Флуорофор и способ получения ингибитора солеотложений, содержащего флуорофор в качестве флуоресцентной метки


 


Владельцы патента RU 2640339:

Публичное акционерное общество Научный центр "Малотоннажная химия" (RU)

Изобретение относится к ингибиторам солеотложений, содержащим флуоресцентный маркер, и может быть использовано для предотвращения отложений солей в водооборотных системах. Ингибитор солеотложений представляет собой аллилсодержащий флуорофор формулы (I) или (II), указанной в описании. Способ получения указанного ингибитора солеотложений включает радикальную сополимеризацию акриловой кислоты или акриловой кислоты и моноэфира фумаровой кислоты с соединением формулы 1 или 2 в водной среде при нагревании в присутствии инициатора. Сополимеризацию ведут при массовом содержании моноэфира фумаровой кислоты от 20 до 80%, флуорофора от 1 до 10% от общей массы мономеров. Содержание акриловой кислоты составляет остальное. Массовая доля мономеров - от 15 до 30%. Изобретение обеспечивает биоразлагаемый ингибитор солеотложения, содержащий флуоресцентную метку, оптические свойства которого не зависят от содержания солей жесткости в водооборотных системах, а применение позволяет предотвратить процесс осадкообразования малорастворимых солей щелочно-земельных металлов с проведением экспресс-анализа и мониторинга «в реальном времени» концентрации ингибитора в водооборотных системах без отбора проб. 2 н.п. ф-лы, 4 табл., 7 пр.

 

Изобретение относится к способу получения ингибиторов солеотложений, содержащих флуоресцентный маркер (метку), и может быть использовано как для предотвращения отложений солей в водооборотных системах на предприятиях химической, нефтехимической, металлургической промышленности и жилищно-коммунального хозяйства, так и для проведения экспресс-анализа и мониторинга «в реальном времени» концентрации ингибитора в водооборотных системах без отбора проб.

Широкое и нарастающее применение ингибиторов солеотложений в теплоэнергетике является в настоящее время магистральным направлением борьбы с солеотложениями. Длительное время основными реагентами, используемыми для этих целей, являлись фосфонаты и другие реагенты на основе фосфора.

В настоящее время бурно развивается внедрение в теплоэнергетику ингибиторов на основе органических полимеров, в особенности биоразлагаемых.

Эффективность использования ингибиторов солеотложений связана с точностью поддержания оптимальной концентрации ингибитора в рабочей среде, в связи с чем все большее значение приобретают экспресс-методы ее мониторинга «в реальном времени», позволяющие одновременно осуществлять управление дозированием реагента. Перспективным способом организации подобного взаимодействия является использование оборудования, управляемого сигналом флуоресцентных датчиков, обусловленным флуоресценцией активного компонента.

Наиболее близким к изобретению по технической сущности и достигаемому результату является способ получения ингибитора солеотложений, содержащего связанную с ним флуоресцентную метку (маркер), заключающийся в том, что проводят радикальную сополимеризацию компонентов, а именно ингибитор образования отложений карбоновых кислот с флуоресцентной маркировкой получают путем свободно-радикальной тримеризации виниловых производных, содержащих ненасыщенные двойные связи полиэфирного мономера карбоновой кислоты или карбоксилата, и мономера, содержащего Pyrene флуорофор (см. патент CN №101289257, кл. C02F 5/10, опубл. 22.10.2008).

Однако данный ингибитор и входящий в него флуорофор имеют относительно сложный процесс получения, что сужает область их использования.

Задачей изобретения является устранение указанных недостатков.

Технический результат заключается в том, что достигается возможность получить биоразлагаемый ингибитор солеотложений на основе сополимеров акриловой кислоты, содержащих флуоресцентную метку, оптические свойства которой не зависят от содержания солей жесткости в водооборотных системах. Таким образом реализуется процесс предотвращения осадкообразования малорастворимых солей щелочноземельных металлов и, благодаря наличию флуоресцентной метки, может обеспечиваться экспресс-анализ и мониторинг «в реальном времени» концентрации ингибитора в водооборотных системах, без отбора проб.

