющая производительность устройства, зависит от энергии электрического поля, образованной водяным конденсатором, имеющим незначительную емкость, и, как следствие, низкое значение вырабатываемой электрической энергии, значение которой пропорционально сказывается на производительности. Значит, скорость изменения рН зависит от энергии электрического поля. Чем больше энергия электрического поля, тем больше образуется ионов (Н+ и ОН-) с одновременным увеличением силы взаимодействия с электродами и скоростью их передвижения к электродам. В рассматриваемом патенте также в результате образования двойного электрического слоя на электродах резко снижается выход конечного продукта. Так как ионы проходят через диафрагму в противоположных направлениях, снижается производительность образования конечной продукции. Диафрагма необходима при работе ячейки в стационарном режиме, когда при выключении напряжения необходимо предотвратить смешивание катионита и анионита. Основной недостаток этого способа в том, что у электродов наблюдается двойной электрический слой, образованный ионами и ионизированными молекулами. Этот слой резко снижает доступ свободных ионов к электродам за счет изоляции электродов связанными с ним ионами и изменения электростатической силы притяжения между свободными, например, катионами и катодом за счет компенсации их потенциала (см. книгу В.В. Скорчеллети. Теоретическая электрохимия. Л., Государственное научно-техническое издательство химической литературы, 1963, с. 344-351 [1]). Это приводит к низкой производительности электрохимической обработки воды на единицу электродной поверхности.

Целью изобретения является повышение производительности электрохимической обработки воды (активации) за счет увеличения скорости электродной реакции путем снижения потенциала двойного электрического слоя. Это позволяет увеличить скорость протекания воды через устройство, реализующее данный способ при прежних качественных характеристиках.

Поставленная цель - увеличение степени активации - достигается тем, что (см. фиг 1 а), б)) активатор-конденсатор, образованный электродами 4, 5 с первичным локализированным внутри него выпрямленным пульсирующим электрическим полем 14 со скважностью пульсаций, например, равной 2, помещают в электрическое вторичное поле 15, образованное электродами 2, 3 повышенной напряженности, импульсы которого сдвинуты по фазе на ширину импульсов первичного поля, причем оба поля имеют регулировку напряженностей полей, которая регулируется конденсаторами переменной емкости (см. фиг. 1 с) с большим значением диэлектрической проницаемости, например сополимером. При этом импульсные электрические поля с целью снижения сопротивления конденсаторов могут иметь повышенную частоту (см. Г.В. Зевеке и др. Основы теории цепей. Л., Энергия, 1965, с. 120). Повышение частоты значительно увеличивает энергию электрических полей (см., например, X. Кухлинг. Справочник по физике. М., Мир, 1982, с. 333).

Таким образом, повышение производительности активируемой воды заключается в том, что между обкладками (электродов) активатора-конденсатора с первичным локализированным внутри него выпрямленным пульсирующим электрическим полем повышенной напряженности со скважностью пульсаций, например, равной 2, размещается второй конденсатор с перфорированными обкладками, электрическое вторичное поле которого образовано электродами, импульсы которого сдвинуты по фазе на ширину импульсов первичного поля, причем оба поля имеют регулировку напряженностей полей, которая регулируется конденсаторами переменной емкости с большим значением диэлектрической проницаемости, например сополимером.

На фиг 1 а) представлено устройство, реализующее указанный способ. Оно содержит корпус 1 с установленными в нем по периферии анодом 2 и катодом 3, диафрагмой 6 и симметрично ей дополнительно расположенных анода 4 и катода 6, герметично соединенных с корпусом 1, и которые перфорированы отверстиями 7. Диафрагма и электроды образуют камеры 10, 12 - анодные, 13, 11 - катодные. Из камер 10 и 11 посредством регулируемых вентилей 8, 9 производится отбор анолита и католита. Устройство содержит блок питания (см. фиг 1 б), с)), первичным напряжением которого является, например, линейное напряжение (380 В), частотой 50 Гц, которое выпрямляется выпрямителем 16, после чего с помощью тиристоров 17, 18 происходит подача импульсов 14 на электроды 2 и 3, а импульсов 15 - на электроды 4, 5. С целью увеличения энергии электрического поля нагрузочные электроды 2 и 3, 4 и 5 шунтируются конденсаторами 33 переменной емкости.

