Модифицированные дендритные клетки и их применение в лечении злокачественных опухолей

Изобретение относится к области биотехнологии, конкретно к модифицированным in vitro дендритным клеткам, и может быть использовано в медицине. Полученные определенным способом дендритные клетки используют в составе фармацевтической композиции или набора для регулируемой экспрессии полипептида, обладающего функцией интерлейкина-12 (IL-12) в присуствии активирующего лиганда. Изобретение позволяет эффективно ингибировать рост опухоли у млекопитающих. 6 н. и 30 з.п. ф-лы, 18 ил., 5 пр.

 

Область изобретения

[0001] Настоящее изобретение относится к области генной терапии при лечении злокачественных опухолей. Согласно одному варианту реализации, настоящее изобретение относится к модификации дендритных клеток для обеспечения регулируемой экспрессии интерлейкина-12, и применению указанных клеток в терапии. Согласно другому варианту реализации, настоящее изобретение относится к модификации дендритных клеток для обеспечения регулируемой экспрессии интерлейкина-12 (IL-12) и/или интерферона-альфа (IFN-alpha), и применению указанных клеток в терапии.

Уровень техники

[0002] Описание различных патентов, патентных заявок и публикаций полностью включено в данное описание посредством ссылок. Тем не менее, упоминание любой ссылки в настоящей заявке не следует рассматривать как признание того, что указанная публикация доступна в качестве предшествующего уровня техники по отношению к настоящему изобретению.

[0003] Интерлейкин-12 принадлежит к семейству цитокинов 1-го типа, участвующих во множестве биологических процессов, включающих в себя (но не ограниченных) защитные иммунные реакции и подавление процессов образования опухолей (Abdi et al, 2006; Adorini, 1999; Adorini, 2001; Adorini et al, 2002; Adorini et al, 1996; Akhtar et al, 2004; Akiyama et al, 2000; Al-Mohanna et al, 2002; Aliberti et al, 1996; Allavena et al, 1994; Alii and Khar, 2004; Alzona et al, 1996; Amemiya et al, 2006; Araujo et al, 2001; Arulanandam et al, 1999; Athie et al, 2000; Athie-Morales et al, 2004; Bertagnolli et al, 1992; Bhardwaj et al, 1996; Biedermann et al, 2006; Brunda and Gately, 1994; Buchanan et al, 1995; Romani et al, 1997; Rothe et al, 1996; Satoskar et al, 2000; Schopf et al, 1999; Thomas et al, 2000; Tsung et al, 1997; Wolf et al, 1994; Yuminamochi et al, 2007). Увеличивающееся количество публикаций по данной тематике указывает на то, что воздействие на интерлейкин-12 может являться весьма многообещающим средством контроля заболеваний человека (например, рака).

[0004] Несмотря на то, что интерлейкин-12 рассматривают в качестве потенциального терапевтического агента для лечения рака, благодаря его способности поддерживать активность противоопухолевых NK-клеток 1-го типа, CD4+ Т-клеток и CD8+ Т-клеток (Trinchiery 2003), имеющиеся данные о токсичности рекомбинантного интерлейкина-12 человека (rhlL-12) по отношению к пациентам (Atkins et al, 1997), а также ограниченность источников получения рекомбинантного интерлейкина-12 человека по системе контроля качества GMP для клинического применения препятствуют успешному развитию способов терапии, основанных на использовании интерлейкина-12. Таким образом, разумно предположить, что способы генной терапии могут предоставить возможности более безопасного и надежного лечения. Действительно, первая фаза клинических испытаний внутри- или околоопухолевого введения рекомбинантной вирусной (Sangro et al, 2004; Triozzi et al, 2005) или плазмидной кДНК интерлейкина-12 (Heinzerling et al, 2005) или аутологичных фибробластов с модифицированным геном интерлейкина-12 (Kang et al, 2001) была показана и безопасность и хорошая переносимость.

[0005] Тем не менее, объективные клинические результаты у пациентов с меланомой или различными видами карциномы, которых подвергали указанной генной терапии, были редкими, многовариантными, временными и, в большинстве своем, локализированными в месте применения (Kang et al, 2001; Sangro et al, 2004; Triozzi et al, 2005; Heinzerling et al, 2005). В случаях, когда излечивание заболевания было частичным или полным, наблюдали повышенные количества противопоухолевых эффекторых лимфоцитов (Heinzerling et al, 2005; Sangro et al, 2004) и циркулирующих опухолеспецифических CD8+ Т-клеток (Heinzerling et al, 2005), что вполне согласуется с примированием перекрестно-реагирующим антигеном Т-клеток у таких пациентов.

[0006] Кроме того, имеется несколько дополнительных оснований для беспокойства, например: непредвиденная токсичность, связанная с генной терапией дендритных клеток (DC) интерлейкином-12, и возможные зависимые от интерлейкина-12 изменения в миграции терапевтических дендритных клетках, вырабатывающих интерлейкин-12 (DC.IL-12) после внутриопухолевого введения. Есть также опасения, касающиеся времени синтеза интерлейкина-12 в трансдуцированных дендритных клетках, что наиболее важно для эффективного лечения (Murphy et al, 2005).

[0007] Поскольку примирование перекрестно-реагирующим антигеном специфических Т-клеток наиболее эффективно осуществляется дендритными клетками, которые служат естественным, но регулируемым источником интерлейкина-12 (Berard et al, 2000), недавние отчеты о превосходной пре-клинической эффективности генной терапии с применением DC.IL-12, вызвали огромный интерес (Satoh et al, 2002; Tatsumi et al, 2003; Yamanaka et al, 2002). Так, оказалось, что внутриопухолевое введение дендритных клеток, модифицированных для выработки интерлейкин-12р70 (путем их инфицирования рекомбинантным аденовирусом), вызывает значительное повышение интенсивности примирования перекрестно реагирующим антигеном спектра высокоактивных опухолеспецифических CD8+ T-клеток, вместе с отторжением опухолей у исследуемых мышей (Tatsumi et al, 2003). Ввиду применения рекомбинантного аденовируса, кодирующего интерлейкин-12 мыши под контролем CMV-промотора (rAd.cIL12, Tatsumi et al, 2003), экспрессия интерлейкина-12 модифицированными дендритными клетками была постоянной, вследствие этого, нельзя было определить относительное иммунологическое действие этого цитокина, поначалу в месте повреждения опухоли, а затем и внутри инфильтрованных опухолью (дренирующих опухоль) лимфатических узлах. Таким образом, существует необходимость в дендритных клетках, модифицированных для регулируемой экспрессии интерлекийна-12. Настоящее изобретение обеспечивает многообещающий терапевтический результат при использовании таких клетке.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0008] Настоящее изобретение обеспечивает рекомбинантный вектор, который кодирует белок, обладающий функцией интерлейкина-12 под контролем регулируемого промотора. Согласно одному из вариантов реализации настоящего изобретения, указанный вектор представляет собой аденовирусный вектор, кодирующий интерлейкин-12р70 и под контролем регулируемого промотора, который активируется при условии присоединения к нему растворимого низкомолекулярного лиганда, такого, как диацилгидразин, например: RG-115819, RG-115830 или RG-115932. Такой вектор позволяет контролировать экспрессию интерлейкина-12 дендритными клетками (rAD.RheoIL12).

[0009] Согласно одному из вариантов реализации, настоящее изобретение обеспечивает вектор для регулируемой экспрессии белка, обладающего функций интерлейкина-12, который содержит полинуклеотид, кодирующий переключатель гена, содержащий по меньшей мере одну последовательность транскрипционного фактора, причем указанная, по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, функционально связанный с промотором, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12, при этом, указанный полинуклеотид связан с промотором, который активируется вышеуказанным лиганд-зависимым транскрипционным фактором. Согласно другому варианту реализации, настоящее изобретение обеспечивает вектор для регулируемой экспрессии белка, обладающего функций интерлейкина-12 и/или интерферона-альфа, который содержит: (1) полинуклеотид, который кодирует переключатель гена, при этом, указанный переключатель содержит по меньшей мере одну последовательность транскрипционного фактора, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, функционально связанный с промотором, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12 и/или полинуклеотид, кодирующий белок, который обладает функцией интерферона-альфа, при этом, указанный полинуклеотид связан с промотором, который активируется вышеуказанным лиганд-зависимым транскрипционным фактором.

[0010] Например, настоящее изобретение обеспечивает вектор для регулируемой экспрессии белка, обладающего функцией интерлейкина-12, который содержит полинуклеотид, который кодирует переключатель гена, причем указанный полинуклеотид содержит: (1) по меньшей мере одну последовательность транскрипционного фактора, функционально связанную с промотором, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12, при этом, указанный полинуклеотид связан с промотором, который активируется вышеуказанным лиганд-зависимым транскрипционным фактором. Также, настоящее изобретение обеспечивает вектор для регулируемой экспрессии белка, обладающего функцией интерлейкина-12 и/или белка, обладающего функцией интерферона-альфа, и содержащий полинуклеотид, кодирующий переключатель гена, причем указанный полинуклеотид содержит: (1) по меньшей мере одну последовательность транскрипционного фактора, функционально связанную с промотором, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12 и/или полинуклеотид, кодирующий белок, который обладает функцией интерферона-альфа, при этом, указанный полинуклеотид связан с промотором, который активируется вышеуказанным лиганд-зависимым транскрипционным фактором.

[ООП] Кроме того, настоящее изобретение обеспечивает способ получения популяции дендритных клеток, регулируемо экспрессирующих белок, обладающий функцией интерлейкина-12, посредством модификации указанных дендритных клеток рекомбинантным вектором, обеспечивающим регулируемую экспрессию белка, обладающего функцией интерлейкина-12, например: rAd.RheoIL12. Согласно другому варианту реализации, настоящее изобретение обеспечивает способ получения популяции дендритных клеток, регулируемо экспрессирующих белок, обладающий функцией интерлейкина-12 и/или белок, обладающий функцией интерферона-альфа, путем модификации дендритных клеток рекомбинантным вектором, обеспечивающим регулируемую экспрессию белка, обладающего функцией интерлейкина-12 и/или интерферона-альфа.

[0012] Согласно одному из вариантов реализации, настоящее изобретение обеспечивает способ получения популяции дендритных клеток, регулируемо экспрессирующих белок, обладающий функцией интерлейкина-12, включающий в себя модификацию по меньшей мере части дендритных клеток путем введения в них вектора, содержащего: (1) полинуклеотид, кодирующий переключатель гена, который содержит по меньшей мере одну последовательность транскрипционного фактора, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, функционально связанный с промотором, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12, при этом, указанный полинуклеотид связан с промотором, который активируется вышеуказанным лиганд-зависимым транскрипционным фактором. Согласно другому варианту реализации, настоящее изобретение обеспечивает способ получения популяции дендритных клеток, регулируемо экспрессирующих белок, обладающий функцией интерлейкина-12 и/или белок, обладающий функцией интерферона-альфа, включающий в себя модификацию по меньшей мере части дендритных клеток путем введения в них вектора, содержащего: (1) полинуклеотид, кодирующий переключатель гена, который содержит по меньшей мере одну последовательность транскрипционного фактора, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, функционально связанный с промотором, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12 и/или полинуклеотид, кодирующий белок, который обладает функцией интерферона-альфа, при этом, указанный полинуклеотид связан с промотором, который активируется вышеуказанным лиганд-зависимым транскрипционным фактором.

[0013] Например, настоящее изобретение обеспечивает способ получения популяции дендритных клеток, управляемо экспрессирующих белок, обладающий функцией интерлейкина-12, включающий в себя модификацию по меньшей мере части дендритных клеток путем введения в них вектора, содержащего полинуклеотид, который кодирует переключатель гена, причем данный полинуклеотид содержит (1) по меньшей мере одну последовательность транскрипционного фактора, функционально связанную с промотором, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12, при этом, данный полинуклеотид связан с промотором, который активируется вышеуказанным лиганд-зависимым транскрипционным фактором. Настоящее изобретение также обеспечивает способ получения популяции дендритных клеток, управляемо экспрессирующих белок, обладающий функцией интерлейкина-12 и/или белок, обладающий функцией интерферона-альфа, включающий в себя модификацию по меньшей мере части дендритных клеток путем введения в них вектора, содержащего полинуклеотид, который кодирует переключатель гена, причем данный полинуклеотид содержит: (1) по меньшей мере одну последовательность транскрипционного фактора, функционально связанную с промотором, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12 и/или полинуклеотид, кодирующий белок, который обладает функцией интерферона-альфа белок, при этом, указанный полинуклеотид связан с промотором, который активируется вышеуказанным лиганд-зависимым транскрипционным фактором.

[0014] Также, настоящее изобретение обеспечивает популяцию дендритных клеток, модифицированных для регулируемой экспрессии белка, обладающего функцией интерлейкина-12, с применением рекомбинантного вектора, обеспечивающего регулируемую экспрессию белка, который обладает функцией интерлейкина-12, например, вектора rAd.RheoIL12. Было показано, что дендритные клетки, инфицированные rAd.RheoIL12, вырабатывают повышенные количества интерлейкина-12 только после обработки активирующим лигандом. Другой вариант реализации относится к популяции дендритных клеток, модифицированных для регулируемой экспрессии белка, обладающего функцией интерлейкина-12 и/или белка, обладающего функцией интерферона-альфа, с применением рекомбинантного вектора, обеспечивающего регулируемую экспрессию белка, который обладает функцией интерлейкина-12 и/или белка, который обладает функцией интерферона-альфа. Подходящие лиганды включают в себя, но не ограничиваются следующими: RG-115830, RG-115932, RG-115819, RSL1 и другими диацилгидразинами.

[0015] Согласно одному из вариантов реализации, настоящее изобретение обеспечивает модифицированные in vitro дендритные клетки, содержащие вектор, включающий в себя полинуклеотид, кодирующий переключатель гена, который содержит: (1) по меньшей мере одну последовательность транскрипционного фактора, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, функционально связанный с промотором, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12, связанный с промотором, который активируется указанным лиганд-зависимым транскрипционным фактором. Согласно другому варианту реализации, настоящее изобретение обеспечивает модифицированные in vitro дендритные клетки, содержащие вектор, включающий в себя полинуклеотид, кодирующий переключатель гена, который содержит: (1) по меньшей мере одну последовательность транскрипционного фактора, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, функционально связанный с промотором, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12, и/или полинуклеотид, кодирующий белок, который обладает функцией интерферона-альфа, связанный с промотором, который активируется указанным лиганд-зависимым транскрипционным фактором.

[0016] Например, настоящее изобретение обеспечивает модифицированные in vitro дендритные клетки, содержащие вектор, включающий в себя полинуклеотид, кодирующий переключатель гена, содержащий: (1) по меньшей мере одну последовательность транскрипционного фактора, функционально связанную с промотором, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, и (2) полинуклеотид, кодирующий белок, обладающий функцией интерлейкина-12, связанный с промотором, который активируется указанным лиганд-зависимым транскрипционным in vitro фактором. Настоящее изобретение обеспечивает модифицированные дендритные клетки, содержащие вектор, включающий в себя полинуклеотид, кодирующий переключатель гена, причем полинуклеотид содержит: (1) по меньшей мере одну последовательность транскрипционного фактора, функционально связанную с промотором, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12, и/или полинуклеотид, кодирующий белок, который обладает функцией интерферона-альфа, связанный с промотором, который активируется указанным лиганд-зависимым транскрипционным фактором.

[0017] Также, настоящее изобретение обеспечивает фармацевтическую композицию, содержащую популяцию дендритных клеток, модифицированных для регулируемой экспрессии, белка, который обладает функцией интерлейкина-12, с помощью рекомбинантного вектора, регулируемо экспрессирующего обладающий функцией интерлейкина-12 белок, например: вектора rAd.RheoIL12. Согласно другому варианту реализации, настоящее изобретение обеспечивает фармацевтическую композицию, содержащую популяцию дендритных клеток, модифицированных для управляемой экспрессии белка, обладающего функцией интерлейкина-12 и/или белка, обладающего функцией интерферона-альфа с помощью рекомбинантного вектора, регулируемо экспрессирующего обладающий функцией интерлейкина-12 белок и/или обладающий функцией интерферона-альфа белок.

[0018] Также, настоящее изобретение обеспечивает способ лечения злокачественных опухолей, таких как меланомы или глиомы. Лечение геном интерлейкина-12 показало противоопухолевую активность в исследованиях на модельных животных, при применении рекомбинантного кДНК-вектора (Faure et al, 1998; Sangro et al, 2005), и, еще в большее степени, при применении в форме генетически модифицированных дендритных клеток (Satoh et al, 2002; Svane et al, 1999; Tatsumi et al, 2003; Yamanaka et al, 2002). К настоящему моменту, тем не менее, процедуры первой фазы клинических испытаний на людях терапии геном интерлейкина-12, включающие в себя применения плазмидных или вирусных векторов, не обеспечили стойкого объективного клинического эффекта в контролировании злокачественных опухолей (Heinzerling et al, 2005; Kang et al, 2001; Sangro et al, 2004; Triozzi et al, 2005). Лечение геном интерлейкина-12, основанное на дендритных клетках (с или без интерферона-альфа) и описанное в данном материале, показало многообещающую терапевтическую перспективу.

[0019] Согласно одному из вариантов реализации, настоящее изобретение обеспечивает способ лечения опухоли у млекопитающего, включающий:

(a) внутриопухолевое введение в микроокружение опухоли популяции модифицированных in vitro дендритных клеток, содержащих вектор, включающий полинуклеотид, кодирующий переключатель гена и содержащий (1) по меньшей мере одну последовательность транскрипционного фактора, функционально связанную с промотором, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, и (2) полинуклеотид, кодирующий обладающий функцией интерлейкина-12 белок, и связанный с промотором, который активируется указанным лиганд-зависимым транскрипционным фактором, и

(b) введение указанному млекопитающему эффективного количество лиганда, активирующего указанный лиганд-зависимый транскрипционный фактор; что приводит к стимулированию экспрессии обладающего функцией интерлейкина-12 белка и излечиванию указанной опухоли.