Поставленная задача решается, а технический результат достигается за счет того, что флуорофор содержит двойную связь в соединениях общей формулы 1:

, где

R=H или R=Br

или формулы 2:

, где

или R1=ОМе

В соответствии со вторым объектом изобретения поставленная задача решается, а технический результат достигается за счет того, что способ получения ингибитора солеотложений, содержащего связанную флуоресцентную метку (маркер), заключается в том, что проводят радикальную сополимеризацию компонентов, отличающийся тем, что проводят радикальную сополимеризацию акриловой кислоты, моноэфира фумаровой кислоты и соединения формулы 1 или 2 по п. 1 в водной среде при нагревании в присутствии инициатора, сополимеризацию проводят при массовом содержании моноэфира фумаровой кислоты от 2 до 80% от общей массы мономеров и массовом содержании флуорофора от 1 до 10% от общей массы мономеров, а остальное составляет акриловая кислота, причем последняя представляет собой водный раствор с массовой долей мономеров от 15 до 30%.

Для достижения заявленного технического результат необходимо было получить ингибитор, имеющий в своем составе флуоресцирующую метку, у которой интенсивность остаточной флуоресценции должна быть прямо пропорциональна содержанию метки.

Описываемый способ позволяет получить ингибитор, эффективно предотвращающий процесс осадкообразования малорастворимых солей щелочно-земельных металлов. Наличие связанной флуоресцентной метки в составе полимера позволяет проводить экспресс-анализ и мониторинг «в реальном времени» концентрации ингибитора в водооборотных системах без отбора проб. Кроме того, полученный по предложенному способу ингибитор обладает высокой способностью к биоразложению, что соответствует современным требованиям экологической безопасности.

В ходе проведенных исследований была получена возможность получать аллилсодержащие флуорофоры формулы 1 и 2, которые могут быть получены следующим образом.

Флуорофор 1.

Флуоресцеин 10 г (0.03 моль) суспендируют в 150 мл этилового спирта, при комнатной температуре, приливают 0.075 моль аллиламина (5.65 мл пл. = 0.761 г/мл), нагревают до 65°С и выдерживают при этой температуре 4-6 часов, затем реакционную массу упаривают досуха и перекристаллизовывают остаток из ацетонитрила. Выход 11 г (98%). Т. пл. 198-210°С.Спектр 1Н ЯМР (400.13 МГц, ДМСО-d6, 22.2°С, δ/м. д., J/Гц): 5.04 (д, 2Н, CH2-N, J=9.8), 5.17 (д, 2Н, -СН2=СН, J=17.1), 5.87 (м, 1Н, СН2=СН), 6.43-6.69 (м, 6Н, Н(1), Н(3), Н(4), Н(5), Н(6), Н(8)), 7.24 (д, 1Н, Н(3'), J=7.63), 7.62-7.79 (м, 2Н, Н(4'), Н(5')), 7.99 (д, 1Н, Н(6'), J=7.6). Спектр 13С ЯМР (100.61 МГц, ДМСО-d6, 23.0°С, 5/ м. д.): 42.0, 102.3, 109.7, 113.8, 114.6, 115.5, 124.1, 125.3, 128.1, 129.2, 129.5, 129.8, 130.9, 133.2, 134.6, 138.1, 152.5, 157.4, 159.9, 161.91, 168.8. Масс-спектр (ИЭР), m/z: вычислено 371.4; найдено 372.3 [МН]+. Найдено (%): С, 74.41; Н, 4.62; N, 3.76. C23H17NO4. Вычислено (%): С, 74.38; Н, 4.61; N, 3.77.

Флуорофор 2.