Работа устройства заключается в том, что при включении источника питания на электроды 2, 3, на которые подаются, например, импульсы 14, а на электроды 4, 5 - импульсы 15. При заполнении полостей 12, 13 и 10, 11 водой на электродах 4, 5 при импульсном напряжении на них образуется двойной электрический слой, препятствующий проведению в полостях 12, 13 электродной реакции (см. [1]). Одновременно отсутствие импульсного напряжения на электродах 2, 3 приводит к разрушению ранее образованного двойного слоя и захвату ионов проточной водой. Проточная вода при движении к вентилям 8 и 9, захватывая ионы при повторении цикла, повышает их концентрацию. Очевидно концентрация ионов в выходной воде зависит от скорости излива воды, частоты питающего напряжения, амплитуды подающих импульсов, энергии электрического поля, вырабатываемого водяным конденсатором. Для увеличения энергии электрического поля электроды устройства шунтируются конденсаторами 33 переменной емкости.

Коаксиальная ячейка согласно фиг 1 а) содержит пару цилиндрическиих коаксиально расположенных электродов 2, 3 большего диаметра, между которыми коаксиально им расположены перфорированные электроды меньшего диаметра с ионообменной диафрагмой между ними и которые образуют с цилиндрическим корпусом 1 герметичные камеры 10, 11, имеющие выход католита и анолита через регулированные вентили 8 и 9, причем вход воды обеспечивается между электродами меньшего диаметра.

Ввиду того, что водяные конденсаторы содержат электроды разного диаметра, их емкость определяется по площади электрода меньшего диаметра. Для устранения этого недостатка на фиг. 2 изображена коаксиальная ячейка, устраняющая этот недостаток. Она содержит соосно расположенные ячейки, у которых неперфорированный 2 и перфорированный 4 электроды большего диаметра первой ячейки электрически связаны с неперфорированным 2 и перфорированным 4 электродами меньшего диаметра второй ячейки, и, наоборот, неперфорированный 3 и перфорированный 5 электроды меньшего диаметра первой ячейки электрически связаны с перфорированным 6 и неперфорированным 3 электродами большего диаметра второй ячейки, при этом подача питьевой воды последовательно происходит через отверстия 30, 20 в полость 21, образованную перфорированными 5 и 4 электродами первой и второй ячеек, межэлектродные полости 21 которых связаны отверстием 29, а выход анолита и католита происходит посредством отверстий 22, 23, параллельно соединяющих катодные и анодные полости ячеек. При пропускании холодной воды через отверстия 28, 31, 32 и полость 19 происходит охлаждение катода 3 и анода 2 устройства.

1. Способ повышения производительности активируемой воды, заключающийся в том, что между обкладками-электродами активатора-конденсатора с первичным локализированным внутри него выпрямленным пульсирующим электрическим полем повышенной напряженности со скважностью пульсаций, равной 2, размещается второй конденсатор с перфорированными обкладками-электродами, образующими вторичное электрическое поле, импульсы которого сдвинуты по фазе на ширину импульсов первичного поля, причем оба поля имеют регулировку напряженностей полей, которая регулируется конденсаторами переменной емкости с большим значением диэлектрической проницаемости.

2. Способ по п. 1, отличающийся тем, что импульсные электрические поля конденсаторов имеют повышенную частоту, необходимую для ускоренного проведения электрохимической реакции, причем частоты напряжений, подаваемых на обкладки конденсаторов, равны.

3. Способ по п. 1, отличающийся тем, что напряженности первичного и вторичного электрических полей равны.