[0020] Например, настоящее изобретение обеспечивает способ лечения опухоли у млекопитающего, включающий в себя следующие стадии:

(a) модификацию in vitro дендритных клеток для регулируемой экспрессии белка, обладающего функцией интерлейкина-12;

(b) внутриопухолевое введение в микроокружение опухоли, указанных, модифицированных in vitro дендритных клеток; и

(c) введение указанному млекопитающему терапевтически эффективной дозы активирующего лиганда;

что приводит к стимулированию экспрессию белка, обладающего функцией интерлейкина-12, и излечиванию вышеуказанной опухоли.

[0021] Согласно следующим вариантам реализации, настоящее изобретение обеспечивает способ лечения опухоли у млекопитающего, включающий: (а) внутриопухолевое введение в микроокружение опухоли модифицированных in vitro дендритных клеток, причем указанные дендритные клетки содержат вектор, включающий полинуклеотид, кодирующий переключатель гена и содержащий (1) по меньшей мере одну последовательность транскрипционного фактора, функционально связанную с промотором, причем указанная по меньшей мере одна последовательность транскрипционного фактора кодирует лиганд-зависимый транскрипционный фактор, и (2) полинуклеотид, кодирующий белок, который обладает функцией интерлейкина-12 и/или белок, который обладает функцией интерферона-альфа, связанный с промотором, который активируется вышеуказанным лиганд-зависимым фактором транскрипции, и (b) введение указанному млекопитающему терапевтически эффективной дозы активирующего лиганда; что приводит к стимулированию экспрессии белка, обладающего функцией интерлейкина-12, и/или белка, обладающего функцией интерферона-альфа, и излечиванию вышеуказанной опухоли.

[0022] Например, настоящее изобретение обеспечивает способ лечения опухоли у млекопитающего, включающий следующие стадии:

(a) модификация in vitro дендритных клеток для регулируемой экспрессии белка, обладающего функцией интерлейкина-12 и/или белка, обладающего функцией интерферона-альфа;

(b) внутриопухолевое введение в микроокружение опухоли, указанных, модифицированных in vitro дендритных клеток; и

(c) введение указанному млекопитающему терапевтически эффективной дозы активирующего лиганда;

что приводит к стимулированию экспрессию белка, обладающего функцией интерлейкина-12 и/или белка, обладающего функцией интерферона-альфа, и излечиванию вышеуказанной опухоли.

[0023] Также настоящее изобретение обеспечивает способ определения степени эффективности терапии модифицированными дендритными клетками посредством: определения контрольного уровня, который получают в результате измерения уровня экспрессии или активности интерферона-гамма у пациента до начала терапии;

введения дендритных клеток, модифицированных для регулируемой экспрессии белка, обладающего функцией интерлейкина-12, и последующего введения эффективного количества активирующего лиганда; и затем

определения тестового уровня, который получают в результате, измерения уровня экспрессии интерферона-гамма;

сравнения указанного контрольного уровня с указанным тестовым для определения, является ли терапевтический режим эффективным.

[0024] Согласно одному из вариантов реализации, настоящее изобретение обеспечивает способ определения эффективности терапевтического режима пациента, основанного на терапии модифицированными in vitro дендритными клетками,, включающий:

(a) измерения экспрессии и/или активности интерферона-гамма в первом биологическом образце, полученном от нуждающегося в этом пациента перед введением модифицированных in vitro дендритных клеток с получением контрольного уровня;

(b) введение нуждающемуся в этом пациенту дендритных клеток, модифицированных in vitro для регулируемой экспрессии белка, обладающего функцией интерлейкина-12;

(c) введение пациенту терапевтически эффективной дозы активирующего лиганда;

(d) измерение экспрессии и/или активности интерферона-гамма во втором биологическом образце, полученном от нуждающегося в этом пациента, после введения модифицированных in vitro дендритных клеток и активирующего лиганда с получением тестового уровня;

(e) сравнение указанного контрольного и указанного тестового уровня экспрессии или активности интерферона-гамма, причем повышенный тестовый уровень экспрессии и/или активности, по сравнению с контрольным уровнем говорит об эффективности терапии для данного пациента.

[0025] Согласно другому варианту реализации, настоящее изобретение обеспечивает способ стимуляции регулируемой экспрессии белка, обладающего функцией интерлейкина-12 в дендритных клетках, включающий: (1) введение нуждающемуся в этом млекопитающему эффективного количества популяции модифицированных in vitro дендритных клеток согласно настоящему изобретению; и (2) введение указанному млекопитающему эффективного количества активирующего лиганда для активации лиганд-зависимого транскрипционного фактора.

[0026] Для исследования клинической эффективности, были продолжены исследования проведенные на модели саркомы CMS4 на мышах BALB/c, и оказалось, что внутриопухолевое введение изогенных дендритных клеток, взятых из костного мозга и предварительно инфицированных Ad.cIL12 (конститутивная экспрессия), привело к эффективному отторжению опухоли. (Tatsumi et al., 2003). Отторжение произошло в связи с системной CD8+ T-клеточно опосредованной иммунной реакцией против опухолей CMS4 (Tatsumi et al, 2003).

ПОДРОБНОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

[0027] На Фигуре 1 изображена структура вектора rAd.RheoIL12, из которого удалили области Е1 и Е3 и заменили область Е1 компонентами RheoSwitch® Therapeutic System (RTS)-IL-12. Мотив, обозначенный как ʺIL12ʺ, показывает кодирующие последовательности IL-12p40 и JL-12p35, разделенные участком внутренней посадки рибосомы (IRES).

[0028] На Фигуре 2A-2C показано, что модифицированные дендритные клетки регулируемо вырабатывают белок интерлейкин-12 в присутствии RG-115830.

[0029] На Фигуре 3A: показано, что модифицированные дендритные клетки, введенные в микроокружение меланомы, вызывают регресс опухоли у мышей C57B 1/6 на 7-й день после появления у них подкожных опухолей В16, при внутрибрюшинном введении RG-115830, в течение 24 часов после введения дендритных клеток. Фигура 3B-3C: регресс опухоли произошел при постоянном введении RG-115830 в течение суток 1-5, но не произошел при введении RG-115830 только в течение суток 1-2 или 1-3 после введения дендритных клеток.

[0030] На Фигуре 4 показано, что модифицированные дендритные клетки лучше выживают в опухоли и в инфильтрованных опухолью лимфатических узлах (ЛУ) после внутрибрюшинного введения активирующего лиганда, в случае, если введение было произведено в течение 24 часов после инъекции дендритных клеток, при этом выживаемость значительно ниже или равна нулю при введении лиганда в течение 48 и 72 часов после инъекции клеток, соответственно.

[0031] На Фигуре 5A показано, что модифицированные дендритные клетки вызывают сильную периферическую активацию анти-B16 CD8+ T-клеток после внутрибрюшинного введения активирующего лиганда, в случае, если введение было произведено в течение 24 часов после инъекции указанных дендритных клеток. Фигура 5B показывает, что мыши, перед тем получавшие лечение от меланомы, обладают специфической защитой от опухолевых клеток B16, но не от опухолевых клеток MC38 карциномы прямой кишки, когда не зараженные опухолью животные были инфицированы соответствующими клетками B16 меланомы или клетками MC38 карциномы толстой кишки на 45-й день после первичного заражения B16.

[0032] Фигура 6 показывает терапевтические преимущества, обусловленные введением лиганда внутрибрюшинно или орально.

[0033] На Фигуре 7 изображены графики Каплана-Майера, иллюстрирующие динамику выживаемости мышей при глиоме мышей (GL261) в результате внутриопухолевой инъекции дендритных клеток, модифицированных полинуклеотидами, кодирующими интерлейкин-12 и/или интерферон-альфа под контролем RTS. Аббревиатуры на данном рисунке расшифровываются следующим образом: Ad-IFNa - аденовирусный вектор, регулируемо вырабатывающий интерферон-альфа; Ad-RTS-IFHa - аденовирусный вектор, кодирующий интерферон-альфа под контролем RTS; Ad-RTS-IFHa no ligand - аденовирусный вектор, содержащий RTS и интерферон-альфа при отсутствии активирующего лиганда; Ad-rFNa/IL-12 относится к дендритным клеткам, модифицированным аденовирусным вектором, кодирующим интерферон-альфа и интерлейкин-12; и Ad-RTS- EFNa/IL-12 относится к дендритным клеткам, модифицированным двумя аденовирусными векторами, кодирующими интерферон-альфа и интерлейкин-12 под контролем RTS.

[0034] На Фигуре 8 изображена карта аденовирусного вектора Ad-RTS-hTL-12.

[0035] На Фигуре 9 показана выработка интерлейкина-12 дендритными клетками человека, модифицированными аденовирусным вектором Ad-RTS-IL-12 мыши, при разных значениях MOI и разной продолжительности адсорбции вирусов. Трансдукция дендритных клеток человека аденовирусом при разных значениях MOI и разной продолжительности адсорбции вирусов выявила эффективную трансдукцию клеток при 3-часовой адсорбции вирусов и значении MOI, равном 500. Активирующее вещество (ʺADʺ или ʺактивирующий лигандʺ) индуцировало экспрессию интерлейкина-12 указанными дендритными клетками человека.

[0036] На Фигуре 10 показан результат сравнительного анализа эффекта различных, содержащих ген интерлейкина-12 аденовирусных векторов. Вариант SPl-RheoIL-12 оказался наиболее эффективным среди всех вариантов, содержащих Rheoswitch. Spl-RheoIL-12 отличается от oldRheoIL-12 тем, что последовательность AdEasy-1 в нем заменена на последовательность RAPAd (ViraQuest). Аналогичным образом, TTR-RheoIL-12 отличается от oldRheoIL-12 тем, что он содержит минимальный промотор TTR, по направлению транскрипции от сайтов связывания Gal4, который заменяет синтетический минимальный промотор и сайты связывания SpI, а основа последовательности вектора является последовательностью RAPAd (ViraQuest). Как показано на Фигуре 10, Spl-RheoIL-12 оказался аналогичным oldRheoIL-12 и более эффективным, чем TTR-RheolL-12 в отношении уменьшения размера опухоли меланомы B16.

[0037] На Фигуре 11 показано отсутствие формирования опухоли меланомы B16 после повторной инициации опухоли у мышей, перед этим получивших лечение дендритными клетками, содержащими рекомбинантный аденовирусный Rheoswitch-индуцируемый интерлейкин-12. Это говорит о том, что опухолевый рост меланомы B16 блокируется в течение приблизительно 25 суток, когда мышей, обладающих иммуннитетом к B16 подвергали повторной инокуляции через 45 дней после первичного заражения клетками B16. Дендритные клетки мыши были получены из костного мозга мышей B6 путем 7-дневного культивирования в полной среде (RPMI-1640, 10% FBS), содержащей rmIL-4 и rmGM-CSF. Затем CD11c-положительные дендритные клетки выделяли с помощью специфичных частиц MACS согласно протоколу производителя (Miltenyi Biotech) и инфицировали при значении MOI, равном 100, с использованием rAd.IL-12 vs. SP1 vs. TTR), в течение 24 часов до инъекции дендритных клеток 10E6 подкожно (s.c.) в образовавшиеся на 9-й день опухоли меланомы B16 (5 мышей в каждой группе, опухоль на правом боку). Затем часть мышей подвергли ежедневным внутрибрюшинным (i.p.) инъекциям активирующего лиганда RG-115830 (30 мг/кг в 50 мкл диметилсульфоксида, DMSO) в дни 0-4 после введения дендритных клеток. Размер опухоли контролировали каждые 3-4 дня и измеряли в мм2, как произведение ортогональных диаметров. Для оценки специфичности защиты, связанной с терапией, всех животных, у которых отсутствовала опухоль, подвергли повторным инъекциям клеток меланомы 10E5 B16 в левый бок и клеток карциномы толстой кишки MC38 в правый бок на 45-е сутки после первичного инфицирования клетками опухоли B16. Опухоли MC38 были выявлены, в то время как опухоли B16 не образовались.

[0038] Фигура 12 показывает результат сравнительного анализа между количеством дендритных клеток, введенных в опухоль B16 (10E5, 10E6, 103E7), продолжительностью введения лиганда (6 дней или 13 дней) и последующим регрессом опухоли у модельных мышей, зараженных меланомой B16. Лиганды, при введении ежедневно в течение 13 дней в комбинации с дендритными клетками 10E7, оказались наиболее эффективным средством, вызывающим регресс опухолей в течение 25 дней.

[0039] На Фигуре 13 показано, что описанная в данной заявке терапия не была причиной нежелательной потери веса вследствие изнуренного состояния. Изнуренное состояние и потеря веса часто связаны с высокими уровнями интерферона-гамма и фактора некроза опухолей-альфа (TNF-alpha), синтез которых положительно регулируется интерлейкином-12.

[0040] На Фигуре 14 показано, что в результате повторной инициации опухоли у мышей перед этим получивших лечение дендритными клетками, содержащими рекомбинантный аденовирусный RheoSwitch-индуцируемый интерлейкин-12 и активизирующий лиганд RG-115932, опухоли меланомы B16 не формируются. Меланомы B16 развивались в течение 7 дней после подкожных инъекций пяти изогенным мышам B6 в правый бок. На седьмой день, внутриопухолево, в дозах 105, 106 или 107 ввели дендритные клетки DC.SP1-IL-12 (взятые из костного мозга дендритные клетки, инфицированные при значении MOI, равном 100, с применением оптимального переключателя SP1). RG-115932 вводили внутрибрюшинно в день введения дендритных клеток (и затем ежедневно в течение 6 или 13 дней). Каждая группа состояла из 5 животных, рост опухолей контролировали каждые 3-4 дня и протоколировали в виде среднего размера (кв. мм как произведение ортогональных измерений). Во время измерения размеров также оценивали индивидуальные массы животных (Фигура 13). Все животные, избавившиеся от болезни благодаря любому способу лечения, были повторно инокулированы на 50-й день (следующая за первичной прививка опухоли B16) 105 клетками меланомы B16 в противоположный бок (левый бок) относительно первичной опухоли и 105 клетками карциномы толстой кишки MC38 в правый бок. Рост опухолей контролировали каждые 3-4 дня и сравнивали с ростом, наблюдаемым у животных, ранее не получивших лечение (см. Фигура 12). Таким образом, Фигура 14 демонстрирует, что рост опухолей меланомы B16 был блокирован в течение около 24 дней, при повторном введении клеток меланомы B16 иммунным к B16 мышам. Фигура 14 также показывает, что мыши не привитые B16 не были защищены от образования опухолей также, как и MC38-иммунные мыши и мыши, не привитые MC38. MC38 - это вид карциномы толстой кишки, известный специалистам в данной области. Вышеописанное демонстрирует специфичность иммунизации, обусловленной введением в первичную опухоль B16 дендритных клеток, содержащих рекомбинантный аденовирусный Rheoswitch-индуцируемый интерлейкин-12.

[0041] Фигура 15 показывает экспрессию интерлейкина-12 в дендритных клетках мышей, модифицированных Ad-RTS-IL-12, зависимую от дозы активирующего вещества.

[0042] Фигура 16 показывает реакцию Включения/Выключения экспрессии интерлейкина-12 в присутствие или отсутствие RG-115932 в клетках НТ1080, модифицированных Ad-RTS-IL-12 мыши.

[0043] Фигура 17 показывает, что реакция CD8+ Т-клеток на иммунизацию путем внутриопухолевой инъекции аденовирусных модифицированных дендритных клеток в присутствие или отсутствие активирующего вещества (AD) соответствует противоопухолевой реакции.

[0044] Фигура 18 иллюстрирует активацию синтеза интерлейкина-12 человека во взятых от трех добровольцев дендритных клетках человека, модифицированных аденовирусным вектором, кодирующим интерлейкин-12 под контролем RTS.

ДЕТАЛЬНОЕ ОПИСАНИЕ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

[0045] SEQ ID NO: 1 - полная нуклеотидная последовательность гена p35 интерлейкина-12 мыши дикого типа.

[0046] SEQ ID NO: 2 - полная нуклеотидная последовательность гена p40 интерлейкина-12 мыши дикого типа.

[0047] SEQ ID NO: 3 - полная нуклеотидная последовательность гена p35 интерлейкина-12 человека дикого типа.

[0048] SEQ ID NO: 4 - полная нуклеотидная последовательность гена p40 интерлейкина-12 человека дикого типа.

[0049] SEQ ID NO: 5 - полная полипептидная последовательность белка p35 интерлейкина-12 мыши дикого типа.

[0050] SEQ ID NO: 6 - полная аминокислотная последовательность белка p40 интерлейкина-12 мыши дикого типа.

[0051] SEQ ID NO: 7 - полная аминокислотная последовательность белка p35 интерлейкина-12 человека дикого типа.

[0052] SEQ ID NO: 8 - полная аминокислотная последовательность белка p40 интерлейкина-12 человека дикого типа.

[0053] SEQ ID NO: 9 - последовательность ДНК элемента отклика (элемент ответа, response element, RE) экдизона, найденного у Drosophila.

[0054] SEQ DD NO: 10 - последовательность ДНК элемента отклика (RE) экдизона, найденного у Drosophila melanogaster.

[0055] SEQ ID NO: 11 - последовательность ДНК элемента отклика (RE) экдизона, найденного у Drosophila melanogaster.

[0056] SEQ ID NO: 12 - Сайт рестрикции эндонуклеазы генной конверсии I-SceI.

[0057] SEQ ID NO: 13 - последовательность ДНК аденовирусного вектора, содержащего кодирующую последовательность человеческого интерлейкина-12: Ad-RTS-IL-12 человека (SPl-RheoIL-12).

[0058] Аминокислотная последовательность интерферона-альфа (IFN-alpha) доступна в публичных базах данных, ее регистрационным номер - ААА52724, данная последовательность включена в ссылки данного документа. См. также Capon et al., Mol. Cell. Biol. 5, 768-779 (1985).

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

[0059] Если не оговорено иначе, все специальные термины и обозначения, а также научные термины и терминология, использованные в настоящей заявке, имеют значения, повсеместно принятые специалистами в области, к которой относится настоящее изобретение. В некоторых случаях, термины, с повсеместно принятыми значениями, пояснены в данном описании для уточнения и/или в качестве готовых справок и разъяснений. Значение таких определений в настоящей заявке необязательно должно различаться со значением этих определений, принятым в данной области техники. Повсеместно принятые определения терминов и/или методик и/или протоколов, относящихся к молекулярной биологии, могут быть найдены в Rieger et ah, Glossary of Genetics: Classical and Molecular, 5th edition, Springer- Verlag: New York, 1991; Lewin, Genes V, Oxford University Press: New York, 1994; Sambrook et al., Molecular Cloning, A Laboratory Manual (3d ed. 2001) и Ausubel et al., Current Protocols in Molecular Biology (1994). Предполагается, что процедуры, включающие в себя применение коммерчески доступных комплектов (kits) и/или реагентов, осуществляются стандартно, в соответствии с инструкциями и/или протоколами и/или параметрами, предоставленными производителем, если не оговорено иначе.