Эозин 10 г (0.015 моль) суспендируют в 100 мл этилового спирта, при комнатной температуре, приливают 0.039 моль аллиламина (2.89 мл пл. = 0.761 г/мл), нагревают до 65°С и выдерживают при этой температуре 4-6 часов, затем реакционную массу упаривают досуха и перекристаллизовывают остаток из ацетонитрила. Выход 10.5 г (98%). Т. пл. 284-286°С. Спектр 1Н ЯМР (400.13 МГц, ДМСО-d6, 27°С, δ/м. д., J/Гц): 5.06 (д, 2Н, CH2-N, J=9.9), 5.19 (д, 2Н, -СН2=СН, 7=17.0), 5.91 (м, 1Н, СН2=СН), 6.90-7.05 (м, 2Н, Н(4), Н(5)), 7.22 (уш.с, 1Н, Н(6')), 7.57 (уш.с, 2Н, Н(4'), H(5')), 8.06 (уш. с, 1Н, Н(3')). Масс-спектр (ИЭР), m/z: вычислено 686,9; найдено 687.7 [МН]+. Найдено (%): С, 40.23; Н, 1.90; Вr, 46.51; N, 2.02. C23H13Br4NO4. Вычислено (%): С, 40.21; Н, 1.91; Вr, 46.53; N, 2.04.

Флуорофор 3.

4-морфолино-1,8-нафталевый ангидрид 10 г (0.035 моль) суспендируют в 160 мл этилового спирта, при комнатной температуре, приливают 0.088 моль аллиламина (6.63 мл пл. = 0.761 г/мл), нагревают до 50°С, при этом наблюдается растворение осадка исходного ангидрида. Выдерживают при этой температуре ~3 часа, охлаждают, отфильтровывают осадок, промывают холодным этанолом и высушивают при комнатной температуре. Выход 9.9 г (87%). Т. пл. 159-162°С. Спектр 1Н ЯМР (400.13 МГц, ДМСО-d6, 22.1°С, δ/м. д., J/Гц): 3.19-3.26 (м, 4Н, N-(CH2)2), 3.86-3.97 (м, 4Н, O-(СН2)2), 4.65 (д, 2Н, CH2-N, J=5.1), 5.05-5.17 (м, 2Н, -СН2=СН), 5.88-5.98 (м, 1Н, -СН2=СН), 7.37 (д, 1Н, Н(3), J=8.3), 7.83 (дд, 1Н, Н(6), J1=7.6, J2=7.9), 8.42 (д, 1Н, Н(7), J=7.9), 8.48-8.52 (м, 2Н, Н(2), Н(5)). Спектр 13С ЯМР (100.61 МГц, ДМСО-d6, 23.1°С, δ/м. д.): 40.3, 41.5, 53.0, 66.2, 115.1, 115.7, 116.1, 122.5, 125.3, 126.1, 129.2, 130.7, 132.3, 132.9, 155.5, 160.6, 162.7, 163.24. Масс-спектр (ИЭР), m/z: вычислено 322,3; найдено 323.1 [МН]+. Найдено (%): С, 70.81; Н, 5.61; N, 8.70. C19H18N2O3. Вычислено (%): С, 70.79; Н, 5.63; N, 8.69.

Флуорофор 4.

4-бром-N-аллил-1,8-нафталимид 10 г (0.032 моль) суспендируют в 70 мл метанола, при комнатной температуре, к полученной суспензии медленно приливают свежеприготовленный раствор метилата натрия 19.62 г (0.32 моль) в 30 мл метанола, нагревают до кипения и выдерживают при кипении 4-5 часов. Затем охлаждают реакционную массу, отфильтровывают осадок, промывают его водой и перекристаллизовывают из метанола. Выход 6.76 г (80%). Т. пл. 105-110°С. Спектр 1Н ЯМР (400.13 МГц, ДМСО-d6, 22.1°С, δ/м. д., J/Гц): 4.13 (с, 3Н, ОМе), 4.64 (д, 2Н, CH2-N, J=5.1), 5.06-5.19 (м, 2Н, -СН2=СН), 5.85-6.00 (м, 1Н, -СН2=СН), 7.33 (д, 1Н, Н(3) J=8.6), 7.82 (дд, 1Н, Н(6), J1=7.6, J2=8.3), 8.41-8.59 (м, 3Н, Н(2), Н(5), Н(7)). Масс-спектр (ИЭР), m/z: вычислено 267,3; найдено 268.1 [МН]+. Найдено (%): С, 71.92; Н, 4.93; N, 5.22. C16H13NO3. Вычислено (%): С, 71.90; Н, 4.90; N, 5.24.