4. Устройство повышения производительности активируемой воды, отличающееся тем, что содержит две коаксиальные соосно расположенные ячейки, у которых неперфорированный и перфорированный электроды большего диаметра первой ячейки электрически связаны с неперфорированным и перфорированным электродами меньшего диаметра второй ячейки, и, наоборот, неперфорированный и перфорированный электроды меньшего диаметра первой ячейки электрически связаны с перфорированным и неперфорированным электродами большего диаметра второй ячейки, при этом подачу питьевой воды осуществляют последовательным прохождением в полость, образованную перфорированными электродами первой и второй ячеек, а выход анолита и католита происходит путем последовательного прохождения катодных и анодных полостей ячеек.



 

Похожие патенты:

Изобретение относится к промышленной обработке воды и может быть использовано в теплоэнергетике, химической и других областях промышленности для предотвращения накипеобразования в теплообменном оборудовании.

Изобретение относится к водоподготовке и может быть использовано в системах предварительной очистки природных вод подземных водоисточников преимущественно от железа, марганца и взвешенных веществ в хозяйственно-питьевом, промышленном и сельскохозяйственном водоснабжении.

Изобретение может быть использовано в области водоочистки и водоподготовки. Установка очистки воды содержит дегазатор в виде колонны (1) с крышкой (2) и с патрубками для подачи очищаемой воды (3) и отвода газов (4) в верхней части колонны и патрубками для подачи воздуха (5) и отвода очищенной воды (6) в нижней части колонны, заполненной насадкой (7), бак-сборник (8), аппарат для подачи воздуха (9).

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности и может быть использовано для очистки технологических сточных вод с получением сероводорода (H2S) и аммиака (NH3) высокой чистоты.

Устройство для фильтрования жидкостей относится к фильтрам с вращающимися фильтрующими элементами и предназначено для фильтрации воды от примесей, а также для получения питьевой воды из морской воды.

Изобретение относится к технологии электроактивации воды. Устройство для получения электроактивируемой воды выполнено в виде конденсатора, образованного коаксиально расположенными электродами, изолированными диэлектриком, образующим обкладки конденсатора, имеющего полость с входным отверстием для подачи воды и межэлектродную полость, разделенную изоляционной коаксиально расположенной перегородкой на полости, служащие для отвода католита и анолита, каждая из которых имеет собственное отверстие для выхода католита и анолита.

Изобретение относится к ингибиторам солеотложений, содержащим флуоресцентный маркер, и может быть использовано для предотвращения отложений солей в водооборотных системах.

Изобретение относится к промышленной и экологической микробиологии. Предложен способ очистки содержащих толуол сточных вод нефтеперерабатывающих и нефтехимических предприятий.

Изобретение может быть использовано в гидрометаллургии для очистки водных растворов от тяжелых металлов и радионуклидов, а также для очистки сточных и грунтовых вод.

Изобретение относится к получению пузырьков и пен, содержащих пузырьки. Устройство содержит: первый блок, выполненный с возможностью определять по меньшей мере одну характеристику газа в пузырьках; второй блок, выполненный с возможностью вырабатывать пузырьки, содержащий: электролизер, выполненный с возможностью проводить электролиз электролита, чтобы вырабатывать газ в электролите, тем самым вырабатывая пузырьки; контроллер выполнен с возможностью регулировать второй блок, чтобы вырабатывать пузырьки согласно по меньшей мере одной характеристике газа.

