Скважинная насосная установка

Изобретение относится к технике добычи нефти и, в частности, к технике подъема добываемой продукции скважин, а именно газожидкостной смеси. Технический результат - повышение работоспособности и надежности работы установки, снижение вибрации подземного насосного оборудования, вызываемой присутствием газовых включений в откачиваемой продукции. Установка содержит установленный в скважине на колонне подъемных труб погружной центробежный насос с электродвигателем. Над ними установлен компенсатор. В нем помещен пневматический колпак с поршнем. Поршень подпружинен изнутри пакетом последовательно соединенных тарельчатых пружин, разделенных прокладками. Прокладки образуют зазор с внутренней поверхностью пневматического колпака. Тарельчатые пружины выполнены с разными отношениями высоты конуса пружины к толщине стенки конуса и имеют такую силовую характеристику, что при параллельном соединении усилий пакета пружин и давления инертного газа на поршне создана результирующая восстанавливающая сила с рабочим участком заданной малой - квазинулевой жесткости. 8 ил.

 

Изобретение относится к технике добычи нефти, в частности к технике подъема добываемой продукции скважин, а именно газожидкостной смеси.

Известна электроцентробежная скважинная насосная установка, которая содержит погружной центробежный насос с электродвигателем, установленный в скважине на колонне подъемных труб, пневматический колпак для гашения пульсаций давления в подъемных трубах и обратный клапан с осевым дросселирующим каналом (А.с. СССР №612009, 1975 г.)

Однако данная установка имеет низкую надежность при откачивании жидкости со свободным газом.

Известна электроцентробежная скважинная насосная установка, содержащая центробежный насос с электродвигателем, установленный в скважине на колонне подъемных труб, пневматический колпак для гашения пульсаций давления в подъемных трубах и обратный клапан с осевым дросселирующим каналом. Пневматический колпак расположен в полости подъемных труб, а клапан установлен в его нижней части (А.с. СССР №918419, 1982 г.).

Недостатком известной конструкции является недостаточная степень надежности, обусловленная длительным временем приведения в рабочее состояние, которое необходимо для отделения газа от жидкости, при небольшом количестве содержащегося в жидкости свободного газа.

Наиболее близким к изобретению является поршневой компенсатор (Баграмов Р.А. Буровые машины и комплексы. - М.: Недра, 1988. - С. 269). Поршневой компенсатор включает поршень, разделяющий камеру компенсатора на две части: подпоршневую полость и на полость, заполненную сжатым азотом. При возникновении в гидросистеме колебаний давления поршень приходит в движение: во время роста давления в гидросистеме жидкость подпоршневой полости давит на поршень, в результате чего он перемещается в полость, заполненную сжатым газом, а при снижении давления поршень выталкивает жидкость из подпоршневой полости в гидросистему. Тем самым происходит гашение колебаний давления.

Недостатком данной конструкции является низкая виброзащищенность поршня данной конструкции, что приводит к преждевременному выходу оборудования из строя.

Для эффективной виброизоляции быстроходных машин требуется, чтобы отношение частоты вынужденных колебаний ρ к собственной частоте ω колебаний было больше четырех (для тихоходных машин с частотой вращения меньше 500 оборотов в минуту отношение этих частот ρ/ω может быть меньше трех) (Пановко Я.Г. Введение в теорию механического удара. - М.: Наука, 1977. - С. 232).

Частота колебаний давления, а следовательно, и подачи (с частотой ρ) на выкиде электроцентробежной скважинной насосной установки на порядки меньше частот изменения давлений в поршневом насосе.

На фиг. 1 представлены схема поршневого компрессора (а) и график, на котором показана линерализация силовой характеристики поршневого компенсатора (б).

Собственная частота поршня компенсатора массой m (фиг. 1, а) определяется следующей формулой:

где c - коэффициент жесткости линеаризованной силовой характеристики, например (фиг. 1, б):

- на участке x11 ÷ x12 коэффициент жесткости c1;

- на участке x21 ÷ x22 коэффициент жесткости c2;

- на участке x31 ÷ x32 коэффициент жесткости c3.

c1, c2, c3 - коэффициенты жесткости на участках,

x11 - x12, x21 - x22, x31 - x32 соответственно;

m - масса поршня;

P - восстанавливающая сила пневмопружины;

P0 = Р(x = 0) - начальная сила пневмопружины;

d - внутренний диаметр;

H - расстояние от днища компенсатора до поршня;

x - координата поршня.