[0060] В настоящей заявке термин «выделенный/изолированный» относится к биологическому материалу (клетке, нуклеиновой кислоте или белку), извлеченному из его естественной среды (окружения, в которой он находится в природе). Например, полинуклеотид, присутствующий в естественном состоянии в растении или животном, не является изолированным, но этот же нуклеотид, отделенный от смежных нуклеиновых кислот, в состав которых он входит в природе, считается «изолированным».

[0061] Термин «очищенный», при использовании в отношении биологического материала, не обязательно требует, чтобы биологический материал находился в абсолютно чистой беспримесной форме, исключающей наличие других веществ в его составе. Это определение относительно.

[0062] Термины «нуклеиновая кислота», «молекула нуклеиновой кислоты», «олигонуклеотид» и «полинуклеотид» являются взаимозаменяемыми и относятся к полимерной форме сложных фосфатных эфиров рибонуклеозидов (аденозина, гуанозина, уридина или цитидина; «молекулы РНК») или дезоксирибонуклеозидов (дезоксиаденозина, дезоксигуанозина, 5 дезокситимидина или дезоксицитидина; «молекулы ДНК») или любых их фосфоэфирных аналогов, таких как фосфоротиолаты и тиоэфира, либо в одноцепочечной форме, или в форме двухцепочечной спирали. Возможны двухцепочечные спирали ДНК-ДНК, ДНК-РНК и РНК-РНК. Термин молекула нуклеиновой кислоты, а в частности, молекула ДНК или РНК, относится только к первичной и вторичной структуре молекулы и не ограничивает ее (молекулу) до каких-либо 10 конкретных третичных форм. Таким образом, этот термин охватывает двухцепочечную ДНК, существующую, в том числе, в линейных и кольцевых формах молекулы ДНК (например,

фрагментах рестрикции), плазмидах, суперспирализованной ДНК и хромосомах. При рассмотрении структуры отдельных двухцепочечных молекул ДНК, последовательности могут быть описаны в настоящей заявке соответственно принятым условным обозначениям в 15 направлении от 5’ к 3’ по нетранскрибируемой цепочке ДНК (т. е. цепочке, последовательность которой гомологична последовательности иРНК). «Рекомбинантная молекула ДНК» - это молекула ДНК, подвергшаяся молекулярно-биологической обработке. К ДНК относятся, однако не ограничивают это понятие: кДНК, геномная ДНК, плазмидная ДНК, синтетическая ДНК и полусинтетическая ДНК.

[0063] Термин «фрагмент», применяемый к полинуклеотидным последовательностям, относится к нуклеотидной последовательности, которая состоит из меньшего числа нуклеотидов по сравнению с исходной нуклеиновой кислотой и содержащей, кроме общей области, последовательность нуклеотидов, идентичную изначальной нуклеиновой кислоте. Согласно настоящему изобретению, такой фрагмент нуклеиновой кислоты, может, если необходимо, входить в больший полинуклеотид и являться, таким образом, составной частью последнего. Согласно изобретению, такие фрагменты включают в себя или, в качестве альтернативы могут состоять из олигонуклеотидов, размер которых варьирует от, по меньшей мере 6, 8, 9, 10, 12, 15, 18, 20, 21, 22, 23, 24, 25, 30, 39, 40, 42, 45, 48, 50, 51, 54, 57, 60, 63, 66, 70, 75, 78, 80, 90, 100, 105, 120, 135, 150, 200, 300, 500, 720, 900, 1000, 1500, 2000, 3000, 4000, 5000, или большего числа последовательных нуклеотидов нуклеиновой кислоты.

[0064] В настоящем описании, термин «изолированный фрагмент нуклеиновой кислоты» относится к одно- или двухцепочечному полимеру РНК или ДНК, факультативно содержащему синтетические, не встречающиеся в природе или измененные основания. Изолированный фрагмент нуклеиновой кислоты в форме полимера ДНК может содержать один или более сегмент кДНК, геномной ДНК или искуственной ДНК.

[0065] Под определение «Ген» попадает полинуклеотид, состоящий из нуклеотидов, кодирующих функциональную молекулу, а также функциональные молекулы, получаемые посредством одной лишь транскрипции (например, биологически активный вид РНК) или транскрипции и трансляции (например, полипептид). Термин «ген» охватывает кДНК и геномные ДНК. Под определение «Ген» также попадает фрагмент нуклеиновой кислоты, экспрессирующий специфическую РНК, белок или полипептид, и включающий в себя регуляторные последовательности, предшествующие (5’ некодирующие последовательности) и следующие за (3’ некодирующие последовательности) кодирующей последовательностью. Определение «Нативный ген» описывает ген в той форме, в которой он существует в природе, с его собственными регуляторными последовательностями. Определение «химерный ген» (рекомбинантный ген) относится к любому ненативному гену, содержащему регуляторные и/или кодирующие последовательности, не существующие вместе в естественном состоянии. Соответственно, химерный ген может содержать регуляторные последовательности и кодирующие последовательности, взятые из разных источников, или регуляторные последовательности и кодирующие последовательности, взятые из одного и того источника, но расположенные иначе, нежели они располагаются в естественном состоянии. Химерный ген может содержать кодирующие последовательности, которые были взяты из различных источников, и/или регуляторные последовательности, которые были взяты из различных источников. Определение «эндогенный ген» относится к нативному гену в его естественном расположении в геноме организма. Определение «чужеродный» ген или «гетерологичный» ген относится к гену, в нормальных обстоятельствах не присутствующему в организме хозяина, но искусственно введенному в организм хозяина с помощью переноса гена. К чужеродным генам могут относиться встречающиеся в природе гены, внедренные в чужеродный организм или рекомбинантные гены. «Трансген» - это ген, введенный в геном при помощи процедуры трансформации. Например, ген интерлейикна-12 (IL-12) кодирует белок интерлейкин-12 (IL-12). Интерлейкин-12 является гетеродимером состоящим из 35-kD субъединицы (р35) и 40-kD субъединицы (р40), которые, связываясь дисульфидным мостиком, формируют полнофункциональный IL-12p70. Ген IL-12 кодирует обе субъединицы: р35 и р40.

[0066] Термин «гетерологичная ДНК» относится к ДНК, в нормальных условиях не присутствующей в клетке или в хромосомном сайте клетки. В понятие гетерологичной ДНК может входить ген, чужеродный клетке.

[0067] Термин «геном» включает в себя хромосомную, митохондриальную, и вирусную ДНК или РНК, а также ДНК или РНК хлоропластов.

[0068] Молекула нуклеиновой кислоты является «гибридизующейся» с другой молекулой нуклеиновой кислоты, как, например, кДНК, геномной ДНК или РНК, когда одноцепочечная форма молекулы нуклеиновой кислоты может образовать комплекс с другой молекулой нуклеиновой кислоты при соответствующих значениях температуры и ионной силы раствора. Условия гибридизации и промывания хорошо известны и иллюстрированы в Sambrook et al. in Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor (1989), в частности, в Главе 11 и Таблице 11.1 этого описания. Температурные условия и ионная сила определяют «точность и безошибочность» гибридизации.

[0069] Условия жесткости гибридизации можно отрегулировать для выделения относительно сходных фрагментов, таких как гомологичные последовательности дальнеродственных организмов, а также фрагментов, обладающих высоким сходством, таких как гены, воспроизводящие функциональные ферменты близкородственных организмов. Для предварительного выявления гомологичных нуклеиновых кислот, применяют мягкие условия, соответствующие низкой жесткости (точности и безошибочности) гибридизации, например: при Tm=55°, в среде содержащей: 5Х SSC, 0.1% SDS, 0.25% молоко, без формамида; или в среде содержащей: 30% формамид, 5Х SSC, 0.5% SDS. Для получения более высоких значений жесткости гибридизации применяют Tm выше, чем в предыдущем примере,в среде содержащей 40%) формамид, с 5X или 6X SSC. Для получения высоких значений жесткости гибридизации применяют высокую Tm, в среде содержащей: 50% формамид, 5X или 6X SSC.

[0070] Для успешной гибридизации необходимо, чтобы две нуклеиновые кислоты содержали комплементарные последовательности, хотя, в зависимости от условий жесткости гибридизации, возможно ошибочное спаривание оснований. Термин «комплементарный» применяют для описания соответствия между нуклетидными основаниями, которые способны гибридизоваться друг с другом. Например, в отношении ДНК, аденин комплементарен тимину и гуанин комплементарен цитозину. В соответствии с этим, изобретение также включает в себя изолированные фрагменты нуклеиновых кислот, комплементарные к полным последовательностям, как раскрыто или применено в настоящем описании, а также существенно сходные последовательности нуклеиновых кислот о которых говорилось ранее.

[0071] Согласно одному из вариантов реализации, полинуклеотиды выявляют гибридизацией при Tm, равной 55°C, и обеспечении условий, описанных выше. Согласно другим вариантам реализации, значение Tm берется равным 60°C, 63°C или 65°C.

[0072] Пост-гибридизационные промывки также определяют жесткость гибридизации. Одна группа условий подразумевает серию промываний, начинающуюся с 6X SSC, 0.5% SDS при комнатной температуре в течение 15 минут, затем 2X SSC, 0.5% SDS при 45°C в течение 30 минут, а затем дважды 0.2Х SSC, 0.5% SDS при 50°C в течение 30 минут. Предпочитаемая совокупность более жестких условий подразумевает более высокие температуры, при тех же промываниях, с единственным отличием: температура двух последних 30-минутных промываний 0.2Х SSC, 0.5% SDS повышена до 60°C. Другая предпочитаемая совокупность жестких условий подразумевает два последних промывания 0.1X SSC, 0.1% SDS при 65°C.

[0073] Жесткость, приемлемая для гибридизации нуклеиновых кислот, зависит от длины цепочки нуклеиновых кислот и степени комплементарности, значения этих переменных хорошо известны в данной области. Чем выше степень сродства и гомологичности между двумя нуклеотидными последовательностями, тем выше значение Tm для гибридизации нуклеиновых кислот, соответствующих данным последовательностям. Относительная стабильность (соответствующая более высокой Tm) гибридизации нуклеиновых кислот повышается в следующем ряду: РНК:РНК, ДНК:РНК, ДНК:ДНК. Для гибридов, длина которых превышает 100 нуклеотидов, разработаны уравнения для вычисления Tm (см. Sambrook et ah, supra, 9.50-0.51). При гибридизации нуклеиновых кислот меньшей длины, т. е. олигонуклеотидов, количество позиций ошибочного спаривания приобретает большее значение, и специфичность олигонуклеотида определяется его длиной (см. Sambrook et al, supra, 11.7-11.8).

[0074] Согласно одному из вариантов реализации настоящего изобретения, полинуклеотиды распознаются путем применения условий гибридизации, включающих в себя стадию гибридизации при содержании солей менее чем 500 mM и температуре не ниже 37°C, и стадию промывания в 2X SSPE при температуре не ниже 63°C. Согласно другому варианту реализации, условия гибридизации подразумевают менее чем 200 мМ соли и, по меньшей мере 37°C для стадии гибридизации, согласно другому варианту гибридизации, условия подразумевают 2X SSPE и 63°C для стадий гибридизации и промывания.

[0075] Согласно другому варианту реализации изобретения, длина подвергающейся гибридизации нуклеиновой кислоты составляет, как минимум, 10 нуклеотидов. Предпочтительно, чтобы минимальная длина нуклеиновой кислоты составляла по меньшей мере 15 нуклеотидов; например по меньшей мере 20 нуклеотидов; например по меньшей мере 30 нуклеотидов. Более того, опытный специалист учтет, что температура и соленость промывочного раствора может быть отрегулирована до необходимого значения, в зависимости от факторов, таких как длина образца.

[0076] Термин «образец» относится к молекуле одноцепочечной нуклеиновой кислоты, основания которой обладают способность связаться с соответствующими основаниями комплементарной одноцепочечной нуклеиновой кислоты-мишени с образованием двухцепочечной молекулы.

[0077] Термин «олигонуклеотид» в настоящем описании относится к короткой нуклеиновой кислоте, способной к гибридизации с молекулой геномной ДНК, кДНК, плазмидной ДНК или иРНК. Олигонуклеотиды могут быть помечены, например, 32P - нуклеотидами или нуклеотидами, к которым можно ковалентно присоединить метку, например, биотин. Меченый олигонуклеотид может быть использован в качестве зонда для выявления присутствия нуклеиновой кислоты. Олигонуклеотиды (один или оба из которых могут быть помечены) могут быть использованы в качестве праймеров ПЦР при клонировании фрагмента или всей нуклеиновой кислоты, для определения последовательности ДНК, либо для выявления наличия ДНК. Олигонуклеотид также может быть использован для получения тройной спирали с молекулой ДНК. Обычно, олигонуклеотиды получают синтетическим путем, предпочтительно, в синтезаторе нуклеиновых кислот. Соответственно этому, полученные олигонуклеотиды могут нести не встерчающиеся в природе аналоги фосфодиэфирных связей, например, тиоэфирных связей и т.п.

[0078] Термин «праймер» относится к олигонуклеотиду, гибридизующемуся с последовательностью нуклеиновой кислоты-мишени с получением двухцепочечного участка нуклеиновой кислоты. Этот участок, в соответствующих условиях, может служить точкой инициации синтеза ДНК. Такие праймеры могут быть использованы в ПЦР или для определения последовательности ДНК.

[0079] Термин «полимеразная цепная реакция», в сокращении, ПЦР, относится к in vitro способу ферментативной амплификации специфических последовательностей нуклеиновых кислот. ПЦР включает в себя повторяющиеся серии температурных циклов, состоящих из трех стадий: денатурация матричной нуклеиновой кислоты с разделением цепочек молекулы-мишени, гибридизация одноцепочечного олигонуклеотидного праймера ПЦР с матричной нуклеиновой кислотой и удлинение гибридизованного примера(ов) ДНК-полимеразой. ПЦР обеспечивает обнаружение молекулы-мишени, а также определение относительного количества этой молекулы-мишени в первичной смеси нуклеиновых кислот в полуколичественных или количественных условиях,.

[0080] Термин «полимеразная цепная реакция с обратной транскрипцией», в сокращении, ОТ-ПЦР (RT-PCR), относится к in vitro способу ферментативного синтеза молекулы-мишени или молекул-мишеней кДНК из молекулы или молекул РНК с последующей ферментативной амплификацией специфической последовательности или последовательностей в составе молекулы-мишени или молекул-мишеней кДНК, как описано выше. ОТ-ПЦР обеспечивает обнаружение молекулы-мишени, а также определение относительного количества этой молекулы-мишени в первичной смеси нуклеиновых кислот в полу количественных или количественных условиях.

[0081] Термин «кодирующая последовательность» ДНК относится к последовательности двухцепочечной ДНК, кодирующей полипептид и поддающейся транскрипции и трансляции в полипептид в клетке in vitro или in vivo, под контролем соответствующих регуляторных последовательностей. Термин «соответствующие регуляторные последовательности» относится к нуклеотидным последовательностям, предшествующим (5’ некодирующие последовательности), находящимся в составе или следующим за (3’ некодирующие последовательности) кодирующей последовательностью, и влияющим на транскрипцию, процессинг, стабильность РНК, или трансляцию соответствующей кодирующей последовательности. К регуляторным последовательностям могут относиться промоторы, лидирующие последовательности трансляции, интроны, сайты распознавания полиаденилирования, сайты процессинга РНК, участки связывания эффекторов и структуры типа «стебель-петля». Границы кодирующих последовательностей определяются старт-кодоном на 5’ (амино) конце и стоп-кодоном трансляции на 3’ (карбоксильном) конце. Кодирующая последовательность может содержать (но не ограничена) прокариотические последовательности, кДНК из иРНК, геномные последовательности ДНК и даже искусственные последовательности ДНК. Если кодирующая последовательность предназначается для экспрессии в эукариотической клетке, сигнал полиаденилирования и терминации транскрипции, как правило, будет находиться в направлении 3’ от кодирующей последовательности.

[0082] Термин «открытая рамка считывания», в сокращении, ОРС (ORF), относится к всей последовательности нуклеиновой кислоты, ДНК, кДНК или РНК, включающей в себя старт-сигнал трансляции, или кодон инициации, как АТГ(ATG) или АУГ(AUG), и кодон терминации. Может происходить трансляция этой последовательности в полипептидную последовательность.

[0083] Термин «голова к голове» (head-to-head) в настоящей заявке относится к пространственной ориентации двух полинуклеотидных последовательностей по отношению друг к другу. Полинуклеотиды позиционированы в ориентации «голова к голове», когда 5’ конец кодирующей цепочки одного полинуклеотида прилегает к 5’ концу кодирующей последовательности другого полинуклеотида, причем направление транскрипции каждого полинуклеотида идет от 5’ конца другого полинуклеотида. Термин «голова к голове» может быть кратко представлен в виде (5’)-к-(5’) и может также обозначаться символами (← →) или (3’←5’5’→»3’).

[0084] Термин «хвост к хвосту» в в настоящей заявке относится к пространственной ориентации двух полинуклеотидных последовательностей по отношению друг к другу. Полинуклеотиды позиционированы в ориентации «хвост к хвосту», когда 3’ конец кодирующей последовательности одного полинуклеотида прилегает к 3’ концу кодирующей последовательности другого полинуклеотида, причем направление транскрипции каждого полинуклеотида идет к другому полинуклеотиду. Термин «хвост к хвосту» может быть кратко представлен в виде (3’)-к-(3’) и может также обозначаться символами (→←) или (5’→3’3’-5’).