Изобретение относится к гидротехническим сооружениям и может быть использовано для защиты водохранилищ деривационных ГЭС от заиления, защиты турбинного оборудования от взвешенных и донных наносов, а также плавающего сора. Горизонтальный отстойник включает прямоугольный резервуар, на дне которого выполнен иловый приямок. В верхней и нижней частях резервуара параллельно стенкам резервуара установлены направляющие. Горизонтальный отстойник дополнительно содержит отвал в качестве скребка, направляющие ролики, через которые перекидываются тросы соответствующих электрических лебедок. Внутри приямка располагается выдвижной лоток для ила, содержащий ось, выполненную с возможностью поворота на 180°, сверху приямка на стене закрепленный тросом к электрической лебедке затвор для герметичного закрытия илового приямка. Изобретение обеспечивает непрерывность действия отстойника, уменьшение времени очистки, защиту от плавающих отходов, повышение надежности устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к системам водоотведения, а именно к способам оценки контроля сбросов сточных вод от выпусков (водоотводов) абонентов в канализацию. Способ содержит регистрацию наличия в воде признаков загрязнителей и анализ пробы сливной воды на превышение предельно допустимых значений загрязнителей в сливной воде. В нем выполняют разбиение сети водоотведения населенного пункта на зависимые 10 и независимые 4, 6, 8 непересекающиеся районы с минимальным количеством, преимущественно одним, выпусков воды из них. Регистрацию наличия в воде признаков загрязнителей осуществляют при превышении допустимых концентраций в анализе пробы воды, отобранной в случайное время и в случайно выбранной точке, расположенной на выпуске/выпусках воды независимых непересекающихся районов и зависимых непересекающихся районов, в которых зарегистрировано наличие в воде признаков загрязнителей, отличных от признаков загрязнителей непересекающихся районов, выпуски воды которых подключены к сети указанных зависимых непересекающихся районов. На этапе обследования непересекающихся районов определяют перспективных абонентов, а анализ пробы сливной воды на превышение предельно допустимых значений загрязнителей в сливной воде выполняют только у перспективных абонентов. Технический результат – снижение капитальных затрат. 8 з.п. ф-лы, 3 ил.

Изобретение может быть использовано для безреагентной очистки воды в сельском хозяйстве, растениеводстве, пищевой промышленности. Заявленный способ обработки воды включает комбинированное физическое воздействие, в котором используют ультразвуковые колебания и вращающиеся противоположно направленные электромагнитные поля. При этом для создания ультразвуковых колебаний и вращающихся электромагнитных полей используют магнитопроводы системы ферритовых колец, которые располагают друг от друга на расстоянии, обеспечивающем исключение перекрытия создаваемых вращающихся магнитных полей, причем каждое ферритовое кольцо имеет электрические обмотки, на которые подают трехфазное переменное напряжение в резонансном звуковом диапазоне частот 32÷35 кГц. Способ обеспечивает повышение стабильности воды и упрощение процесса обработки. 2 ил.

Изобретение в металлургической и горнодобывающей промышленности для очистки сточных и шахтных вод от ионов молибдена. Для осуществления способа проводят обработку реагентом-отходом производства, в качестве которого используют железосодержащий суглинок с содержанием железа от 2 до 20% или отход металлообработки в виде стружки нелегированной стали с содержанием железа от 45 до 85%, предварительно обработанные серной кислотой с концентрацией от 0,01 до 0,1 Н в течение от 0,5 до 1 часов с последующим отстаиванием в течение от 16 до 24 часов. Полученную сорбционную пасту или сорбент вводят в сточную воду, постоянно перемешивают в течение 50 мин, затем отстаивают в течение от 3 до 5 часов и удаляют осадок. Изобретение позволяет с высокой степенью очистки: до 95-99% удалять из сточных вод ионы молибдена с использованием природных материалов и отходов производства с высоким содержания железа. 2 ил., 9 табл., 6 пр.