У поршневого компрессора силовая характеристика (зависимость восстанавливающей силы от перемещения) определяется формулой (2) (Пановко Я.Г. Введение в теорию механического удара. - М.: Наука, 1977. - С. 232):

где P0 - начальное давление поршневого компенсатора;

S - площадь поршня компенсатора;

H - расстояние от днища компенсатора до поршня;

n = 1 - показатель политропы (при медленных движениях).

Чтобы отношение было больше четырех, необходимо, чтобы коэффициент жесткости с был малой величиной, так как произведение мало. Для одного поршневого компенсатора (фактически, это пневмопружина) получить малый коэффициент жесткости практически невозможно (фиг. 1, б), а это приводит к колебаниям поршня (фиг. 1, а) (Миннивалеев Т.Н. Разработка забойной гидромеханической системы компенсаций колебаний давления промывочной жидкости: дисс. … канд. техн. наук: 05.02.13 - Уфа, 2014. - С. 41).

Техническая задача, решаемая изобретением, - повышение работоспособности и надежности работы установки, снижение вибрации подземного насосного оборудования, вызываемой присутствием газовых включений в откачиваемой продукции.

Поставленная техническая задача решается предлагаемой скважинной насосной установкой, содержащей установленный в скважине на колонне подъемных труб погружной центробежный насос с электродвигателем и расположенный над ними пневмопружинный компенсатор с установленным в нем пневматическим колпаком с поршнем, предназначенным для гашения пульсаций давления.

Новым является то, в конструкцию пневмопружинного компенсатора введен пакет последовательно соединенных тарельчатых пружин, имеющих такую силовую характеристику, что при параллельном соединении этого пакета пружин с поршнем компенсатора создается результирующая восстанавливающая сила с рабочим участком заданной малой (квазинулевой) жесткости, позволяющая снизить колебания давления в подъемных трубах и, следовательно, вибрацию оборудования.

На фиг. 2 представлена тарельчатая пружина.

Формула, описывающая силовую характеристику одной тарельчатой пружины, следующая (Андреева Л.Е. Упругие элементы приборов. 2 изд. переработанное и доп. - М.: Машиностроение, 1981 - С. 220):

где E - модуль упругости первого рода материала тарельчатой пружины;

s - толщина конуса;

x - осадка пружины;

f - высота конуса пружины;

D - внешний диаметр;

d - внутренний диаметр.

На фиг. 3 представлены силовые характеристики тарельчатой пружины при различных отношениях z=f/s (Андреева Л.Е. Упругие элементы приборов. 2 изд. перераб. и доп. - М.: Машиностроение, 1981. - С. 220), при

D=0,056 м; d=0,046 м; f=0,0080 м.

Как видно из фиг. 3, при силовая характеристика имеет участок отрицательной жесткости (negative stiffness) (Extreme stiffness systems due to negative stiffness elements, Y.C. Wang and R.S. Lakes, Am. J. Phys., Vol. 72, No. 1, January 2004, pp. 40). При восстанавливающая сила F при отрицательной жесткости имеет отрицательные значения (фиг. 3).

На фиг. 4 представлены график результирующей силовой характеристики системы (а) и схема предлагаемого пневмопружинного компенсатора (б).

При определенных параметрах тарельчатых пружин возможно получить суммарную силовую характеристику системы поршневой компенсатор (пневмопружина) - пакет последовательно соединенных тарельчатых пружин (фиг. 4), имеющей участок заданной малой жесткости. Формула, определяющая эту суммарную силовую характеристику, следующая:

где P - восстанавливающая сила пневмопружины, определяемая формулой (2);

F - восстанавливающая сила пакета последовательно соединенных тарельчатых пружин, определяемая формулой (3).