[0085] Термин «голова к хвосту» в настоящей заявке относится к ориентации двух полинуклеотидных последовательностей по отношению друг к другу. Полинуклеотиды позиционированы в ориентации «голова к хвосту», когда 5’ конец кодирующей последовательности одного полинуклеотида прилегает к 3’ концу кодирующей последовательности другого полинуклеотида, причем направление транскрипции каждого полинуклеотида однонаправленно с направлением транскрипции другого полинуклеотида. Термин «голова к хвосту» может быть сформулирован в виде (5’)-к-(3’) и может также обозначаться символами (→→) или (5’-3’5’→3’).

[0086] Термин, «находящийся по ходу транскрипции» («следующий за» кодирующей последовательностью) относится к нуклеотидной последовательности, расположенной в направлении 3’ отностительно рассматриваемой точки нуклеотидной последовательности. В частности, находящиеся по ходу транскрипции нуклеотидные последовательности обычно относятся к последовательностям, следующим за начальной точкой транскрипции. Например, кодон инициации трансляции гена следует за стартовой точкой транскрипции.

[0087] Термин, «находящийся против хода транскрипции» («предшествующий» кодирующей последовательности) относится к нуклеотидной последовательности, расположенной в направлении 5’ относительно рассматриваемой точки нуклеотидной последовательности. В частности, находящиеся против хода транскрипции нуклеотидные последовательности обычно относятся к последовательностям, предшествующим начальной точке транскрипции. Например, большинство промоторов предшествуют стартовой точке транскрипции.

[0088] Термины «рестрикционная эндонуклеаза», «рестриктаза» взаимозаменяемы и относятся к ферменту, присоединяющемуся к специфической нуклеотидной последовательности в составе двухцепочечной ДНК и расщепляющему ее.

[0089] Термин «гомологичная рекомбинация» относится к встраиванию чужеродной последовательности ДНК в другую молекулу ДНК, например, внедрение вектора в хромосому. Предпочтительно, при гомологичной рекомбинации вектор нацеливается на специфический участок хромосомы. Для специфической гомологичной рекомбинации вектор должен содержать достаточно длинные участки гомологии к хромосомным последовательностям, чтобы обеспечить комплементарное присоединение и внедрение вектора в хромосому. Более длинные участки гомологии и более высокая степень сродства последовательностей могут повысить эффективность гомологичной рекомбинации.

[0090] В данной области техники известно несколько способов репродуцирования полинуклеотидов, пригодных для использования согласно изобретению. Как только предоставлена подходящая система хозяина и условия для роста, рекомбинантные векторы экспрессии могут быть репродуцированы и получены в нужном количестве. Согласно настоящему описанию, к векторам экспрессии, пригодным для использования, относятся (но не ограничивают) следующие векторы или их производные: вирусы человека или животных, как вирус осповакцины или аденовирус; вирусы насекомых, как бакуловирус; дрожжевые векторы; векторы-бактериофаги (например, фаг лямбда); и некоторые плазмидные и космидные ДНК-векторы.

[0091] Термин «вектор» относится к любому средству клонирования и/или транспорта нуклеиновой кислоты в клетку-хозяина. Вектор может быть репликоном, к которому можно присоединить другой сегмент ДНК для осуществления репликации такого сегмента. Термин «репликон» относится к любому генетическому элементу (например плазмиде, фагу, космиде, хромосоме, вирусу), функционирующему как автономная единица репликации ДНК in vivo, т. е. способному реплицироваться под собственным контролем. Термин «вектор» подразумевает как вирусные, так и невирусные средства введения нуклеиновой кислоты в клетку in vitro, ex vivo или in vivo. Большое количество векторов, известных в данной области техники, может быть использовано для различных операций с нуклеиновыми кислотами, внедрения в гены элементов отклика, промоторов и т.п.. К возможным векторам относятся, например, плазмиды или модифицированные вирусы, включая, например, производные фага лямбда или такие плазмиды, как производные плазмид pBR322 и pUC, или вектор Bluescript. Другим примером векторов, пригодных для использования согласно изобретению, является UltraVector™ Production System (Intrexon Corp., Blacksburg, VA), описанный в WO 2007/038276. Например, внедрение фрагментов ДНК, соответствующих элементам отклика и промоторам, в подходящий вектор может быть осуществлено лигированием соответствующих фрагментов ДНК в выбранный вектор, обладающий комплементарными «липкими» концами. В качестве альтернативы, концы молекул ДНК могут быть ферментативно модифицированы, или любой участок может быть модифицирован путем лигирования нуклеотидных последовательностей (линкеров) в терминальные участки ДНК. Такие векторы могут быть модифицированы таким образом, чтобы нести произвольные маркерные гены, обеспечивающие возможность селекции клеток, в геном которых введен маркер. Такие маркеры позволяют идентифицировать и/или отбирать клетки, инкорпорировавшие и вырабатывающие белки, кодируемые маркером.

[0092] Вирусные, а особенно ретровирусные векторы применяют в широком спектре процедур по внедрению генов в клетки, а также в живые животные организмы. Пригодные к применению вирусные векторы включают в себя (но не ограничиваются) ретровирусы, адено-ассоциированные вирусы, вирусы оспы, бакуловирусы, вирус осповакцины, вирусы герпеса, вирус Эпштейна-Барра, аденовирусы, геминивирусы и каулимовирусы. К невирусным векторам относятся плазмиды, липосомы, катионные липосомы (цитофектины), ДНК-белковые комплексы и биополимеры. Кроме нуклеиновой кислоты, вектор также может содержать один или несколько регуляторных участков и/или селектируемые маркеры, удобные для селекции, количественного анализа и мониторинга результатов перемещения нуклеиновых кислот (например, в какую ткань происходит перемещение, продолжительности экспрессии и т.п.).

[0093] Термин «плазмида» относится к экстрахромосомному элементу, часто несущему ген, не являющийся компонентом центрального метаболизма клетки, и обычно имеющему форму кольцевой двухцепочечной ДНК. Такие элементы могут являться автономно реплицирующимися последовательностями, интегрирующимися в геном последовательностями, фаговыми или нуклеотидными последовательностями, линейными, циркулярными или сверхспиральными,

состоящими из одно- или двухцепочечной ДНК или РНК, имеющими любое происхождение последовательности в которые было внедрено несколько нуклеотидных последовательностей, таким образом, что они рекомбинированы в уникальные конструкции, способные к внедрению в клетку фрагмента промотора и последовательности ДНК определенного генного продукта вместе с соответствующей нетранслируемой 3’ последовательностью.

[0094] Термин «клонирующий вектор» относится к «репликону», который является единицей измерения длины нуклеиновой кислоты, предпочтительно ДНК, который последовательно реплицируется и включает в себя кодирующую последовательность, такую, как плазмиду, фаг или космиду, к которой может быть присоединен другой участок нуклеиновой кислоты таким образом, чтобы обеспечить репликацию присоединенного участка. Клонирующие векторы могут быть способны к репликации в одном типе клеток и экспрессии в другом (челночный вектор). Клонирующие векторы могут содержать одну или более последовательностей, пригодных к использованию при селекции клеток, в которых присутствует данный вектор и/или один или множество сайтов клонирования для введения последовательностей, представляющих интерес.

[0095] Термин «экспрессионный вектор» относится к вектору, плазмиде или носителю, предназначенному для экспрессии внедренной последовательности нуклеиновой кислоты в хозяине после трансформации. Клонированный ген, т. е. внедренная последовательность нуклеиновой кислоты обычно ставится под контроль контролирующих элементов, таких как промотор, минимальный промотор, энхансер и т.п. Участки контроля инициации или промоторы, которые используются при запуске экспрессии нуклеиновой кислоты в заданной клетке-хозяине, существуют в больших количествах и известны специалистам в данной области. Практически любой промотор, способный запустить экспрессию этих генов, может быть использован как вектор экспрессии, включая (но, не ограничиваясь): вирусные промоторы, бактериальные промоторы, промоторы животных, промоторы млекопитающих, синтетические промоторы, конститутивные промоторы, тканеспецифические промоторы, связанные с заболеваниями или патогенезом промоторы, промоторы, связанные с индивидуальным развитием, индуцируемые промоторы, фоторегулируемые промоторы; CYC1, HIS3, GAL1, GAL4, GALl1O, ADH1, PGK, РН05, GAPDH, ADC1, TRP1, URA3, LEU2, ENO, TPI, промоторы щелочной фосфатазы (эффективные для применения в Saccharomyces); AOX1 промоторы (эффективные для применения в Pichia); промоторы (3-лактамазы, lac, ara, tet, trp, IPL, IPR, T7, tac, и trc (эффективные для применения в Escherichia coli); фоторегулируемые-, семяспецифичные-, специфичные к пыльнику, специфичные к завязи, вируса мозаики цветной капусты 35S, минимальные промоторы CMV 35S, промоторы вируса мозаики маниоки (CsVMV), промотор хлорофилл a/b-связывающего белка, промоторы рибулоза 1,5-бифосфат карбоксилазы, специфичные к вегетативным побегам, специфичные к корням, промоторы хитиназы, стрессовые, промоторы бацилловидного вируса риса tungo (rice tungro bacilliform), суперпромоторы растений, промоторы лейциновой аминопептидазы картофеля, промоторы нитрат-редуктазы, промоторы маннопин-синтазы, промоторы нопалин-синтазы, промоторы убиквитина, промоторы зеина и антоцианина (эффективные для применения в растительных клетках); промоторы животных и млекопитающих, известные в данной области техники, включающие в себя (но не ограниченные), участок раннего промотора SV40 (SV40e), промотор, содержащий на 3’ конце длинный концевой повтор (LTR) вируса саркомы Роуза (RSV), промоторы E1A или гены главных поздних промоторов (MLP) аденовирусов(Ad), ранние промоторы цитомегаловируса (CMV), промоторы тимидинкиназы (ТК) вируса простого герпеса (HSV), IE1 промоторы бакуловируса, промоторы фактора элонгации 1-альфа(ЕР1), промоторы фосфоглицераткиназы(PGK), промоторы убиквитина (Ubc), промоторы альбумина, регуляторные последовательности и участки контроля транскрипции промотора металлотионеина-L мыши, убиквитарные промоторы (HPRT, виментина, α-актина, тубулина и т.п.), промоторы промежуточных филаментов (десмина, нейрофиламентов, кератина, GFAP и т.п.), промоторы клинически важных генов (MDR, CFTR или фактора VIII и т.п.); связанные с заболеваниями или патогенезом промоторы и промоторы, обладающие тканевой специфичностью и используемые в трансгенных животных, как, например, регуляторный участок гена эластазы I; который активен в ацинарных клетках поджелудочной железы; регуляторный участок гена инсулина, который активен в бета-клетках поджелудочной железы; регуляторный участок гена иммуноглобулина, который активен в лимфоидных клетках; регуляторный участок вируса опухолей молочной железы мышей, который активен в тестикулярных, лимфоидных, тучных клетках и клетках молочной железы; регуляторный участки Apo AI и Apo AII гена альбумина, которые активны в печени; регуляторный участки гена альфа-фетопротеина, активные в печени; регулятрные участки гена бета-глобина, активные в миелоидных клетках; регуляторный участки гена основного белка миелина, активные в олигодендроцитах мозга; регуляторные участки гена легкой цепи миозина 2, активные в скелетных мышцах; регуляторные участки гонадотропного рилизинг-гормона, активные в гипоталамусе; промоторы пируваткиназы, промоторы виллина; промоторы интестинальных белков, связывающих жирные кислоты; промоторы альфа-актина клеток гладких мышц, и т.п.Кроме того, указанные экспрессируемые последовательности могут быть модифицированы с помощью энхансеров, регуляторных последовательностей и т.п.

[0096] Векторы можно вводить в указанную клетку-хозяина способами, известными в данной области тхники, например: трансфекцией, электропорацией, микроинъекцией, трансдукцией, слиянием клеток, трансфекцией, опосредованной диэтиламиноэтил декстраном, преципитацией фосфатом кальция, липофекцией (слиянием с лизосомами), с помощью «генной пушки» или транспортного ДНК-вектора (см., например., Wu et al, J. Biol. Chem. 267:963 (1992); Wu et al, J. Biol. Chem. 265:14621 (1988); и Hartmut et al, Canadian Patent Application No. 2,012,311).

[0097] Согласно настоящему изобретению, полинуклеотид также можно вводить липофекцией in vivo. За последние десять лет, заметно увеличилось использование липосом для инкапсуляции и трансфекции нуклеиновых кислот in vivo. Синтетические катионные липиды, созданные для ограничения трудностей и угроз, связанных с опосредованной липосомами трансфекцией, можно использовать для получения липосом, и применения последних для in vivo трансфекции генов, кодирующих маркеры. (Feigner et al, Proc. Natl. Acad. Sd. USA. 84:7413 (1987); Mackey et al, Proc. Natl. Acad. Sd. USA<S5:8027 (1988); и Ulmer et al., Science 259:1745 (1993)). Применение катионных липидов может вызвать инкапсуляцию отрицательно заряженных нуклеиновых кислот и слияние с отрицательно заряженными клеточными мембранами (Feigner et al., Science 337:387 (1989)). Особенно эффективные для транспорта нуклеиновых кислот липидные соединения и композиции описаны в WO 95/18863, WO 96/17823 и патенте США 5,459,127. Применение липофекции для введения экзогенных генов в специфические органы in vivo обладает определенными практическими преимуществами. Молекулярное нацеливание липосом на определенные типы клеток представляет одно из них. Очевидно, что направленная трансфекция в определенные типы клеток будет особенно предпочтительна в тканях, отличающихся клеточной гетерогенностью, таких как поджелудочная железа, печень, почки и мозг. Для обеспечения направленной доставки (таргетинга), липиды могут быть химически присоединены к другим молекулам (Mackey et al. 1988, supra). Таргетированные пептиды, например, гормоны или нейротрансмиттеры, и протеины, такие как антитела, или непептидные молекулы могут быть связаны с липидами химически.

[0098] Для облегчения трансфекции нуклеиновых кислот in vivo можно также применять другие молекулы, например, катионные олигопептиды (например, WO 95/21931), пептиды-производные от ДНК-связывающих белков (например, WO 96/25508) или катионные полимеры (например, WO 95/21931).

[0099] Также, можно ввести вектор in vivo в форме «голой» ДНК-плазмиды (см. патенты США №5,693,622, 5,589,466 и 5,580,859). Кроме того, можно быть применены методы рецептор-опосредованной доставки ДНК (Curiel et al., Hum. Gene Ther. 5:147 (1992); и Wu et al., J. Biol. Chem. 262:4429(1987)).

[0100] Термин «трансфекция» относится к поглощению экзогенной или гетерологичной РНК или ДНК клеткой. Клетка оказывается «трансфецированной» экзогенной или гетерологичной РНК или ДНК, когда такая РНК или ДНК проникает в клетку. Клетка считается «трансформированной» экзогенной или гетерологичной РНК или ДНК, когда трансфицированная РНК или ДНК вызывает изменение фенотипа. Трансформирующая РНК или ДНК может быть интегрирована (ковалентно связана) в хромосомную ДНК, меняя геном клетки.

[0101] Термин «трансформация» относится к доставке фрагмента нуклеиновой кислоты в геном организма-хозяина, приводящей к генетически стойкому наследованию. Организмы-хозяева, содержащие трансформированные фрагменты нуклеиновых кислот, обозначаются как «трансгенные», или «рекомбинированные», или «трансформированные» организмы.

[0102] Кроме того, рекомбинантный вектор, содержащий полинуклеотид согласно настоящему изобретению, может включать в себя одну или более точек инициации репликации в клеточных хозяевах, в которых будет выявляться амплификация или экспрессия данного вектора, маркеров или селектируемых маркеров.

[0103] Термин «селектируемый маркер» относится к идентифицирующему фактору, обычно, антибиотику или гену химической устойчивости (резистентности), который можно выбрать соответственно эффекту гена-маркера, т. е. устойчивость к антибиотику, устойчивость к гербициду, колориметрические маркеры, ферменты, флуоресцентные маркеры и т.п., где эффект применяется для прослеживания наследования представляющей интерес нуклеиновой кислоты и/или для идентификации клетки или организма, унаследовавших эту нуклеиновую кислоту. Примеры селектируемых маркеров, известных и применяемых в данной области техники, включают в себя: гены устойчивости к ампициллину, стрептомицину, гентамицину, канамицину, гигромицину, гербициду биалафосу, сульфонамиду и т.п.; а также гены, применяемые как фенотипические маркеры, т. е. регуляторные гены антоцианина, ген изопентанил трансферазы и т.п.

[0104] Термин «репортерный ген» относится к нуклеиновой кислоте, кодирующей идентифицирующий фактор, который можно выявить, основываясь на эффекте репортерного гена, где эффект используется для прослеживания наследования представляющей интерес нуклеиновой кислоты, и/или для идентификации клетки или организма, унаследовавших эту нуклеиновую кислоту, и/или для количественной оценки активации экспрессии гена или транскрипции. Примеры репортерных генов, известных и применяемых в данной области техники, включают в себя: люциферазу (Luc), зеленый флуоресцентный белок (GFP), хлорамфеникол ацетилтрансферазу (CAT), β-галактозидазу (LacZ), β-глюкуронидазу (Gus) и т.п. Гены селектируемых маркеров также можно отнести к репортерным генам.

[0105] Термины «промотор» и «промоторная последовательность» взаимозаменимы и относятся к последовательности ДНК, способной контролировать экспрессию кодирующей последовательности или экспрессию функциональной РНК. Обычно кодирующая последовательность находиться в направлении 3’ от промоторной последовательности. Промоторы могут происходить от нативного гена или состоять из различных элементов, происходящих от различных промоторов, существующих в природе, и даже содержать сегменты синтетической ДНК. Специалисты в данной области понимают, что разные промоторы могут управлять экспрессией гена в разных тканях и типах клеток, либо на разных стадиях развития, либо при различных внешних или физиологических условиях. Промоторы, запускающие экспрессию гена в большинстве типов клеток и в большинстве случаев, обычно называются «конститутивными промоторами». Промоторы, запускающие экспрессию гена в специфических типах клеток, обычно называются «клеточно-специфичными промоторами» или «ткань-специфичными промоторами». Промоторы, запускающие экспрессию гена на определенной стадии развития или дифференцировки клетки, обычно называют «промоторы, специфичные к стадии развития» или «промоторы, специфичные к стадии дифференцировки клетки». Промоторы, индуцируемые и запускающие экспрессию гена после воздействия или обработки клетки агентом, биологической молекулой, химическим веществом, лигандом, светом или другим подобным фактором, индуцирующим промотор, обычно называются «индуцируемыми промоторами» или «регулируемыми промоторами». Кроме того, общепризнано, что поскольку в большинстве случаев точные границы регуляторных последовательностей не определены полностью, фрагменты ДНК различной длины могут обладать одинаковой промоторной активностью.;

[0106] Как правило, промоторная последовательность со своего 3’ конца граничит с точкой инициации транскрипции и расположена по ходу транскрипции (в направлении 5’) с тем, чтобы включать в себя минимальное количество оснований или элементов, необходимых для инициации транскрипции на уровне общего фона. В состав промотора входит точка инициации транскрипции (легко определимая, например, картированием нуклеазой S1), а также белок-связывающие домены (консенсусные последовательности), обеспечивающие присоединение РНК полимеразы.