Далее приведены примеры реализации ингибитора солеотложений, содержащего связанную флуоресцентную метку (маркер).

Пример 1.

Получение ингибитора 1

В 15 мл акриловой кислоты растворяют 0,15 г (1% масс.) флуорофора 1, далее добавляют 84 мл дистиллированной воды и 1 г (0.005 моль) персульфата аммония, полимеризацию проводят при 85-90°С. По истечении 7-8 ч отключают нагрев, охлаждают и выгружают продукт.

Пример 2.

Получение ингибитора 2

Получение проводился аналогично примеру 1, но с использованием 0,15 г (1% масс.) флуорофора 2

Пример 3.

Получение ингибитора 3

Получение проводился аналогично примеру 1, но с использованием 0,15 г (1% масс.) флуорофора 3

Пример 4.

Получение ингибитора 4

Получение проводился аналогично примеру 1, но с использованием 0,15 г (1% масс.) флуорофора 4

Пример 5.

Получение ингибитора 5

В 13,5 мл акриловой кислоты растворяют 1,5 г (10% масс) флуорофора 1, далее добавляют 84 мл дистиллированной воды и 1 г (0.005 моль) персульфата аммония, полимеризацию проводят при 85-90°С. По истечении 7-8 ч отключают нагрев, охлаждают и выгружают продукт.

Пример 6.

Получение ингибитора 6

Моноэфир фумаровой кислоты, а именно 2-(N,N-диметиламино)этилмонофумарата 51,4 г (0.278 моль) растворяют в 144 мл дистиллированной воды, к полученному раствору добавляют 8 г (0.111 моль) акриловой кислоты, 0,6 г (1% масс.) флуорофора 1 и 4.73 г (0.021 моль) персульфата аммония, полимеризацию проводят при 85°С. По истечении 7-8 ч отключают нагрев, охлаждают и выгружают продукт.

Пример 7.

Получение ингибитора 7

2-(N,N-диметиламино)этилмонофумарата 51 г (0.278 моль) растворяют в 144 мл дистиллированной воды, к полученному раствору добавляют 11 г (0.164 моль) акриловой кислоты, 3,2 г (5% масс) флуорофора 4 и 4.73 г (0.021 моль) персульфата аммония, полимеризацию проводят при 85°С. По истечении 7-8 ч отключают нагрев, охлаждают и выгружают продукт.

Процедура тестирования ингибирующей способности полученного описанным выше способом ингибитора.

Процесс ингибирования исследовали, используя в качестве базового протокол NACE Standard ТМ0374-2007 protocol. Для получения пересыщенного раствора карбоната кальция готовили два раствора в дистиллированной воде: рассол кальция (12,15 г/дм3 CaCl2⋅2H2O; 3,68 г/дм3 MgCl2⋅6H2O; NaCl 33 г/дм3) и бикарбонатный рассол (7,36 г NaHCO3; 33 г/дм3 NaCl). Состав рассолов для получения пересыщенного раствора сульфата кальция: кальциевый рассол: 11,10 г/дм3 CaCl2⋅2Н2О, 7,50 г/л NaCl; сульфатный рассол: 10,66 г/дм3 Na2SO4, 7,50 NaCl.

При смешении этих рассолов в объемном соотношении 1:1 получали пересыщенные растворы карбоната или сульфата кальция. Пересыщенные растворы карбоната или сульфата кальция с заранее внесенным количеством ингибитора выдерживали 24 часа при 71°С, охлаждали и определяли остаточное содержание кальция.

Эффективность испытуемых ингибиторов определяли в виде процента ингибирования

I = 100 ⋅ ([Са]ехр - [Ca]fin) / ([Ca]init - [Ca]fin])

где

- [Са]ехр - концентрация кальция в фильтрате в присутствии ингибитора по прошествии 24 часов обработки;

- [Ca]fin - концентрация кальция в фильтрате в отсутствии ингибитора по прошествии 24 часов обработки;

- [Ca]init - начальная концентрация кальция.