Результирующая силовая характеристика системы (фиг. 4, а) пневмопружина - пакет последовательно соединенных тарельчатых пружин представлена:

- графиком 1 - силовая характеристика пневмопружины;

- графиком 2 - силовая характеристика пакета последовательно соединенных тарельчатых пружин, где

f=0,0080 м; s=0,0024; N=1000; D=0,0056; d=0,046 м;

- начальное давление; AB - рабочий участок;

- графиком 3 - силовая характеристика, результирующая характеристика.

Схема предлагаемого компенсатора (фиг. 4, б), имеющего силовую характеристику, изображенную на фиг. 4 (а), включает в себя корпус A; пакет последовательно соединенных тарельчатых пружин B; пластины C, разделяющие тарельчатые пружины; где FΣ - результирующая восстанавливающая сила.

На участке AB (фиг. 4а) происходит сложение силовых характеристик пневмопружины (c1 > 0) и пакета последовательно соединенных тарельчатых пружин (c1 < 0). При этом результирующая характеристика имеет рабочий участок AB с заданной малой жесткостью (cΣ = c1 + c2 ≈ 0).

Заявляемое техническое решение поясняется чертежами, где

- на фиг. 5 приведена схема скважинной насосной установки;

- на фиг. 6 представлен пневмопружинный компенсатор.

Предлагаемая скважинная насосная установка (фиг. 5) содержит погружной центробежный насос 1, электродвигатель 2, пневмопружинный компенсатор 3.

Пневмопружинный компенсатор 3 (фиг. 6) включает в себя внешнюю труб 5, герметичный пневматический колпак 4 с головкой 15 и отверстиями 12, тарельчатые пружины 7 с промежуточными прокладками 8, поршень 9 с ограничителем хода 10 и отверстиями ограничителя хода 11. Герметичный пневматический колпак 4 закреплен комбинированной муфтой 13 и центрируется спицами 14.

Пневмопружинный компенсатор 3 (фиг. 6) содержит внешнюю трубу 5, в полости которой находится герметичный пневматический колпак 4, внутри которого размещен пакет тарельчатых пружин 7, разделенных промежуточными прокладками 8, позволяющими удержать их в равновесном положении. Причем диаметр промежуточной прокладки 8 выбран таким образом, чтобы оставался зазор 6, образующий полость между прокладками и внутренней поверхностью пневматического колпака 4, что позволяет при сжатии тарельчатых пружин 7 перемещаться всему пакету в целом. Ограничивает перемещение пакета тарельчатых пружин 7 поршень 9, упирающийся в нижнем положении в ограничитель хода поршня 10, выполненного с отверстиями ограничителя хода 11, что исключает деформацию поршня 10. Пневматический колпак 4 в нижней части перфорирован отверстиями 12, через которые добываемая газожидкостная смесь перетекает в полость между наружной поверхностью пневматического колпака 4 и внутренней поверхностью внешней трубы 5 и далее на дневную поверхность. Крепление пневматического колпака 4 и внешней трубы 5 осуществляется комбинированной муфтой 13, а центрирование обеспечивается посредством спиц 14. Верхняя часть пневматического колпака 4 имеет головку вытянутой формы 15, что снижает гидравлическое сопротивление при движении газожидкостной смеси.

Скважинная насосная установка работает следующим образом.

Перед спуском насосного оборудования в скважину пневматический колпак 4 (фиг. 6) заряжают инертным газом. Таким образом, пневматический колпак 4 изначально находится в рабочем состоянии. Тарельчатые пружины 7, разделенные промежуточными прокладками 8, опираются на поршень 9 и прижимают его к ограничителю хода 10.

В процессе работы погружного центробежного насоса 1 (фиг. 5) возникают колебания давления газожидкостной смеси. При увеличении давления газожидкостная смесь через отверстия ограничителя хода 11 оказывает воздействие на поршень 9, который перемещается внутри пневматического колпака 4, сжимая инертный газ и пакет тарельчатых пружин 7 (фиг. 6). При снижении давления сжатый инертный газ вытесняет газожидкостную смесь, находящуюся в зазорах 6, образующих внутреннюю полость пневматического колпака 4.

При изменении давления нагнетания газ в полости пневматического колпака 4 либо сжимается (при увеличении давления), либо расширяется (при уменьшении давления). В первом случае в полость пневматического колпака 4 поступает дополнительное количество жидкости, а во втором случае происходит ее обратное вытеснение.