[0107] Кодирующая последовательность находится «под контролем» последовательностей, регулирующих транскрипцию и трансляцию в клетке, когда РНК полимераза транскрибирует кодирующую последовательность в иРНК, которая затем транс-сплайсируется (если в кодирующей последовательности есть интроны) и транслируется с получением белка, кодируемого кодирующей последовательностью.

[0108] Термин «последовательности, регулирующие транскрипцию и трансляцию», относится к регуляторным последовательностям ДНК, таким как промоторы, энхансеры, терминаторы и т.п., обеспечивающим экспрессию кодирующей последовательности в клетке. В эукариотических клетках, сигналы полиаденилирования являются регуляторными последовательностями.

[0109] Термин «элемент отклика» (элемент ответа, response element, RE) относится к одному или более действующему в цис-положении элементу ДНК, придающему промотору способность к реагированию через взаимодействие с ДНК-связывающими доменами транскрипционного фактора. Последовательность такового элемента ДНК может быть либо палиндромом (точным или неточным), либо состоящей из мотивов последовательностей, либо из половинных сайтов, разделенных различным количеством нуклеотидов. Половинные сайты могут быть схожими или идентичными, располагаться в виде прямых либо обратных повторов, в виде единичного полу-сайта либо в виде мультимеров прилегающих последовательных половинных сайтов. Элемент отклика может содержать минимальный промотор, полученный от различных организмов, в зависимости от природы клетки или организма, в который данный элемент отклика будет введен. ДНК-связывающий домен транскрипционного фактора присоединяется, в присутствии лиганда или без оного, к последовательности ДНК элемента отклика с тем, чтобы инициировать или подавлять транскрипцию гена(ов), расположенных по ходу транскрипции, под регуляцией этого элемента отклика. Примеры последовательностей ДНК элементов отклика природного рецептора экдизона включают в себя: RRGG/TTCANTGAC/ACYY (SEQ ID NO: 9) (см. Cherbas et. al, Genes Dev. 5:120 (1991)); AGGTCAN(n)AGGTCA, где N(n) может быть одним или несколькими разделяющими нуклеотидами (SEQ K) NO: 10) (см. D’Avino et al, Mol. Cell. Endocrinol. 113:1 (1995)); and GGGTTGAATGAATTT (SEQ ID NO: 11) (см. Antoniewski et al, Mol. Cell Biol. 14:4465 (1994)).

[0110] Термин «функционально связанный» относится к присоединению последовательностей нуклеиновых кислот к единичному фрагменту нуклеиновой кислоты таким образом, что функция одного элемента находится под влиянием другого. Например, промотор функционально связан с кодирующей последовательностью, когда он способен влиять на экспрессию этой кодирующей последовательности (т. е. кодирующая последовательность находится под транскрипционным контролем промотора). Кодирующие последовательности могут быть функционально связаны с регуляторными последовательностями в смысловой или антисмысловой ориентации.

[0111] Термин «экспрессия» в настоящем описании относится к транскрипции и стойком накоплении смысловой РНК (иРНК) или антисмысловой РНК, синтезированной из нуклеиновой кислоты или полинуклеотида. Экспрессия также может относиться к трансляции иРНК с получением белка или полипептида.

[0112] Термины «кассета», «экспрессионная кассета», «генная экспрессионная кассета» относятся к сегменту ДНК, который может быть вставлен в нуклеиновую кислоту или полинуклеотид в специфических сайтах рестрикции или путем гомологичной рекомбинации. Сегмент ДНК содержит полинуклеотид, который кодирует представляющий интерес полипептид, причем кассета и сайты рестрикции спланированы таким образом, чтобы гарантировать вставку кассеты в надлежащую рамку считывания для транскрипции и трансляции. «Кассета трансформации» относится к специфическому вектору, содержащему полинуклеотид, который кодирует представляющий интерес полипептид, и элементы помимо этого полинуклеотида, облегчающие трансформацию в определенной клетке-хозяине. Кассеты, экспрессионные кассеты, генные экспрессионные кассеты и кассеты трансформации согласно определению могут также содержать элементы, позволяющие осуществление повышенной экспрессии в клетке-хозяине полинуклеотида, который кодирует представляющий интерес полипептид. К таким элементам могут относиться (но не ограничивают): промотор, минимальный промотор, энхансер, элемент отклика, терминаторная последовательность, последовательность полиаденилирования и т.п.

[0113] Согласно настоящему изобретению, термин «переключатель гена» относится к комбинации элемента отклика, связанного с промотором, и системы на основе лиганд-зависимого транскрипционного фактора, которая, в присутствии одного или нескольких лигандов, модулирует экспрессию гена, в который внедрены указанный элемент отклика и промотор. Термин «полинуклеотид, кодирующий переключатель гена», относится к комбинации элемента отклика, связанного с промотором, и системы лиганд-зависимого транскрипционного фактора, которая, в присутствии одного или нескольких лигандов, модулирует экспрессию гена, в который внедрены указанные элемент отклика и промотор.

[0114] Термин «на базе рецептора экдизона», в отношении переключателя гена, относится к переключателю гена, содержащему, как минимум, функциональную часть лиганд-связывающего домена природного или синтетического рецептора экдизона, и регулирующему генную экспрессию в ответ на присоединение лиганда к лиганд-связывающему домену рецептора экдизона. Примеры экдизонреактивных (экдизонзависимых) систем описаны в Патентах США №7,091,038 and 6,258,603. Согласно одному из вариантов реализации, системой является RheoSwitch® Therapeutic System (RTS), в которую входят два рекомбинантных белка, домены DEF мутированных рецепторов экдизона (EcR), связанные с ДНК-связывающим доменом Gal4, и домены EF химерного RXR, связанные с доменом активации транскрипции VP 16, экспрессируемые под контролем конститутивного промотора, как иллюстрировано на Фигуре 1.

[0115] Термины «модулировать» и «модулирует» относятся к стимуляции, снижению или подавлению экспрессии нуклеиновой кислоты или гена, приводящей к соответствующей стимуляции, снижению или подавлению выработки белка или полипептида.

[0116] Полинуклеотиды или векторы согласно настоящему изобретению могут также содержать по меньшей мере один промотор, подходящий для управления экспрессией гена в клетке-хозяине.

[0117] Энхансеры, которые можно использовать согласно вариантам реализации настоящего изобретения, включают в себя (но не ограничиваются): энхансер SV40, энхансер цитомегаловируса (CMV), энхансер фактора элонгации 1 (EF1), энхансер дрожжей, энхансеры вирусных генов и т.п.

[0118] Участки, контролирующие терминацию, т. е. терминаторные или полиаденилирующие последовательности, могут также быть получены из различных генов, нативных для выбранных хозяев. При желании, терминальный участок можно исключить, однако его наличие является предпочтительным. Согласно одному из вариантов реализации, участок, контролирующий терминацию может содержать или быть получен из синтетической последовательности, синтетического сигнала полиаденилирования, позднего сигнала полиаденилирования SV40, сигнала полиаденилирования SV40, сигнала полиаденилирования коровьего гормона роста (BGH), вирусных терминаторных последовательностей и т.п.

[0119] Термины «3’ некодирующая последовательность» или «3’ нетранслируемый участок» (UTR) относятся к последовательностям ДНК, расположенным по ходу транскрипции (3’) от кодирующей последовательности, и которые могут содержать последовательности распознавания полиаденилирования [poly(A)] и другие последовательности, кодирующие регуляторные сигналы, способные влиять на процессинг иРНК или экспрессию генов. Сигнал полиаденилирования обычно характеризуется влиянием на присоединение цепочек поли(А)к 3’ концу предшественника иРНК.

[0120] Термин «регуляторный участок» относится к последовательности нуклеиновой кислоты, регулирующей экспрессию последовательности второй (другой) нуклеиновой кислоты. Регуляторный участок может содержать последовательности, естественно отвечающие за экспрессию определенной нуклеиновой кислоты (гомологичный участок), либо последовательности иного происхождения, отвечающие за экспрессию других белков или даже синтетических белков (гетерологичный участок). В частности, такие последовательности могут быть последовательностями прокариотических, эукариотических или вирусных генов, либо их производными, стимулирующими или подавляющими транскрипцию гена специфично или неспецифично, индуцируемым или неиндуцируемым образом. К регуляторный участкам относятся точки начала репликации, сплайсинг-сайты РНК, промоторы, энхансеры, последовательности терминации транскрипции и сигнальные последовательности, направляющие полипептид по секреторным путям к целевой клетке.

[0121] Регуляторный участок, взятый из «гетерологичного участка», относится к регуляторному участку, естественно не связанному с экспрессируемой нуклеиновой кислотой. К гетерологичным регуляторным участкам относятся регуляторные участки других видов, других генов, гибридные регуляторные последовательности и регуляторные последовательности, которые не существуют в природе, но которые может разработать рядовой специалист в данной области.

[0122] Термин «РНК-транскрипт» относится к продукту, полученному в результате транскрипции последовательности ДНК, катализированной РНК-полимеразой. Если РНК-транскрипт является точной комплементарной копией последовательности ДНК, его называют первичным транскриптом. Также это может быть последовательность РНК, полученная в результате пост-транскрипционного процессинга первичного транскрипта, называемая зрелой РНК. Термин «информационная РНК (иРНК)» относится к РНК, не содержащей интронов и которая может быть транслирована клеткой с получением белка. Термин «кДНК» относится к двухцепочечной ДНК, комплементарной и полученной из иРНК. Термин «смысловая РНК» относится к РНК-транскрипту, содержащему иРНК и, таким образом, который может быть транслированным в белок клеткой. Термин «антисмысловая РНК» относится к РНК-транскрипту, комплементарному всему первичному транскрипту-мишени или его части, либо комплементарному иРНК, и блокирующему экспрессию гена-мишени. Комплементарность антисмысловой РНК может выражаться по отношению к любой части специфического транскрипта гена, т. е. в районе 5’ некодирующей последовательности, 3’ некодирующей последовательности или в области кодирующей последовательности. Термин «функциональная РНК» относится к антисмысловой РНК, рибозимной РНК или другой РНК, которая не транслируется, но оказывает эффект на клеточные процессы.

[0123] Термины «полипептид», «пептид» и «белок» взаимозаменяемы и относятся к полимерному соединению, состоящему из ковалентно связанных остатков аминокислот.

[0124] Термины «изолированный/выделенный полипептид», «изолированный/выделенный пептид» или «изолированный/выделенный белок» относятся к полипептиду или белку, практически свободному от соединений, обычно ассоциированных с ним в его естественной форме (например, другие белки или полипептиды, нуклеиновые кислоты, углеводы, липиды). Термин «Изолированный/выделенный» не означает исключение искусственных или синтетических смесей с другими веществами, либо наличие примесей, не влияющих на биологическую активность, каковые могут присутствовать вследствие, например, неполной очистки, добавления стабилизирующих веществ, либо превращения в фармацевтически приемлемую композицию.

[0125] Термины «замещенный мутантный полипептид», «замещенный мутант» относятся к мутантному полипептиду, содержащему замену, по меньшей мере одной аминокислоты дикого типа или природной аминокислоты, аминокислотой, отличающейся от присутствующей в полипептиде дикого типа или природном полипептиде. Замещенный мутантный полипептид может содержать лишь одну замену аминокислоты дикого типа или природной аминокислоты и может называться полипептидом с «точечной мутацией» или «единичной точечной мутацией». В другом случае, в замещенном мутантном полипептиде может оказаться две или более замены аминокислот дикого типа или природных аминокислот, аминокислотами, отличающимся от присутствующих в полипептиде дикого типа или природном полипептиде. Согласно изобретению, полипептид лиганд-связывающего домена ядерного рецептора Группы H, в котором наличествует мутация замены, содержит замену, по меньшей мере одной аминокислоты дикого типа или природной аминокислоты, аминокислотой, отличающейся от присутствующей в полипептиде дикого типа или природном полипептиде лиганд-связывающего домена ядерного рецептора Группы H.

[0126] Когда в замещенном мутантном полипептиде происходит замена двух или более аминокислот дикого типа или природных аминокислот, эта замена может подразумевать, либо эквивалентную делецию аминокислот дикого типа или природных аминокислот в процессе замены, т. е. 2 аминокислоты дикого типа или природной аминокислоты замещаются 2 отличными от дикого типа аминокислотами, или не встречающимися в природе аминокислотами, либо в процессе замены произошла делеция неэквивалентного числа аминокислот, т. е. произошла замена 2-х аминокислот дикого типа на 1 аминокислоту не дикого типа (мутация замещения + делеции), или 2 аминокислоты дикого типа заменили на 3 аминокислоты не дикого типа (мутация замены + вставки).

[0127] Замещенные мутанты можно описать с помощью системы сокращенной номенклатуры для обозначения аминокислотного остатка и его позиции при замещении, в соответствии с эталонной полипептидной последовательностью, и указания заменившей новой аминокислоты. Например, замещенный мутант, в котором произошла замена 20-го аминокислотного остатка полипептидной цепи, может быть обозначен как «x20z», где «x» - это заменяемая аминокислота, 20 - это позиция или порядковый номер аминокислотного остатка в полипептиде, а «z» - это новая, заменившая старую аминокислота. Поэтому, замещенный мутант, взаимозаменяемо обозначаемый как «Е20А» или «Glu20Ala», подразумевает, что мутант содержит остаток аланина (обычно обозначаемый в данной области техники как ʺAʺ или ʺAlaʺ) вместо глутаминовой кислоты (обычно обозначаемой в данной области техники как ʺEʺ или ʺGIuʺ) на 20-й позиции полипептида.

[0128] Мутация замены может быть осуществлена любым способом мутагенеза, известным в данной области, включая (но не ограничиваясь) сайт-направленный мутагенез in vitro (Hutchinson et al., J. Biol. Chem. 255:6551 (1978); Zoller et al, ДНК 5:479 (1984); Oliphant et al, Gene 44:117 (1986); Hutchinson et al, Proc. Natl. Acad. ScL USA 83:710 (1986)), использование линкеров TAB® (Pharmacia), расщепление рестриктивной эндонуклеазой/расщепление фрагмента и замещение, ПЦР-опосредованный/сайт-направленный мутагенез и т.п. Основанные на ПЦР методы предпочтительны при сайт-направленном мутагенезе (см. Higuchi, 1989, ʺUsing PCR to Engineer ДНКʺ, in PCR Technology: Principles and Applications for ДНК Amplification, H. Erlich, ed., Stockton Press, Chapter 6, pp.61-70).

[0129] Термин «фрагмент», применяемый к полипептиду, относится к полипептиду, аминокислотная последовательность которого короче таковой эталонного полипептида, и который содержит, на всем своем протяжении, аминокислотную последовательность, идентичную таковой эталонного полипептида. Такие фрагменты могут, если целесообразно, входить в состав большего полипептида, частью которого они являются. Фрагменты такого рода, согласно изобретению, могут состоять по меньшей мере из 2, 3, 4, 5, 6, 8, 10, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 25, 26, 30, 35, 40, 45, 50, 100, 200, 240 или 300 или более аминокислот.

[0130] Термин «вариант» по отношению к полипептиду или белку относится к любому аналогу, фрагменту, производному или мутанту, полученному из полипептида или белка, сохранившему, по меньшей мере биологические особенности полипептида или белка. В природе могут существовать разные варианты полипептидов и белков. Эти варианты могут быть аллельными вариациями, характеризующимися различиями в нуклеотидной последовательности структурного гена, кодирующего белок, любо могут появиться в результате дифференциального сплайсинга или пост-трансляционной модификации. Опытный специалист может создать различные варианты, характеризующиеся единичными или множественными аминокислотными заменами, делециями, вставками или переносами. Среди всех прочих, эти варианты могут включать в себя: (а) варианты, где одна или несколько аминокислот замещаются консервативными (обычно встречающимися в белках) или неконсервативными аминокислотами, (b) варианты, где одна или несколько аминокислот вставляются в полипептид или белок, (с) варианты, где одна или несколько аминокислот содержат замещенную химическую группу, и (d) варианты, где полипептид или белок связывается с другим полипептидом, таким как сывороточный альбумин. Способы получения таких вариантов, включая генетические (супрессии, делеции, мутации и т.д.), химические и ферментативные способы, известны рядовым специалистам в данной области техники. Согласно одному из вариантов реализации, вариант полипептида состоит, по меньшей мере из приблизительно 14 аминокислот.

[0131] Термин «гомология» относится к проценту идентичности между фрагментами двух полинуклеотидов или полипептидов. Соответствие между последовательностями может быть выявлено способами, известными в данной области техники. Например, гомология может быть установлена прямым сравнением информации о последовательностях двух полипептидных молекул путем сопоставления информации о последовательностях и применения легкодоступных компьютерных программ. В качестве альтернативы, гомология может быть установлена гибридизацией полинуклеотидов в условиях, когда гомологичные области формируют стабильные дуплексы (пары), и последующим расщеплением специфичной к одноцепочечным участкам нуклеазой(ами) и определением размера расщепленных фрагментов.

[0132] В данном описании термин «гомологичный» во всех его грамматических формах и фонетических вариантах относится к связи между белками, имеющими «общее эволюционное происхождение», включая белки из суперсемейств (например, суперсемейство иммуноглобулинов) и гомологичные белки разных видов (например, легкая цепь миозина и т.п.) (Reeck et ai, Cell 50:667 (1987)). Такие белки (и кодирующие их гены) обладают гомологичностью последовательностей, как показывает высокая степень сходства их последовательностей. Тем не менее, в повсеместном использовании и применении, термин «гомологичный», при модификации его наречием «высоко», может относиться к сходству последовательностей, а не к общему эволюционному происхождению.