Изобретение относится к обработке воды и может быть использовано в области питьевого водоснабжения для глубокой очистки питьевой водопроводной воды. Водоочистительная установка содержит программируемый блок управления 27, фильтры грубой 1 и тонкой 2 механической очистки, первый 3 и второй 4 обратноосмотические мембранные фильтры, насос 5 для перекачивания воды, входной 9 и выходной 33 электромагнитные клапаны, электронный датчик давления 8; вмонтированные в трубопровод по потоку счетчики расхода воды 10,11, 12 с первого по третий, первый 13 и второй 14 узлы контроля концентрации примесей в воде, первый 15 и второй 16 датчики "сухого хода", реле давления 17 очищенной воды, обратный клапан 18, запорные краны 19, 20, 21, 22 с первого по четвертый, манометры 23, 24, 25, 26 с первого по четвертый, камеру ультрафиолетового облучения 7. Изобретение позволяет получить на выходе установки очищенную воду требуемого качества в зависимости от ее дальнейшего использования. 1 з.п. ф-лы, 3 ил.

Изобретение относится к резервуарам для флотации и может быть использовано для отделения углеводородов от пластовой воды. Резервуар (10) для флотации, предназначенный для удаления посторонних примесей из поступающей в него текучей среды, содержит нижнюю часть, задающую днище (50) резервуара (10), стенку (45), задающую борта резервуара; ряд смежных камер внутри резервуара, отделенных друг от друга разделительными стенками (65), нефтесборный лоток (15), охватывающий каждую камеру и отделенный от каждой камеры переливной перегородкой (35). Каждая камера содержит наклонную перегородку (40), сообщающую круговое движение текучей среде, находящейся в камере. Переливная перегородка (35) расположена напротив наклонной перегородки (40). С одной из камер из ряда смежных камер сообщен по текучей среде впускной патрубок (20), расположенный вблизи наклонной перегородки (40) ряда смежных камер. Каждая камера сообщается по текучей среде с соседними камерами через соединительный канал (75), расположенный в нижней части разделительной стенки (65) каждой камеры и напротив нефтесборного лотка (15). Соединительный канал (75) выполнен с возможностью прохождения текучей среды из камеры к задней стороне наклонной перегородки (40) смежной камеры. В разделительной стенке (65) между двумя смежными камерами выполнено соединительное отверстие (60). В наклонной перегородке (40), по меньшей мере, в одной из камер из ряда смежных камер выполнен канал (70) для прохождения текучей среды, выполненный с возможностью перетекания текучей среды между смежными камерами через наклонную перегородку (40), по меньшей мере, одной камеры. С одной из камер из ряда смежных камер сообщен по текучей среде выпускной патрубок. Соединительное отверстие и канал для прохождения текучей среды предусмотрены в чередующихся смежных камерах. Изобретение позволяет обеспечить устройство для газовой флотации, предотвращающее, сокращающее или ограничивающее перепуск воды с устранением или снижением зависимости от соединительной трубы. 14 з.п. ф-лы, 13 ил.

Изобретение касается способов разделения потока текучей эмульсии на углеводородный поток и водный поток. Способ разделения потока текучей эмульсии, имеющей непрерывную водную фазу, на углеводородный поток и водный поток, в котором пропускают поток текучей эмульсии через микропористую мембрану с получением потока углеводородного продукта и потока водного продукта, мембрана содержит по существу гидрофобную, полимерную матрицу и по существу гидрофильный, тонкоизмельченный мелкозернистый, по существу нерастворимый в воде наполнитель, распределенный по матрице. Полимерная матрица имеет средний размер пор меньше чем 1,0 микрон, и чистоты потоков продуктов не зависят от скорости течения потока водного продукта и размера пор мембраны. Технический результат – повышение эффективности отделения нефти от воды в реальном времени. 3 н. 17 з.п. ф-лы, 9 табл.

Изобретение может быть использовано в горнорудной, перерабатывающей промышленности, в коммунальном хозяйстве и энергетике при очистке минерализованных сульфатсодержащих вод с высокой жесткостью. Для осуществления способа проводят обработку воды известью и алюмосодержащим компонентом, причем после обработки воды известью в нее добавляют гидроксоалюминат натрия в количестве, необходимом для эффективного связывания сульфатов, и гидроксохлорид алюминия, который в щелочной среде соосаждает сульфат и гидроксоалюминат кальция. Воду осветляют отстаиванием и фильтрованием. Способ обеспечивает повышение эффективности очистки воды от сульфатов при эффективном умягчении воды, что приводит к значительному снижению уровня минерализации обрабатываемой воды. 2 табл., 1 пр.