Процедура тестирования биоразложения полученного описанным выше способом ингибитора.

Изучение способности к биоразложению синтезированных полимеров проводили в стационарных условиях с использованием методов стандартных испытаний [ГОСТ 32427-2013. Методы испытаний химической продукции, представляющей опасность для окружающей среды. Определение биоразлагаемости: 28-дневный тест. 2013. ГОСТ 53857 Р-2010. Классификация опасности химической продукции по воздействию на окружающую среду. Основные положения. 2010. Согласованная на глобальном уровне система классификации опасности и маркировки химической продукции (СГС). ST/SG/AC.10/30/Rev.4. Четвертое пересмотренное издание. Приложение 9. Методические указания по оценке безопасности для водной среды. ООН. Нью-Йорк и Женева. 2011. РД 52.24.421-2007. Химическое потребление кислорода в водах. Методика выполнения измерений титриметрическим методом. 2007. РД 52.24.420-2006. Биохимическое потребление кислорода в водах. Методика выполнения измерений скляночным методом. 2006]. Таблица 2.

Для оценки степени биоразлагаемости были выбраны следующие критерии:

- биологическое потребление кислорода (БПКполн), мгО2/г препарата;

- химическое потребление кислорода (ХГПС), мгО2/г препарата;

биохимический показатель - отношение БПКполн/ ХПК, характеризующий степень разложения препарата за 14 суток.

Исследование оптических свойств

Изучение влияния концентрации катионов Са2+, Mg2+, Zn2+, Cu2+, Fe3+ на флуоресцентные свойства ингибиторов 1-7 проводили при концентрации ингибитора 10 мг/л в водных растворах. Для этого к раствору ингибитора в воде порциями добавляли расчетное количество раствора перхлората соответствующего металла, записывая спектры флуоресценции исходного раствора и раствора после добавления соли металла в интервале длин волн 250-750 нм. Возбуждение флуоресценции проводили светом с длиной волны 350 нм. Съемка спектров флуоресценции проводилась на спектрофлуориметре RF-6000 производства SHIMADZU.

При добавлении солей металлов происходило незначительное изменение интенсивности флуоресценции. В таблице 4 показана степень изменения интенсивности флуоресценции (FE - Fluorescence Enhancement - англ., разгорание флуоресценции) для каждого катиона металла в водном растворе при максимальной концентрации катиона металла для водооборотных систем.

Расчет относительного изменения интенсивности флуоресценции FE ингибиторов 1-7 проводили по формуле: FE=I/I0, где:

I0 - исходная интенсивность флуоресценции раствора ингибитора.

I - интенсивность флуоресценции раствора ингибитора после добавления раствора катионов металла.

В таблице 1 приведены результаты тестирования ингибирующей способности синтезированных полимеров

В таблице 2 приведены результаты исследований биоразлагаемости исследуемых полимеров

Настоящее изобретение может быть использовано для предотвращения отложений солей в водооборотных системах на предприятиях химической, нефтехимической, металлургической промышленности и жилищно-коммунального хозяйства, что позволяет проводить экспресс-анализ и мониторинг «в реальном времени» концентрации ингибитора в водооборотных системах, без отбора проб.

1. Флуорофор, содержащий аллильную двойную связь в соединении общей формулы 1:

, где

R=H или R=Br,

или формулы 2:

, где

или R1=ОМе

2. Способ получения ингибитора солеотложений для водооборотных систем, содержащего связанную флуоресцентную метку, заключающийся в том, что проводят радикальную сополимеризацию акриловой кислоты или акриловой кислоты и моноэфира фумаровой кислоты с соединениями формулы 1 или 2 по п. 1 в водной среде при нагревании в присутствии инициатора, сополимеризацию проводят при массовом содержании моноэфира фумаровой кислоты от 20 до 80% от общей массы мономеров и массовом содержании флуорофора от 1 до 10% от общей массы мономеров, а остальное составляет акриловая кислота, причем реакционная масса представляет собой водный раствор с массовой долей мономеров от 15 до 30%.