[0133] В соответствии с этим, термин «сходство последовательностей» во всех его грамматических формах относится к степени идентичности или соответствия между последовательностями нуклеиновых кислот или аминокислот белков, которые могут иметь или не иметь общее эволюционное происхождение, (см. Reeck et al., Cell 50:667 (1987)). Согласно одному из вариантов реализации, две последовательности ДНК «существенно гомологичны» или «существенно схожи», когда, по меньшей мере приблизительно 50% (например, по меньшей мере приблизительно 75%, 90%, или 95%) нуклеотидов совпадают на протяжении определенной длины последовательностей ДНК. Существенно гомологичные последовательности могут быть выявлены путем сравнения последовательностей с применением стандартного программного обеспечения и доступа к базам данных последовательностей, либо с применением процедуры гибридизации по Саузерну в строгих условиях, задаваемых для каждой отдельной системы. Установка соответствующих условий гибридизации входит в данную область техники (см. например, Sambrook et al., 1989, supra).

[0134] В настоящем описании, термин «существенно схожи» относится к фрагментам нуклеиновых кислот, где изменения в одном или нескольких основаниях нуклеотида приводят к замене одной или нескольких аминокислот, что, однако не влияет на функциональные особенности белка, кодируемого последовательностью ДНК. Термин «существенно схожи» также относится к фрагментам нуклеиновых кислот, где изменения в одном или нескольких основаниях нуклеотида не влияют на способность фрагмента нуклеиновой кислоты опосредовать изменения экспрессии гена антисмысловыми или ко-супрессионными технологиями. Термин «существенно схожи» также относится к модификациям фрагментов нуклеиновых кислот согласно изобретению, таким как делеции или вставки одной или нескольких оснований нуклеотида, не оказывающим существенного влияния на функциональные особенности полученного транскрипта. Поэтому, очевидно, что изобретение охватывает не только специфические типовые последовательности. Каждая из представленных модификаций относится к обычным приемам в данной области знания, так же, как и оценка сохранения биологической активности кодируемых продуктов.

[0135] Кроме того, опытный специалист учтет, что существенно схожие последовательности, охваченные настоящим изобретением, также характеризуются способностью гибридизироваться в строгих условиях (0.1Х SSC, 0.1% SDS, 65°C, с промыванием 2Х SSC, 0.1% SDS, а затем 0.1X SSC, 0.1% SDS), с последовательностями, приведенными в примерах в настоящем описании. Существенно схожие фрагменты нуклеиновых кислот согласно настоящему изобретению - это такие фрагменты нуклеиновых кислот, последовательности ДНК которых, по меньшей мере приблизительно на 70%, 80%, 90% или 95% идентичны последовательностям ДНК фрагментов нуклеиновых кислот, указанных в настоящем описании.

[0136] Две аминокислотные последовательности являются «существенно гомологичными» или «существенно схожими», когда более, чем 40% аминокислот идентичны, либо более, чем 60% аминокислот схожи (функционально идентичны). Предпочтительно, схожие или гомологичные последовательности выявляются сопоставлением, с применением, например, программы наложения и выравнивания GCG (Genetics Computer Group, Program Manual for the GCG Package, Version 7, Madison, Wisconsin).

[0137] Термин «соответствующие» в данном описании относится к схожим или гомологичным последовательностям, вне зависимости от того, совпадает ли их точная позиция в молекулах, схожесть или гомологичность которых оценивается. При выравнивании последовательности аминокислот или нуклеиновых кислот между сравниваемыми последовательностями возможны промежутки (пробелы). Таким образом, термин «соответствующий» относится к схожести последовательностей, но не порядковому номеру остатков аминокислот или оснований нуклеотида.

[0138] «Существенная часть» аминокислотной или полинуклеотидной последовательности содержит достаточное количество аминокислот полипептида или нуклеотидов гена для предполагаемой идентификации этого полипептида или гена, либо неавтоматизированной оценки последовательности специалистом в данной области техники, либо компьютеризированным автоматизированным сравнением и идентификацией последовательностей с помощью таких алгоритмов, как BLAST (Basic Local Alignment Search Tool; Altschul et al, J. Mol. Biol. 215:403 (1993)); доступен у ncbi.nhn.nih.gov/BLAST/). Обычно, последовательность, состоящая из 10 или более смежных аминокислот или тридцати или более смежных нуклеотидов необходима для ориентировочной идентификации полипептида или нуклеиновой кислоты как гомологичной известному полипептиду или гену. Более того, касательно нуклеотидных последовательностей, ген-специфичные зонды, содержащие 20-30 последовательно расположенных нуклеотидов, могут быть применены в зависимых от последовательности способах идентификации (например, гибридизация по Саузерну) и изоляции генов (например, in situ гибридизация бактериальных колоний или бляшек бактериофагов). Затем, небольшие олигонуклеотиды длиной в 12-15 оснований могут быть использованы в качестве амплификационных праймеров в ПЦР для получения определенного фрагмента нуклеиновой кислоты, содержащего праймеры. В соответствии с этим, «существенная часть» нуклеотидной цепочки содержит достаточную долю последовательности для специфичной идентификации и/или изоляции фрагмента нуклеиновой кислоты, содержащего эту последовательность.

[0139] Термин «процент идентичности», известный в данной области техники, относится к соответствию двух или более полипептидных последовательностей, либо двух или более полинуклеотидных последовательностей, определенному сравнением последовательностей. В данной области, «идентичность» также подразумевает степень сродства полипептидных или полинуклеотидных последовательностей, определяемая совпадениями в цепочках этих последовательностей. «Идентичность» и «схожесть» может легко быть определена известными способами, включающими в себя (но не ограниченными) таковые, описанные в: Computational Molecular Biology (Lesk, A. M., ed.) Oxford University Press, New York (1988); Biocomputing: Informatics and Genome Projects (Smith, D. W., ed.) Academic Press, New York (1993); Computer Analysis of Sequence Data, Part I (Griffin, A. M., and Griffin, H. G., eds.) Humana Press, New Jersey (1994); Sequence Analysis in Molecular Biology (von Heinje, G., ed.) Academic Press (1987); and Sequence Analysis Primer (Gribskov, M. and Devereux, J., eds.) Stockton Press, New York (1991). Выбранные методы определения идентичности разработаны для получения наибольшего количества совпадений в исследуемых последовательностях. Способы определения идентичности и схожести кодированы в публично доступных компьютерных программах. Выравнивания и вычисления процента идентичности могут быть осуществлены с применением программного обеспечения для анализа последовательности, такого, как программа Megalign пакета LASERGENE bioinformatics computing suite (DNASTAR Inc., Madison, WI). Множественные выравнивания последовательностей могут быть осуществлены применением метода выравнивания «Clustal» (Higgins et al, CABIOS. 5:151 (1989)) с параметрами по умолчанию: (GAP PENALTY=IO, GAP LENGTH PENALTY=IO). По умолчанию параметры для попарного выравнивания с применением метода Clustal могут быть выбраны следующими: KTUPLE 1, GAP PENALTY=3, WIND0W=5 and DIAGONALS SAVED=5.

[0140] Термин «программное обеспечение для анализа последовательности» относится к любого рода компьютерным алгоритмам и программам, применяемым для анализа последовательностей аминокислот и нуклеотидов. «Программное обеспечение для анализа последовательности» может быть коммерчески доступным или независимо разработанным. Типичное программное обеспечение для анализа последовательности включает в себя (но не ограничивается) пакетом the GCG suite of programs (Wisconsin Package Version 9.0, Genetics Computer Group (GCG), Madison, WI), BLASTP, BLASTN, BLASTX (Altschul et al, J. Mol. Biol. 215:403 (1990)), и DNASTAR (DNASTAR, Inc. 1228 S. Park St. Madison, WI 53715 USA). В контексте настоящего приложения, подразумевается, что в процессе исследования, когда применяется программное обеспечение для анализа последовательности, результаты анализа будут опираться на «значения по умолчанию» указанной программы, если не оговорено иначе. В настоящем описании, «значения по умолчанию» подразумевают любого рода совокупность значений или параметров, изначально загруженных вместе с программным обеспечением при первой инициализации (инсталляции).

[0141] «Химически синтезированный» в отношении последовательностей ДНК означает, что составляющие нуклеотиды полимеризуются in vitro. Неавтоматизированный химический синтез ДНК может быть осуществлен применением надежных процедур, а автоматизированный химический синтез осуществляется с помощью одной из многих коммерчески доступных машин. В соответствии с этим, гены могут быть синтезированы с тем, чтобы экспрессия генов была оптимальной, благодаря оптимизации последовательности нуклеотидов для отражения погрешностей в кодонах клетки-хозяина. Опытные специалисты оценят высокую вероятность удачной экспрессии генов, в случае если подборка кодонов обеспечивает кодоны, благоприятные для хозяина. Определение предпочитаемых кодонов может быть основано на исследовании генов, экспрессируемых клеткой-хозяином, когда информация о последовательностях доступна.

[0142] В настоящем описании, две или более индивидуально функционирующие системы регуляции генов обозначаются «ортогональными», когда a) в результате модуляции каждой из данных систем соответствующим лигандом в выбранной концентрации выявляется ощутимое изменение в величине экспрессии гена этой системы и b) изменение статистически значительно отличается от изменений в экспрессии всех других систем, одновременно функционирующих в клетке, ткани или организме, вне зависимости от спонтанности или последовательности данной модуляции. Предпочтительно, модуляция каждой индивидуально функционирующей системы регуляции генов вызывает изменение в экспрессии генов по меньшей мере вдвое превосходящее таковое для всех остальных функционирующих систем в клетке, ткани или организме, например, пятикратное, десятикратное, стократное или пятисоткратное. В идеале, модуляция каждой из данных систем соответствующим лигандом в выбранной концентрации приведет к значительному изменению в величине экспрессии гена этой системы, без значительного (измеримого) изменения в экспрессии всех остальных систем, функционирующих в клетке, ткани или организме. В таком случае, множественно индуцируемая система регуляции гена называется «полностью ортогональной». Применяемые ортогональные лиганды и ортогональные рецептор-опосредованные системы регуляции генов описаны в патенте США 2002/0110861 А.

[0143] Термин «экзогенный ген» относится к гену, чужеродному по отношению к организму, другими словами, гену, введенному в организм путем процесса трансформации, либо не мутированной версии мутированного эндогенного гена, либо мутированной версии не мутированного эндогенного гена. Способ трансформации не является критичным относительно настоящего изобретения и может быть любым способом, применимым к субъекту и известным специалистам в данной области. Экзогенные гены могут быть природными или синтетическими, вводимыми в организм в форме ДНК или РНК, которая может функционировать посредством ДНК с помощью обратной транскриптазы. Такие гены можно вводить в клетки-мишени, вводить в организм напрямую, либо вводить не напрямую, посредством введения трансформированных клеток в организм.

[0144] Термин «терапевтический продукт» относится к лечебному полипептиду или лечебному полинуклеотиду, оказывающему благотворный эффект по отношению к клетке-хозяину, в которой данный продукт экспрессируется. К лечебным полипептидам могут относиться, без каких-либо ограничений, пептиды малого размера, состоящие даже из трех аминокислот, одно- или многоцепочечные белки и рекомбинантные белки. К лечебным полинуклеотидам могут относиться, без каких-либо ограничений, антисмысловые олигонуклеотиды, малые интерферирующие РНК, рибозимы и внешние вспомогательные последовательности РНК. Терапевтический продукт может содержать последовательность, существующую в природе, синтетическую последовательность или комбинацию встречающихся в природе и синтетических последовательностей.

[0145] Термин «комплекс рецептора экдизона» обычно относится к гетеродимерному белковому комплексу, состоящему из по меньшей мере двух членов семейства ядерных рецепторов: рецептора экдизона (ʺEcRʺ) и белков Ultraspiracle (ʺUSPʺ) (см. Yao et al., Nature 366Λ16 (1993)); Yao et al., Cell 71:63 (1992)). Функциональный комплекс EcR может также содержать добавочный белок(ки), такие как иммунофилины. Другие, вспомогательные члены белкового семейства ядерных рецепторов, известные как транскрипционные факторы (например, DHR38, betaFTZ-1 или другие гомологи насекомых), могут также служить лиганд-зависимыми или лиганд-независимыми партнерами EcR и/или USP. Комплекс EcR может также являться гетеродимером белка EcR и аналога белка Ultraspiracle позвоночных, ретиноидного Х-рецептора (ʺRXRʺ) или химерной комбинацией USP и RXR. Термин комплекс EcR также охватывает гомодимерные комплексы белка EcR или USP.

[0146] Комплекс EcR может быть активирован активным экдистероидным или нестероидным лигандом, связывающимся с одним из белков комплекса, включающим EcR, но не исключающим другие белки комплекса. В данной заявке, термин «лиганд», примененный к основанным на EcR генным переключателям, описывает небольшие и растворимые молекулы, обладающие способностью активировать переключатель гена со стимуляцией экспрессии полипептида, кодируемого зависимым геном. Примеры лигандов включают в себя, без каких-либо ограничений, экдистероид, как, например, экдизон, 20-гидроксиэкдизон, понастерон А, муристерон А и т.п., 9-цис-ретиноидную кислоту, синтетические аналоги ретиноидной кислоты, N-N’-диацилгидразины, описанные в патентах США №6,013,836; 5,117,057; 5,530,028; и 5,378,726 и публикации заявки США №2005/0209283 и 2006/0020146; оксадиазолины, описанные в публикации заявки США №№2004/0171651; дибензилалкил циангидразины, подобные описанным в Европейской заявке №461,809; N-алкил-N,N’-диароилгидразины, подобные описанным в патенте США №5,225,443; N-ацил-N-алкилкарбонилгидразины, подобные описанным в Европейской заявке №234,994; N-ароил-N-алкил-N’-ароилгидразины, подобные описанным в патенте США №4,985,461; амидокетоны, подобные описанным в публикации заявки США №2004/0049037; и другие подобные материалы, включающие в себя 3,5-ди-трет-бутил-4-гидрокси-N-изобутил-бензамид, 8-O-ацетилгарпагид, оксистеролы, 22(R) гидроксихолестерин, 24(S) гидроксихолестерин, 25-эпоксихолестерин, T0901317, 5-альфа-6-альфа-эпоксихолестерин-3-сульфат (ECHS), 7-кетохолестерин-3-сульфат, фарнезол, желчные кислоты, сложные эфиры 1,1-бифосфоната, ювенильный гормон III и т.п. Примеры лигандов диацилгидразина, применимых в изобретении, включают в себя RG-115819 (N-(1-этил-2,2-диметил-пропил)-N’-(2-метил-3-метокси-бензил)- гидразид 3,5-диметил-бензойной кислоты), RG-115932 (N-(1-трет-бутил-бутил)-N’-(2-этил-3-метокси-бензил)-гидразид ((R)-3,5-диметил-бензойной кислоты) и RG-115830 (N-(1-трет-бутил-бутил)-N’-(2-этил-3-метокси-бензил)-гидразид 3,5-диметил-бензойной кислоты). См. заявку США №12/155,111, зарегистрированную 29 мая, 2008 и PCT/US2008/006757, зарегистрированный 29 мая, 2008, где описаны другие диацилгидразины, применимые в практической реализации изобретения.

[0147] Комплекс EcR включает в себя белки, являющиеся членами суперсемейства ядерных рецепторов, при том, что все члены этого суперсемейства характеризуются наличием амино-терминального домена трансактивации (ʺТАʺ), ДНК-связывающего домена (ʺDBDʺ) и лиганд-связывающего домена (ʺLBDʺ), которые разделены шарнирным участком. Некоторые члены семейства могут также содержать другой домен трансактивации на карбокси-терминальной стороне LBD. DBD характеризуется наличием двух цистеиновых цинковых пальцев, между которыми расположены два аминокислотных мотива, P-box и D-box, придающие специфичность экдизоновым элементам отклика. Эти домены могут быть как естественными, так и модифицированными или химерными по отношению к различным доменам гетерологичных белков-рецепторов.

[0148] Последовательности ДНК, составляющие экзогенный ген, элемент отклика и комплекс EcR могут быть интегрированы в архебактерии, прокариотические клетки, как, например, Escherichia coli, Bacillus subtilis или другие энтеробактерии, либо в эукариотические клетки, как клетки растений и животных. Тем не менее, ввиду того, что многие экспрессируемые геном белки не могут пройти правильный процессинг в бактериальной клетке, предпочтение отдается эукариотическим клеткам. Клетки могут быть в форме единичных клеток, либо многоклеточных организмов. Нуклеотидные последовательности экзогенного гена, элемент отклика и рецепторный комплекс могут также быть инкорпорированы в форме молекул РНК, предпочитаемо, в форме функциональных вирусных РНК, как, например, РНК вируса табачной мозаики. Среди эукариотических клеток предпочтение отдается клеткам позвоночных, ввиду того, что последние в естественном состоянии не несут молекул, реагирующих на лиганды EcR согласно настоящему изобретению. В результате, они являются «в значительной степени нечувствительными» к лигандам, которые обеспечивает настоящее изобретение. Так, лиганды, которые применяют согласно настоящему изобретению, будут оказывать незначительный, малый физиологический, которым можно пренебречь, или какой-либо другой эффект на трансформированные клетки и организм в целом. Поэтому клетки могут расти и вырабатывать желаемый продукт, не подвергаясь значительному влиянию присутствия самого лиганда.