Возможность приема газожидкостной смеси в полость пневматического колпака 4 при повышении ее давления, и ее вытеснения при - снижении, уменьшает разброс давления в трубах. Введение в конструкцию пневмопружинного компенсатора пакета последовательно соединенных тарельчатых пружин 7, имеющих такую силовую характеристику, что при параллельном соединении этого пакета пружин 7 с усилием давления инертного газа на поршне 9 создается результирующая восстанавливающая сила с рабочим участком заданной малой (квазинулевой) жесткости. Такая конструкция позволяет снизить колебания давления в подъемных трубах, следовательно, и вибрацию оборудования.

Внедрение предлагаемого объекта обеспечивает эффективное гашение вибрации подземного насосного оборудования, вызываемой присутствием газовых включений в откачиваемой продукции. В результате повышается эффективность эксплуатации скважин, оборудованных установками погружных центробежных насосов за счет увеличения межремонтного периода их работы.

Скважинная насосная установка, содержащая установленный в скважине на колонне подъемных труб погружной центробежный насос с электродвигателем, расположенный над ними для гашения пульсаций давления компенсатор с установленным в нем пневматическим колпаком с поршнем, отличающаяся тем, что поршень подпружинен изнутри пакетом последовательно соединенных тарельчатых пружин, разделенных прокладками, образующими зазор с внутренней поверхностью пневматического колпака, при этом тарельчатые пружины выполнены с разными отношениями высоты конуса пружины к толщине стенки конуса и имеют такую силовую характеристику, что при параллельном соединении усилий пакета пружин и давления инертного газа на поршне создана результирующая восстанавливающая сила с рабочим участком заданной малой - квазинулевой жесткости.



 

Похожие патенты:

Подводная скважинная гидравлическая система для работы под водой в водном объекте включает в себя электрическую машину и гидравлическую часть. Электрическая машина содержит ротор и статор, расположенные в первом кожухе в заданных условиях эксплуатации.

Изобретение относится к многоступенчатым погружным насосам для откачки пластовой жидкости из скважин. Установка погружного лопастного насоса компрессионного типа включает электродвигатель, протектор с осевой опорой вала и по меньшей мере одну насосную секцию.

Изобретение относится к нефтяному машиностроению и может быть использовано в погружных мультифазных насосах для откачки газожидкостной пластовой смеси. Ступень погружного мультифазного насоса содержит направляющий аппарат с верхним и нижним дисками, между которыми расположены лопатки, образуя каналы, рабочее колесо с основными лопастями, расположенными на верхней поверхности диска рабочего колеса, антифрикционную шайбу на нижней стороне диска и втулку, сопряженную через шпонку с валом.

Группа изобретений относится к электротехнике и может быть использована для защиты насосов от перегрузок и исчезновения воды - «сухого хода». Способ защиты насоса от перегрузки и «сухого хода» заключается в выделении сигнала тока и угла сдвига фаз между током и напряжением (Cos ϕ) и сравнения их произведения с заданными значениями произведения тока и Cos ϕ.

Изобретение относится к нефтепромысловому оборудованию и, в частности, к погружным насосным установкам, содержащим устройства для отделения твердых частиц от пластовой жидкости, которые защищают погружные нефтяные насосы от абразивного износа.

Изобретение относится к нефтяной промышленности и может быть использовано при стендовых испытаниях погружных центробежных насосов для добычи нефти. Способ испытаний насосов включает осуществление цикла циркуляции модельной вязкой жидкости через исследуемый насос и регулирование режимов работы насоса с одновременным контролем параметров насоса.

Изобретение относится к нефтяному машиностроению, а именно к погружным многоступенчатым центробежным насосам с изделиями из полимерных материалов, и может быть использовано в насосах для подъема пластовой жидкости из нефтяных скважин с повышенным содержанием механических примесей, в том числе солей, с переменной вязкостью.

Изобретение относится к области нефтяного машиностроения, в частности к многоступенчатым погружным лопастным насосам для добычи нефти. Открытое рабочее колесо ступени центробежного насоса содержит ступицу, имеющую возможность свободного перемещения вдоль вала насоса, ведущий диск с расположенными на одной из его плоских поверхностей лопастями, образующими проточные каналы, и индивидуальную опорную пяту на обеих поверхностях диска в виде антифрикционной износостойкой шайбы.