 

Похожие патенты:
Изобретение раскрывает тонер, флуоресцирующий красным цветом под действием УФ-излучения, содержащий пигмент, содержащий комплекс лантанидов в количестве по меньшей мере около 3% по весу, по меньшей мере одну аморфную смолу, необязательно кристаллическую смолу, агрегирующий агент, стабилизатор, который не образует комплексов металлических ионов, где стабилизатор содержит соль глюконовой кислоты, выбранную из глюконата натрия или глюконата калия, необязательно поверхностно-активное вещество и необязательно воск, при этом тонер имеет длину волны λmax поглощения от около 330 до 380 нм и длину волны λmax излучения от около 612 до 618 нм.

Изобретение относится к капиллярной дефектоскопии неразрушающего контроля деталей, а именно к составам жидкостей, применяемых для очистки контролируемой поверхности от избытка пенетранта.

Изобретение относится к новым комплексам лантанидов с органическими лигандами, которые могут быть использованы в органических светоизлучающих диодах. Описываются 9-антраценаты лантанидов формулы M(ant)3, где М - лантан и лантаниды, кроме прометия Pm и церия Ce, проявляющие люминесцентные свойства.

Изобретение относится к новым производным ряда 5-гидрокси-4,7-диметил-2-оксо-2H-хромен-6,8-дикарбальдегида, а именно к N',Nʺ'-((5-гидрокси-4,7-диметил-2-оксо-2H-хромен-6,8-диил)бис(метанилилиден))бис(4-бромбензогидразиду) формулы 1, обладающему свойствами амбидентатного хромогенного и флуоресцентного хемосенсора на катионы ртути (II) и фторид-анионы.

Изобретение относится к люминесцентным соединениям тербия и может быть использовано для создания люминесцентных меток, например для маркировки ценных бумаг. Описываются разнолигандные комплексные соединения тербия с фенантролином формулы Tb(L)3(phen) и их сольваты, за исключением трис-салицилата Tb(sal)3(phen), где Tb(L)3 - комплекс тербия с анионным органическим лигандом L, проявляющий при комнатной температуре ионную, регистрируемую визуально люминесценцию тербия, (phen) – фенантролин.

Изобретение относится к способам получения разветвленных олигоарилсиланов. Предложен новый способ получения разветвленных олигоарилсиланов на основе фенилоксазолов общей формулы (I) , где R означает Н или заместитель из ряда: линейные или разветвленные С1-C20 алкильные группы; линейные или разветвленные С1-С20 алкильные группы, разделенные по крайней мере одним атомом кислорода; линейные или разветвленные С1-С20 алкильные группы, разделенные по крайней мере одним атомом серы; разветвленные С3-С20 алкильные группы, разделенные по крайней мере одним атомом кремния; С2-С20 алкенильные группы, Ar означает одинаковые или различные ариленовые или гетероариленовые радикалы, выбранные из ряда: замещенный или незамещенный тиенил-2,5-диил, замещенный или незамещенный фенил-1,4-диил, замещенный или незамещенный 1,3-оксазол-2,5-диил, Oz означает замещенный или незамещенный 1,3-оксазол-2,5-диил, m означает целое число из ряда от 2 до 3, n означает целое число из ряда от 1 до 4, заключающийся в том, что соединение общей формулы (III) , где Y означает замещенный или незамещенный 1,3-оксазол-2,5-диил или галоген из ряда Cl, Br, I; R, Ar, n, m имеют вышеуказанные значения, взаимодействует в условиях реакции прямого арилирования с реагентом общей формулы (IV) , где X означает галоген из ряда Cl, Br, I при условии, что Y означает замещенный или незамещенный 1,3-оксазол-2,5-диил, или замещенный или незамещенный 1,3-оксазол-2,5-диил при условии, что Y означает галоген из ряда Cl, Br, I.