[0149] Лиганды EcR, применяемые вместе с комплексом EcR, который в свою очередь, связан с элементом отклика, который присоединен к экзогенному гену (например, IL-12), обеспечивают средства внешней временной регуляции экспрессии экзогенного гена. Порядок, в котором различные компоненты связываются друг с другом, то есть лиганд к рецепторному комплексу, а рецепторный комплекс к элементу отклика, не является критичным. Обычно, модуляция экспрессии экзогенного гена происходит в ответ на присоединение комплекса EcR к специфическому контрольному, или регуляторному элементу ДНК. Белок EcR, как и другие члены семейства ядерных рецепторов, содержит, по меньшей мере три домена: домен трансактивации, ДНК-связывающий домен и лиганд-связывающий домен. Этот рецептор как подгруппа семейства ядерных рецепторов также содержит другие, менее определенные участки, ответственные за особенности гетеродимеризации. Присоединение лиганда к лиганд-связывающему домену белка EcR, после гетеродимеризации с белками USP или RXR, позволяют ДНК-связывающим доменам гетеродимерных белков присоединиться к активированной форме элемента отклика, таким образом, приводя к экспрессии или подавлению экзогенного гена. Этот механизм не исключает потенциального присоединения лиганда к EcR или USP, и, в результате, образования активных гомодимерных комплексов (например, EcR+EcR или USP+USP). Согласно одному из вариантов реализации, один или более рецепторных домена могут меняться с получением химерного переключателя гена. Как правило, один или более из трех доменов могут быть выбраны из источника, отличного от источника происхождения остальных доменов, таким образом, что химерный рецептор оказывается оптимальным для трансактивационной активности в выбранной клетке-хозяине или организме, для комплементарного присоединения лиганда и распознавания специфического элемента отклика. Кроме того, сам элемент отклика может быть модифицирован или заменен на элемент отклика для доменов других ДНК-связывающих белка, как, например, белок GAL-4 дрожжей (см. Sadowski et al, Nature 335:563 (1988) или белок LexA Е. coli (see Brent et al, Cell 43:129 (1985)), для взаимодействия с химерными комплексами EcR. Другим преимуществом химерных систем является то, что они позволяют выбрать промотор для экспрессии экзогенного гена в соответствии с желаемым конечным результатом. Такой двойной контроль может оказаться особенно важным в областях генной терапии, особенно когда происходит выработка цитотоксичных белков, потому, как и время экспрессии, и клетки, в которых эта экспрессия происходит, могут быть проконтролированы. Когда экзогенные гены, функционально связанные с соответствующим промотором, вводятся в клетки субъекта, экспрессия экзогенных генов контролируется наличием лиганда согласно настоящему изобретению. Промоторы могут быть конститутивно или индуцируемо регулированы, или могут быть тканеспецифичными (то есть экспрессируемыми лишь в особом типе клеток), или специфичными к определенным стадиям развития организма.

[0150] Многие геномные последовательности и последовательности кДНК, кодирующие различные полипептиды, такие как: транскрипционные факторы и репортерные белки, хорошо известны в данной области техники. Специалисты в данной области имеют доступ к информации о последовательностях нуклеиновых кислот практически всех известных генов и могут получить молекулы нуклеиновых кислот либо прямо из публичного банка данных, либо из организации, опубликовавшей последовательность, либо применить рутинные методы для получения молекул. В качестве примера даны описания последовательностей учетные номера которых также представлены выше.

[0151] Переключатель гена может быть любой системой переключателя гена, которая регулирует экспрессию гена при добавлении или удалении специфического лиганда. Согласно одному из вариантов реализации, переключатель гена контролирует уровень экспрессии гена в соответствии с концентрацией присутствующего лиганда. Примеры лиганд-зависимых транскрипционных факторов, которые применяют в переключателях генов согласно настоящему изобретению, включают в себя (но не ограничиваются): члены суперсемейств ядерных рецепторов, которые активируются соответствующими им лигандами (например, глюкокортикоиды, эстроген, прогестины, ретиноиды, экдизон, аналоги и их миметики) и плазмидный вектор rTTA, активируемый тетрациклином. Согласно одному из вариантов реализации, переключатель гена представляет собой переключатель гена на основе EcR. Примерами таких систем являются (но не ограничиваются) системы, описанные в патентах США №6,258,603, 7,045,315, публикациях патентных заявок США №2006/0014711, 2007/0161086 и международной патентной заявке №WO 01/70816. Примеры химерных систем рецепторов экдизона описаны в патентах США №7,091,038, публикации патентной заявки №2002/0110861, 2004/0033600, 2004/0096942, 2005/0266457 и 2006/0100416, а также в международных патентных заявках №WO 01/70816, WO 02/066612, WO 02/066613, WO 02/066614, WO 02/066615, WO 02/29075 и WO 2005/108617. Примером агонист-регулируемой нестероидной экдизоновой системы является RheoSwitch® Mammalian Inducible Expression System (New England Biolabs, Ipswich, MA).

[0152] Согласно одному из вариантов реализации, полинуклеотид, кодирующий переключатель гена, содержит одну последовательность транскрипционного фактора, кодирующую лиганд-зависимый транскрипционный фактор, под контролем промотора. Последовательность транскрипционного фактора может кодировать лиганд-зависимый транскрипционный фактор, существующий в природе, или искусственный транскрипционный фактор. Искусственный транскрипционный фактор - это такой фактор, природная последовательность которого была изменена, например, посредством мутации последовательности или комбинирования доменов, взятых у разных транскрипционных факторов.

Согласно одному из вариантов реализации, транскрипционный фактор содержит лиганд-связывающий домен (LBD) ядерного рецептора группы Н. Согласно одному из вариантов реализации, лиганд-связывающий домен (LBD) ядерного рецептора группы Н берется от EcR, от убиквитарного рецептора, от орфанного рецептора 1, от NER-I, от ядерного рецептора 1 стероидных гормонов, от белка-15, взаимодействующего с ретиноидным рецептором X (a retinoid X receptor interaxting protein-15), от печеночного X рецептора (3, от белка, подобного рецептору стероидных гормонов, от печеночного X рецептора, от печеночного X рецептора а, от фарнезоидного X рецептора, от белка-14, взаимодействующего с рецептором, либо от рецептора фарнезола. Согласно другому варианту реализации, LBD Группы Н ядерного рецептора берется от рецептора экдизона.

[0153] EcR и другие ядерные рецепторы Группы Н входят в суперсемейство ядерных рецепторов, все члены которого, как правило, характеризуются наличием амино-терминального трансактивационного домена (TD), ДНК-связывающего домена (DBD) и LBD, отделенного от DBD шарнирным участком. В данном описании, термин ʺДНК-связывающий доменʺ описывает минимальную полипептидную последовательность ДНК-связывающего белка, достаточно длинную для того, чтобы ДНК-связывающий домен функционировал, обеспечивая соединение с определенным элементом отклика. Члены суперсемейства ядерных рецепторов также характеризуются наличием четырех или пяти доменов: A/B, C, D, E и, в случае некоторых членов суперсемейства, F (см. патент США 4,981,784 и Evans, Sciencea 240:889 (1988)). Домен ʺА/Вʺ относится к трансактивационному домену, ʺCʺ относится к ДНК-связывающему домену, ʺDʺ относится к шарнирному участку, а ʺEʺ относится к лиганд-связывающему домену. Некоторые члены семейства могут также включать в себя другой трансактивационный домен на карбоксильном терминале LBD, соответствующем ʺFʺ.

[0154] DBD характеризуется наличием двух цистеиновых цинковых пальцев, между которыми расположены два аминокислотных мотива, P-box и D-box, придающих специфичность этих участков для элементов отклика. Эти домены могут быть либо нативными, либо модифицированными, либо химерными комплексами других доменов гетерологичных белковых рецепторов. EcR, как подгруппа семейства ядерных рецепторов, также содержит менее определенные участки, отвечающие за особенности гетеродимеризации. Так как домены ядерных рецепторов являются модулярными по природе, домены LBD, DBD и TD являются взаимозаменяемыми.

[0155] Согласно другому варианту реализации, транскрипционный фактор содержит TD, DBD, распознающий элемент отклика, ассоциированный с экзогенным геном, экспрессия которого должна быть модулирована; и лиганд-связывающий домен ядерного рецептора Группы Н. Согласно определенным вариантам реализации, лиганд-связывающий домен ядерного рецептора Группы H содержит заместительную мутацию.

[0156] Согласно другим вариантам реализации, полинуклеотид, кодирующий переключатель гена содержит первую последовательность транскрипционного фактора под контролем первого промотора и вторую последовательность транскрипционного фактора под контролем второго промотора, причем белки, кодируемые указанными первой последовательностью транскрипционного фактора и второй последовательностью транскрипционного фактора, взаимодействуют с формированием белкового комплекса, который функционирует, как лиганд-зависимый транскрипционный фактор, то есть как переключатель гена, обозначаемый, как «двойной переключатель» или «двугибридный» переключатель гена. Первый и второй промоторы могут быть одинаковыми или разными.

[0157] Полинуклеотид, кодирующий переключатель гена, может также содержать первую последовательность транскрипционного фактора и вторую последовательность транскрипционного фактора под контролем промотора, причем белки, кодируемые первой последовательностью транскрипционного фактора и второй последовательностью транскрипционного фактора, взаимодействуют, формируя белковый комплекс, который функционирует как лиганд-зависимый транскрипционный фактор, то есть в качестве «единичного переключателя гена». Последовательность первого транскрипицонного фактора и последовательность второго транскрипицонного фактора могут быть связаны внутренним сайтом посадки рибосомы, например, EMCV IRES.

[0158] Согласно одному из вариантов реализации, первая последовательность транскрипционного фактора кодирует полипептид, содержащий TD, ДНК-связывающий домен, который распознает элемент отклика, ассоциированный с экзогенным геном, экспрессия которого будет модулироваться, а также лиганд-связывающий домен ядерного рецептора Группы Н; в то время как вторая последовательность транскрипционного фактора кодирует транскрипционный фактор, содержащий LBD ядерного рецептора, выбранного из лиганд-связывающих доменов RXR позвоночных, лиганд-связывающих доменов RXR беспозвоночных, лиганд-связывающих доменов белков ultraspiracle и химерных лиганд-связывающих доменов, содержащих два полипептидных фрагмента, причем первый из них происходит из лиганд-связывающего домена RXR позвоночных, лиганд-связывающего домена RXR беспозвоночных, либо LBD белка ultraspiracle, а второй полипептидный фрагмент происходит от другого LBD белка RXR позвоночных, беспозвоночных или другого LBD белка ultraspiracle.

[0159] Согласно другому варианту реализации, переключатель гена содержит первую последовательность транскрипционного фактора, кодирующую первый полипептид, в который входят LBD ядерного рецептора и ДНК-связывающий домен, распознающий элемент отклика, который ассоциирован с экзогенным геном, экспрессия которого будет модулироваться, а также вторую последовательность транскрипционного фактора, кодирующую второй полипептид, в который входят трансактивационный домен TD и лиганд-связывающий домен ядерного рецептора, причем один из LBD ядерного рецептора является лиганд-связывающим доменом ядерного рецептора Группы H. Согласно предпочтительному варианту реализации, первый полипептид по существу не содержит трансактивационный домен, а второй полипептид по существу не содержит ДНК-связывающий домен. В контексте настоящего изобретения фраза: «по существу не содержит» значит, что рассматриваемый белок не содержит последовательность рассматриваемого домена, достаточно длинную для обеспечения активации или связывания.

[0160] Согласно другому аспекту настоящего изобретения, первая последовательность транскрипционного фактора кодирует белок, содержащий партнер гетеродимеризации и трансактивационный домен (TD), а вторая последовательность транскрипционного фактора кодирует белок, содержащий ДНК-связывающий домен и лиганд-связывающий домен.

[0161] Когда один лиганд-связывающий домен (LBD) ядерного рецептора относится к Группе Н, другой лиганд-связывающий домен ядерного рецептора может принадлежать любому другому ядерному рецептору, формирующему димер с LBD Группы H. Например, когда LBD ядерного рецептора Группы H представляет собой лиганд-связывающий домен рецептора EcR, другой «партнер» ядерного рецептора LBD может происходить от EcR, RXR позвоночных, RXR беспозвоночных, быть белком ultraspiracle (USP), либо химерным ядерным рецептором, содержащим по меньшей мере два полипептидных фрагмента LBD ядерного рецептора, выбранных из RXR позвоночных или RXR беспозвоночных, или белка USP (см. WO 01/70816 A2, International Patent Application No. PCT/US02/05235 и US 2004/0096942 Al. Партнер LBD ядерного рецептора может также содержать укорачивающую мутацию, делецию, мутацию замещения, либо иную модификацию.

[0162] Согласно одному из вариантов реализации, лиганд-связывающий домен белка RXR позвоночных происходит от белка RXR человека (Homo sapiens), мыши (Mus musculus), крысы (Rattus norvegicus), курицы (Gallus gallus), свиньи (Sus scrofa domestica), лягушки (Xenopus laevis), полосатого данио (Danio rerio), оболочника (Polyandrocarpa misakiensis), либо медузы (Tripedalia cysophora).

[0163] Согласно одному из вариантов реализации, лиганд-связывающий домен белка RXR беспозвоночных берется из: полипептида ultraspiracle саранчи (Locusta migratoria-ʺLmUSPʺ), белка гомолога 1 RXR иксодового клеща (Amblyomma americanum-ʺAmaRXR1ʺ), белка гомолога 2 RXR иксодового клеща (Amblyomma americanum-ʺAmaRXR2ʺ), гомолога RXR атлантического песчаного краба (Celuca pugilator-ʺCpRXRʺ), гомолога RXR малого мучного хрущака (Tenebrio molitor-ʺTmRXRʺ), гомолога RXR пчелы (Apis mellifera-ʺAmRXRʺ), гомолога RXR персиковой тли (Myzus persicae-ʺMpRXRʺ), либо гомолога RXR не двукрылых/не чешуекрылых.

[0164] Согласно одному из вариантов реализации, химерный лиганд-связывающий домен белка RXR содержит, по меньшей мере два полипептидных фрагмента, выбранных 'из полипептидного фрагмента RXR позвоночных животных и полипептидного фрагмента гомолога RXR у беспозвоночных животных, не относящихся к чешуекрылым или двукрылым. Химерный LBD белка RXR согласно настоящему изобретению может состоять из полипептидных фрагментов RXR, которые были взяты от по меньшей мере двух разных видов, либо, в случае если; выбран лишь один вид, два или более полипептидных фрагмента могут быть получены от двух или более полипептидных фрагментов изоформ RXR этого вида.

[0165] Согласно одному из вариантов реализации, химерный лиганд-связывающий домен RXR содержит по меньшей мере полипептидный фрагмент RXR позвоночного животного и полипептидный фрагмент RXR беспозвоночного.

[0166] Согласно другому варианту реализации, химерный лиганд-связывающий домен RXR содержит по меньшей мере полипептидный фрагмент RXR позвоночного животного и полипептидный фрагмент гомолога RXR беспозвоночного животного, не принадлежащего к двукрылым или чешуекрылым.

[0167] Лиганд, при присоединении к LBD ядерного(ых) рецептора(ов), который, в свою очередь, связан с элементом отклика, который связан с экзогенным геном, обеспечивает внешнюю временную регуляцию экспрессии экзогенного гена. Механизм связывания или порядок, в котором различные компоненты согласно настоящему изобретению присоединяются друг к другу, то есть например, лиганд к LBD, ДНК-связывающий домен к элементу отклика, трансактивационный домен к промотору и т.п., не критичен.

[0168] В конкретном примере, лиганд присоединяется к LBD ядерного рецептора Группы H и этот «партнер» ядерного рецептора LBD запускает экспрессию экзогенного гена. Этот механизм не исключает возможность для ядерного рецептора Группы H (GHNR) или с его «партнера» связываться с лигандом с формированием активных гомодимерных комплексов (например GHNR+GHNR или «партнер»+«партнер»). Предпочитаемо, один или более доменов рецептора заменены для получения гибридного переключателя гена. Как правило, один или более из трех доменов DBD, LBD, и TD может быть взят из источника, отличного от источников происхождения остальных доменов, так, что гибридные гены и получаемые гибридные белки оптимизируются в выбранной клетке-хозяине или организме для трансактивационной активности, комплементарного присоединение лиганда и распознавания специфического элемента отклика. Кроме того, сам элемент отклика может быть модифицирован или заменен элементами отклика для других доменов ДНК-связывающих белков, таких как белок GAL-4 дрожжей (см. Sadowski et al., Nature 335:563 (1988)), или белок LexA Escherichia coli (см. Brent et al, Cell 43:129 (1985)), или синтетические элементы отклика, специализированные для направленных взаимодействий с белками, созданные, модифицированные и выбранные для осуществления таких специфических взаимодействий (см., например, Kim et al, Proc. Natl. Acad. Sci. USA, 94:3616 (1997)) и функционирования с гибридными рецепторами.

[0169] Функциональный комплекс EcR может также включать в себя вспомогательный белок (белки),такие как, например, иммунофилины. Вспомогательные члены белкового семейства ядерных рецепторов, известные как транскрипционные факторы (такие как DHR38 или betaFTZ-1), могут также быть лиганд-зависимыми или независимыми партнерами для EcR, USP, и/или RXR. Кроме того, могут требоваться и другие кофакторы, такие как белки, обычно называемые коактиваторами (а также адаптерами или медиаторами). Эти белки не присоединяется специфично к последовательности ДНК и не участвуют в собственно транскрипции. Они могут оказывать эффект на активацию транскрипции разными механизмами, включающими в себя стимуляцию ДНК-связывающей активности активаторов путем воздействия на структуру хроматина, либо посредством взаимодействия активатор-инициирующего комплекса. Примерами таких коактиваторов могут служить: RIP 140, TIF1, RAP46/Bag-1, ARA70, SRC-1 /NCoA-I, TEF2/GRIP/NCoA-2, ACTR/AIBl/RACS/pCIP, а также, в качестве случайного (неспецифичного) коактиватора, элемент отклика С связывающий белок В, СВР/p300 (для обзора, см. Glass et al., Curr. Opin. Cell Biol. 9:222 (1997)). Кроме того, для эффективного ингибирования активации транскрипции в отсутствие лиганда могут быть необходимы белковые кофакторы, обычно называемые корепрессорами (также называемые репрессорами, сайленсерами или сайленсинговыеми медиаторами). Эти корепрессоры могут взаимодействовать с EcR, который не связан с лигандом, для подавления активности элемента отклика. Существующие данные свидетельствуют о том, что присоединение лиганда меняет конформацию рецептора, приводя к отделению корепрессора и привлечению вышеуказанных коактиваторов, таким образом, выключая их подавляющую активность. Примеры корепрессоров включают в себя N-CoR и SMRT (для обзора, см. Horwitz et al, Mol Endocrinol. 70:1167 (1996)). Эти кофакторы могут быть либо эндогенными, присутствующими внутри клетки или организма, либо могут быть добавлены экзогенно в качестве трансгенов, экспрессируемых в регулируемом или нерегулируемом режиме.