Изобретение относится к аэрационной установке для обработки сточных вод. Многоступенчатая аэрационная установка включает по меньшей мере три вертикально ориентированных аэрационных блока, содержащих первый аэрационный блок, который принимает смесь жидкости и газа из источника газа и жидкости и два или более расположенных ниже аэрационных блоков. Каждый аэрационный блок образует вертикально удлиненную камеру аэрации, содержащую верхний впуск и нижний выпуск. Нижний выпуск каждого из аэрационных блоков подает поток текучей среды, содержащий жидкость и газ, в верхний впуск расположенного ниже одного из аэрационных блоков. Один или более расположенных ниже аэрационных блоков содержат впуск для дополнительного газа. Каждый аэрационный блок содержит аэрационную головку, соединенную с верхним впуском и расположенную в пространстве для головки расположенного ниже аэрационного блока так, что поток текучей среды, проходящий через верхний впуск в камеру аэрации, должен проходить через аэрационную головку. Аэрационная головка аэрирует жидкость с газом в потоке текучей среды в пространстве для головки расположенного ниже аэрационного блока. Технический результат: повышение эффективности системы, уменьшение площади основания систем обработки. 2 н. и 14 з.п. ф-лы, 4 ил.

Изобретение относится к устройствам для обработки морской воды по принципу обратного осмоса. Устройство для опреснения морской воды включает находящийся внутри закрепленного на рамной конструкции корпуса с всасывающим клапаном и клапаном для выпуска концентрата плунжерный насос, перемещение вертикально расположенного плунжера которого, содержащего работающий по принципу обратного осмоса скрученный в имеющий форму цилиндрической трубы рулон гибкий материал, представляющий собой мембрану обратного осмоса, в нижнее, выходящее за пределы корпуса положение, производится под действием его собственного веса, а подъем в верхнее положение осуществляется посредством гибкой связи, с одного конца соединяемой с находящимся со стороны нижнего торца плунжера подъемным приспособлением, а с другого конца - с источником однонаправленного прерывистого движения в виде преобразователя энергии морских волн. Технический результат - упрощение конструкции, повышение надежности. 7 з.п. ф-лы, 1 ил.

Изобретение относится к электрохимической обработке воды и может быть использовано в хозяйственно-бытовой деятельности. Способ повышения производительности активируемой воды заключается в том, что между обкладками-электродами активатора-конденсатора с первичным локализированным внутри него выпрямленным пульсирующим электрическим полем повышенной напряженности со скважностью пульсаций, равной 2, размещают второй конденсатор с перфорированными обкладками-электродами, образующими вторичное электрическое поле, импульсы которого сдвинуты по фазе на ширину импульсов первичного поля, причем оба поля имеют регулировку напряженностей полей, которая регулируется конденсаторами переменной емкости с большим значением диэлектрической проницаемости. Способ осуществляют в устройстве, содержащем две коаксиальные соосно расположенные ячейки, у которых неперфорированный и перфорированный электроды большего диаметра первой ячейки электрически связаны с неперфорированным и перфорированным электродами меньшего диаметра второй ячейки, и, наоборот, не перфорированный и перфорированный электроды меньшего диаметра первой ячейки электрически связаны с перфорированным и неперфорированным электродами большего диаметра второй ячейки, при этом подачу питьевой воды осуществляют последовательным прохождением в полость, образованную перфорированными электродами первой и второй ячеек, а выход анолита и католита осуществляют путем последовательного прохождения катодных и анодных полостей ячеек. Технический результат - расширение качественных и количественных показателей активируемой воды. 2 н. и 2 з.п. ф-лы, 4 ил.

Наверх