Изобретение относится к насосостроению, а именно к погружным скважинным электрическим насосам, и предназначено для откачки сред из скважин со значительным отклонением от прямолинейности.

Группа изобретений относится к нефтяному машиностроению, в частности к насосам для откачки пластовой жидкости из скважин. Установка содержит: двигатель, протектор с осевой опорой вала и по крайней мере одну насосную секцию.

Изобретение относится к нефтегазодобывающей промышленности, в частности к добыче насосом из скважин нефти с высоким содержанием газа. Технический результат - упрощение устройства и обеспечение возможности использования при работе с электропогружными насосами и погружными плунжерными – штанговыми насосами.

Изобретение относится к области добычи природного газа, в частности к области предупреждения гидратообразования в системах промыслового сбора газа преимущественно в условиях Крайнего Севера.

Способ извлечения нефти, газа, конденсата из скважины преимущественно истощаемых газоконденсатных месторождений может быть использован на предприятиях нефтегазодобывающей промышленности.

Изобретение относится к нефтедобывающей промышленности, в частности к сбору и утилизации попутного нефтяного газа с использованием отводящих факельных газов. Технический результат – повышение эффективности способа за счет уменьшения доли сжигаемого попутного нефтяного газа на факельной установке и использования тепловой энергии факельной установки для повышения давления и температуры попутного нефтяного газа для дальнейшей его транспортировки с остальным добываемым продуктом.

Изобретение относится к нефтепромысловому оборудованию и, в частности, к погружным насосным установкам, содержащим устройства для отделения твердых частиц от пластовой жидкости, которые защищают погружные нефтяные насосы от абразивного износа.

Группа изобретений относится к нефтегазодобывающей промышленности и может быть использована при скважинной добыче нефти, а также при добыче газа из обводненных низконапорных газовых и газоконденсатных скважин.

Изобретение относится к нефтяной промышленности и может быть использовано для отбора газа из затрубного пространства нефтяной скважины и закачки его в выкидной коллектор.

Изобретение относится к области добычи природного газа и, в частности, к устранению взаимопродавливания скважин, работающих на общий коллектор в реальном масштабе времени.

Изобретение относится к нефтяной промышленности и может быть использовано для отбора газа из затрубного пространства и закачки его в выкидной коллектор скважины. Технический результат - повышение эффективности отбора сепарированного газа из затрубного пространства скважины и его закачки в коллектор.

Группа изобретений относится к области горного дела и, в частности, к устройствам добычи жидких или газообразных сред из скважин, снабженных струйными насосами. Технический результат - повышение уровня ремонтопригодности устройства и повышение надежности эксплуатации добывающих скважин.

Изобретение относится к горной технике, в частности к запорным средствам для предотвращения возврата текучей среды под давлением в обратном направлении. Обратный клапан содержит корпус с центральным резьбовым отверстием, в корпусе размещены клетка, седло и взаимодействующий с седлом подпружиненный запорный элемент, который подвижно установлен в клетке клапана.

Изобретение относится к технике добычи нефти и, в частности, к технике подъема добываемой продукции скважин, а именно газожидкостной смеси. Технический результат - повышение работоспособности и надежности работы установки, снижение вибрации подземного насосного оборудования, вызываемой присутствием газовых включений в откачиваемой продукции. Установка содержит установленный в скважине на колонне подъемных труб погружной центробежный насос с электродвигателем. Над ними установлен компенсатор. В нем помещен пневматический колпак с поршнем. Поршень подпружинен изнутри пакетом последовательно соединенных тарельчатых пружин, разделенных прокладками. Прокладки образуют зазор с внутренней поверхностью пневматического колпака. Тарельчатые пружины выполнены с разными отношениями высоты конуса пружины к толщине стенки конуса и имеют такую силовую характеристику, что при параллельном соединении усилий пакета пружин и давления инертного газа на поршне создана результирующая восстанавливающая сила с рабочим участком заданной малой - квазинулевой жесткости. 8 ил.

Наверх