Изобретение относится к комплексам бис-[2-(N-тозиламинобензилиден)-2'-иминоалкилпиридинато]цинка(II) общей формулы I или хлоро-[2-N-тозиламинобензилиден)-2'-иминоалкилпиридинато]цинка(II) общей формулы II где n=1 или 2.

Изобретение относится к новому хелатному бериллиевому комплексу, а именно к бис [2-(2-оксифенил)-5-(3,4,5-триметоксифенил)-1,3,4-оксадиазолил]бериллию(II) формулы 1: Бериллиевый комплекс проявляет интенсивное излучение в фиолетовой области видимого спектра с высокой квантовой эффективностью люминесценции и может использоваться в качестве эмиссионных материалов, излучающих в коротковолновой области видимого спектра, для органических светоизлучающих диодов.

Изобретение относится к преобразующему длину волны элементу для светоизлучающих устройств. Преобразующий длину волны элемент включает полимерный материал, содержащий преобразующую длину волны составляющую, способную преобразовывать свет первой длины волны в свет второй длины волны.

Изобретение относится к осветительному устройству, содержащему преобразователь цвета. Осветительное устройство содержит по меньшей мере один светодиод и по меньшей мере один преобразователь цвета.

Изобретение относится к осветительному устройству, содержащему преобразователь цвета. Осветительное устройство содержит по меньшей мере один светодиод и по меньшей мере один преобразователь цвета.

Изобретение относится к осветительным приборам с длительным сроком службы. Осветительный прибор содержит по меньшей мере один СИД и по меньшей мере один конвертер цвета.

Изобретение относится к органической химии и текстильной промышленности, в частности к получению термостойких гетероциклических азотсодержащих красителей, которые могут быть использованы при изготовлении термостойких пленочных покрытий, крашении синтетических химических волокон, вискозных и смешанных хлопчатобумажных тканей.

Изобретение относится к новым химическим соединениям, а именно к сульфокислотам замещенных N,N'-дифенилдиимидов и дибензимидазолов 3,4,9,10-антантронтетракарбоновой кислоты (АТКК) общей формулы (I), которые могут быть использованы в качестве материалов для формирования сверхтонких свето- и термостойких поляризующих покрытий (ПП) серого цвета.

Изобретение относится к материалам для получения сверхтонких,цветных, термостабильных поляризующих покрытий (ПП), которые могут быть использованы в оптике для изготовления устройств отображения информации, производстве поляроидных пленок на полимерной основе, поляризующих стекол для строительной и автомобильной промышленности.

Изобретение относится к анилинокрасочной промышленности, в частности к способам получения смеси цис-и транс-изомеров диэтоксинафтоилендибензимидазола (капрозоля коричневого 4К), мспользуемого для крашения полиамидных волокон в .массе.

Изобретение относится к анилинокрасочной промышленности, в частности к сульфокислотам замещенных N,N-дифенилдиимидов 3,4,9, 10-перилентетракарбоновой кислоты общей формулы где R - H, Br, Cl, OH, CH3, C4H9, OCH3, OC2H5; n = 1 или 2, используемым для формирования сверхтонких поляроидных пленок толщиной 0,1 - 0,6 мкм, селективных в области 480 - 550 нм, с повышенной термостабильностью до 350oС.

Изобретение относится к органической химии, в частности к новым соединениям - сульфокислотам замещенных цис- или транс - дибензимидазолов 1, 4, 5, 8-нафталинтетракарбоновой кислоты общей формулы где R - H, CH3, C2H5, OC2H5, Cl, Br; n= 1 или 2, которые пригодны для формирования сверхтонких поляроидных пленок (с толщиной слоя 0,1 - 0,6 мкм) с повышенной термостабильностью (до 365 - 375oС).

Изобретение относится к области анилинокрасочной промышленности , в частности, к способу получения кубовых нафтоилендибензимидазоловых красителей /кубового алого 2 Ж, кубового бордо, кубового ярко-оранжевого/, которые пригодны для крашения хлопчатобумажных тканей.
Наверх