[0170] Экзогенный ген функционально связан с промотором, содержащим по меньшей мере один элемент отклика, который распознается ДНК-связывающим доменом лиганд-зависимого транксрипционного фактора, кодируемого переключателем гена. Согласно одному из вариантов реализации, промотор содержит 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 или более копий элемента отклика. Промоторы, содержащие желаемые элементы отклика, могут быть промоторами естественного происхождения или искусственными промоторами, созданными с применением способов, хорошо известных в данной области техники, например, содержащими один или более элемент отклика, функционально связанный с минимальным промотором.

[0171] Для введения полинуклеотидов в клетки можно применять вектор. Вектором может быть, например, плазмидный вектор, либо вирусный вектор, состоящий из одно- или двухцепочечной РНК или ДНК. Такие векторы можно вводить в клетки путем применения хорошо известных способов введения ДНК и РНК в клетки. Вирусные векторы могут быть способны или не способны к репликации. В другом случае, размножение вирусов, как правило, будет происходить только в комплементирующих клетках-хозяевах. В данном описании, термин «клетка-хозяин» или «хозяин» относится к клетке согласно изобретению, в которую вводится и функционирует один или более полинуклеотидов согласно изобретению.

[0172] Таким образом, векторы по меньшей мере должны включать в себя полинуклеотиды согласно настоящему изобретению. Другими компонентами вектора могут быть (но, не ограничиваясь нижеперечисленным): селектируемые маркеры, домены модификации хроматина, дополнительные промоторы, запускающие экспрессию других полипептидов (например, апоптозный белок), которые могут быть представлены в векторе, геномные сайты интеграции, сайты рекомбинации и точки молекулярных вставок (полилинкер). Векторы могут содержать любое количество этих дополнительных элементов в составе полинуклеотидов или вне их таким образом, что вектор может выполнять необходимые специфические задачи терапевтических методов которые применяются.

[0173] Согласно одному из вариантов реализации векторы, которые вводят в клетку содержат также «селектируемый ген-маркер», при обнаружении экспрессии которого можно говорить о том, что конструкт переключателя гена согласно настоящему изобретению интегрировался в геном клетки-хозяина. Таким образом, селектируемый ген может стать положительным маркером для интеграции в геном. В то же время, наличие селективного гена-маркера, некритичное в отношении способов данного изобретения, позволяет выделить популяцию живых клеток, в геном которых интегрировалась векторная конструкция. Таким образом, определенные варианты реализации согласно настоящему изобретению включают в себя способ отбора клеток, в которых интеграция вектора прошла успешно. В данном описании, термин «отбирать» и его вариации, примененные в отношении клеток, подразумевают стандартные, хорошо известные способы отбора клеток со специфической генетической структурой или фенотипом. Обычные способы включают в себя (но, не ограничиваются нижеперечисленным): культивирование клеток в присутствии антибиотиков, как G418, неомицин и ампициллин. Другие примеры селектируемых генов-маркеров включают в себя (но, не ограничиваются нижеперечисленным) гены, придающие устойчивость к дигидрофолат-редуктазе, гигромицину или микофеноловой кислоте. Другие способы селекции включают в себя (но, не ограничиваются нижеперечисленным) селектируемый ген-маркер, позволяющий использовать тимидин-киназу, гипоксантин-гуанин-фосфорибозилтрансферазу, либо аденин-фосфорибозилтрансферазу в качестве агентов отбора.

Клетки, содержащие векторный конструкт, в который входят ген(ы) устойчивости к антибиотику, будут, таким образом, способны выживать в присутствии антибиотика в культуре. Соответственно, клетки, не содержащие векторный конструкт, в который входит(ят) ген(ы) устойчивости к антибиотику, погибнут в присутствии антибиотика в культуре.

[0174] В данном описании, термин «домен модификации хроматина» (CMD) относится к нуклеотидным последовательностям, взаимодействующим с различными белками, которые связаны процессом сохранения и/или изменения структуры хроматина, такие, как, например, с инсуляторы ДНК (но не ограничивающимися последними). См. Ciavatta et al, Proc. Nat 1 Acad. Sci. U.S.A., 103:9958 (2006). Примеры CMD включают в себя (но, не ограничиваются нижеперечисленным): инсулятор гена бета-глобулина курицы и сайт гиперчувствительности 4 (cHS4) курицы. Использование различных последовательностей CMD в отношении одной или более генных программ (т.е, промотора, кодирующей последовательности и 3’ регуляторного участка), например, может облегчить применение различных CMD последовательностей ДНК в качестве «участков - «плеч»-мини-гомологии» в комбинации с различными микроорганизмами, либо в рекомбинационных технологиях in vitro, для «переключения» программ генов между имеющимися мультигенными и моногенными челночными векторами. Другие примеры доменов модификации хроматина известны в данной области техники и могут быть легко идентифицированы.

[0175] Конкретные векторы, которые можно применять в соответствии с настоящим изобретением, представляют собой векторы экспрессии, кодирующие белки или полинуклеотиды. Как правило, такие векторы содержат cw-активные контрольные участки (cw-acting control regions), эффективные для экспрессии в хозяине и функционально связанные с экспрессируемым полинуклеотидом. Соответствующие транс-активные факторы предоставляются хозяином, комплементарным вектором, либо самим вектором после введения в хозяина.

[0176] Для экспрессии белков или полинуклеотидов можно примененять различные векторы. Такие векторы включают в себя хромосомные, эписомальные и вирусные векторы, например, векторы, происходящие от бактериальных плазмид, бактериофагов, дрожжевых эписом, хромосомных элементов дрожжей, вирусов, как, например, адено-ассоциированные вирусы, лентивирусы, бакуловирусы, паповавирусы (как SV40), вакциния, аденовирусы, вирусы птичьей оспы, вирусы псевдобешенства и ретровирусы, а также векторы, получающиеся при комбинации вышеперечисленных, например, из генетических элементов плазмид и фагов, таких как космиды и фагемиды. Все они могут использоваться для экспрессии, в соответствии с данным аспектом изобретения. Как правило, любой вектор, подходящий для сохранения, размножения и экспрессии полинуклеотидов или белков в клетке, можно применять при экспрессии в этом отношении.

[0177] Полинуклеотидная последовательность в экспрессионном векторе функционально связана с соответствующей последовательностью (последовательностями) контроля экспрессии, включающей в себя, например, промотор для управления транскрипцией иРНК. К представителям вспомогательных промоторов относятся (но, не ограничиваются): конститутивные, ткане-специфичные и индуцирующие промоторы. Примеры конститутивных эукариотических промоторов включают в себя (но не ограничиваются): промотор гена металотионеина 1 мыши (Hamer et al, J. Mol. Appl. Gen. 1:273 (1982)); промотор TK вируса герпеса (McKnight, Cell 37:355 (1982)); ранний промотор SV40 (Benoist et al., Nature 290:304 (1981)); и промотор вакцинии. К другим промоторам, применимым для управления экспрессией белка или полинуклеотида, относятся (но, не ограничиваются) ткане-специфичные промоторы и другие эндогенные промоторы, такие как: промотор альбумина (гепатоциты), промотор проинсулина (панкреатические бета-клетки) и т.п. В целом, экспрессионные конструкты должны содержать сайты инициации и терминации транскрипции и, в составе транскрибируемого участка, сайт связывания рибосом для трансляции. Кодирующая часть зрелых транскриптов, экспрессируемых конструктами, могут содержать кодон инициации трансляции AUG в начале и кодон терминации (UAA, UGA или UAG), соответственно расположенный в конце транслируемого полипептида.

[0178] Кроме этого, конструкты могут содержать контролирующие участки, регулирующие, а также активирующие экспрессию. Обычно, такие участки функционируют в качестве транскрипционных регуляторов, среди прочего, как сайты присоединения репрессоров или энхансеры.

[0179] Примеры эукариотических векторов включают (но не ограничиваются нижеперечисленными): pW-LNEO, pSV2CAT, pOG44, pXT1 и pSG, доступные у Stratagene; pSVK3, pBPV, pMSG и pSVL, доступные у Amersham Pharmacia Biotech; а также pCMVDsRed2-express, plRES2-DsRed2, pDsRed2-Mito и pCMV-EGFP, доступные у Clontech. Существует множество других хорошо известных и коммерчески доступных векторов.

[0180] Особенно удобны в применении векторы, содержащие точки молекулярных вставок (полилинкеры) для быстрой вставки и удаления элементов генных программ, которые описаны в United States Published Patent Application No. 2004/0185556, United States Patent Application No. 11/233,246 и International Published Application Nos. WO 2005/040336 и WO 2005/116231. Примером таких векторов является Ultra Vector™ Production System (Intrexon Corp., Blacksburg, VA), описанный в WO 2007/038276. В данном описании, термин «генная программа» относится к комбинации генетических элементов, состоящей из промотора (P), экспрессионной последовательности (E) и 3’ регуляторной последовательности (3), так, что «PE3» означает генную программу. Элементы, входящие в генную программу, могут быть легко перенесены в другие точки молекулярных вставок, расположенные по краям каждого элемента генной программы. Термин «точка молекулярной вставки» при использовании в данном описании, относится к полинуклеотиду, который содержит по меньшей мере два редко встречающихся или необычных сайта рестрикции, расположенные линейно. Согласно одному из вариантов реализации, точка молекулярной вставки (полилинкер) состоит из по меньшей мере трех редко встречающихся или необычных сайтов рестрикции, расположенных линейно. Как правило, одна точка молекулярной вставки не содержит редкий или необычный сайт рестрикции, принадлежащий другой точке молекулярной вставки, в составе одной и той же генной программы. Родственные последовательности, состоящие из более, чем 6 нуклеотидов, по которым действует рестрикционный фермент, называют «редкими» сайтами рестрикции. Тем не менее, существуют сайты рестрикции, состоящие из 6 пар оснований, встречающиеся реже, чем может быть статистически предсказано; такие сайты и эндонуклеазы, их расщепляющие, называются «необычными». Примеры редких и необычных рестрикционных ферментов включают в себя (но, не ограничиваются нижепредставленными): AsiS I, Рас I, Sbf I, Fse I, Asc I, MIu I, SnaB I, Not I, Sal I, Swa I, Rsr II, BSiW I, Sfo I, Sgr AI, AfIII, Pvu I, Ngo MIV, Ase I, FIp I, Pme I, Sda I, Sgf I, Srf I и Sse8781 I.

[0181] Вектор также может содержать рестрикционные сайты для второго класса рестрикционных ферментов, называемых эндонуклеазами генной конверсии (homing endonuclease) (HE). HE распознают большие, асимметричные сайты рестрикции (12-40 пар оснований), и их рестрикционные сайты редко встречаются в природе. Например, HE, известная, как I-Scel, распознает состоящий из 18 пар оснований сайт рестрикции (5 TAGGGAT AAC AGGGTAAT3’ (SEQ ID NO: 12)) и статистически может встречаться один раз на каждые 7×1010 пар оснований в произвольной последовательности. Такая частота эквивалентна тому, что указанный сайт может встретиться лишь единожды в геноме, размер которого в 20 раз превышает размер генома млекопитающего. Редкая встречаемость HE-сайтов значительно повышает вероятность того, что генный инженер сможет вырезать генную программу без нарушения целостности этой программы, при условии, что сайты эндонуклеазы генной конверсии располагаются в соответствующих участках векторной плазмиды клонирования.

[0182] Выбор соответствующих векторов и промоторов для экспрессии в клетке-хозяине является хорошо известной процедурой, а необходимые для создания и введения вектора в хозяина техники, вместе с техниками экспрессии таковых в хозяине, являются рутинными процедурами в данной области техники.

[0183] Введение полинуклеотидов в клетки может выполняться в форме временной трансфекции, стойкой трансфекции, либо в форме локус-специфичной вставки вектора. Временная и стойкая трансфекция векторов в клетку хозяина может быть осуществлена путем трансфекции с использованием фосфата кальция, DEAE-декстран-опосредованной трансфекции, липофекции (опосредованной катионными липидами трансфекции), электропорации, трансдукции, инфекции или с применением других методов. Такие методы описаны во многих лабораторных справочниках, как, например, Davis et al, Basic Methods in Molecular Biology (1986); Keown et al, 1990, Methods Enzymol. 185: 527- 37; Sambrook et al, 2001, Molecular Cloning, A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, N.Y. Эти способы стабильной трансфекции приводят к произвольному встраиванию вектора в клеточный геном. Более того, количество копий и расположение векторов, в целом, также являются произвольными.

[0184] Согласно одному из вариантов реализации, вектор вводят в биологически нейтральный сайт генома. Биологически нейтральный сайт - это участок генома, встраивание полинуклеотидов в который слабо влияет, либо не влияет вообще на нормальное функционирование клетки. Биологически нейтральные сайты могут быть определены с помощью доступной биоинформатики. Многие биологически нейтральные сайты известны в данной области, как, например, ROSA-эквивалентный локус (ROSA-equivalent locus). Другие биологически нейтральные сайты могут быть выявлены с помощью рутинных технологий, хорошо известных в данной области техники. Определение параметров геномных сайтов вставки выполняется с применением способов, известных в данной области. Для контроля расположения, количества копий и/или ориентации полинуклеотидов при введении вектора в клетки могут применяться методы локус-специфичной вставки. Методы локус-специфичной вставки хорошо известны в данной области и включают в себя (но не ограничиваются): гомологичную рекомбинацию и опосредованную рекомбиназой вставку в геном. Безусловно, в случае применения способов локус-специфичной вставки в составе методов, согласно изобретению, векторы могут содержать элементы, способствующие данной локус-специфичной вставки, включающей в себя (но не ограничивающейся) гомологическую рекомбинацию. Например, векторы могут содержать один, два, три, четыре или более геномных интеграционных сайтов (GIS). В данном описании, термин «геномный интеграционный сайт» относится к части векторной последовательности, идентичной или практически идентичной частям генома внутри клеток, позволяющим вставку вектора в геном. В частности, вектор может содержать по меньшей мере два сайта интеграции в геном, располагающихся по краям указанных полинуклеотидов. Безусловно, ГИСы могут находиться по краям вспомогательных элементов или даже всех элементов, наличествующих в составе вектора.

[0185] Согласно другому варианту реализации, локус-специфичная вставка может быть осуществлена посредстовом специфичной по сайту рекомбиназы вставки гена. Вкратце, бактериальные рекомбиназы, такие как (но не ограничивающиеся данным ферментом) интеграза PhiC31, могут функционировать в «псевдорекомбинационных» областях человеческого генома. Такие псевдорекомбинационные сайты могут быть мишенями для локус-специфичной рекомбинации, опосредованной рекомбиназами. Специфичная к сайту рекомбиназы генная вставка описана в Thyagarajan et al, Mol. Cell Biol. 21:3926 (2001). Другие примеры рекомбиназ и соответствующих им сайтов, которые могут применяться для специфичной к рекомбинационному сайту генной вставки, включают в себя (но не ограничиваются) сериновыми рекомбиназами, как R4 и ТР901-1, а также рекомбиназами, описанными в WO 2006/083253.

[0186] Согласно другому варианту реализации, вектор может содержать ген множестенной устойчивости к лекарственным препаратам, например, ген mdrl, дигидрофолат-редуктазы или O6-алкилгуанин-ДНК алкилтрансферазы. Ген химической устойчивости может контролироваться конститутивным (например, CMV) или индуцируемым (например, RheoSwitch®) промотором. Согласно этому варианту реализации, если целью является лечение заболевания субъекта параллельно с присутствием модифицированных клеток в указанном субъекте, врач может применить хемотерапевтический агент для уничтожения пораженных клеток, в то время как модифицированные клетки будут защищены от этого агента благодаря экспрессии соответствующего гена химической устойчивости, а указанный агент может быть использован в дальнейшем для лечения заболевания, облегчения состояния пациента, либо профилактики этого заболевания или нарушения. Помещение гена химической устойчивости под контроль индуцируемого промотора позволяет избежать нежелательной экспрессии гена химической устойчивости, причем экспрессия этого гена может всегда быть возобновлена, в случае, если продолжение лечения окажется необходимым. В случае поражения самих модифицированных клеток, они могут быть уничтожены активацией экспрессии апоптозного полипептида, как описано ниже.

[0187] Способы согласно настоящему изобретению осуществляют посредстовм введения полинуклеотидов, кодирующих переключатель гена, и экзогенного гена в клетки субъекта. Может быть применен любой из способов введения полинуклеотида в клетку, известный в данной области знания, подобный описанным ниже.

[0188] Если полинуклеотиды вводят в клетки ex vivo, клетки могут быть получены у субъекта при помощи любого способа, известного в данной области, включающего в себя (но не ограничивающегося): биопсии, соскобы и хирургическое удаление ткани. Изолированные клетки можно культивировать в течение достаточного времени для того, чтобы позволить полинуклеотидам проникнуть в клетки, например, в течение 2, 4, 6, 8, 10, 12, 18, 24, 36, 48 часов или дольше. Способы культивирования первичных клеток за короткие промежутки времени хорошо известны в данной области. Например, клетки могут быть культивированы в чашках (например, в микроячеечных чашках), прикреплены или выращены в суспензии.

[0189] В случае терапевтических методов ex vivo, клетки изолируются из ткани пациента и культивируются в условиях, пригодных для введения в них полинуклеотидов. Как только полинуклеотиды вводятся в клетки, последние инкубируют в течение времени, достаточного для экспрессии лиганд-зависимого транскрипционного фактора, например, в течение 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 18 или 24 часов или дольше. В определенный момент после интеграции полинуклеотидов в клетки (до или после того, как будет выработано значительное количество лиганд-зависимого транскрипционного фактора), клетки вводят обратно индивидууму. Обратное (повторное) введение можно осуществлять любым способом, известным в данной области техники, например, внутривенным введением или прямой инъекцией в ткань или полость. Согласно одному из вариантов реализации, наличие полинуклеотидов в клетках определяется до повторного введения клеток субъекту. Согласно другому варианту реализации, клетки, содержащие полинуклеотиды, подвергаются селекции (например, основываясь на наличии селективного маркера в этих полинуклеотидах), и субъекту повторно вводятся только клетки, содержащие представляющий интерес полинуклеотид. После того, как клетки повторно вводятся индивидууму, для запуска экспрессии терапевтического полипептида или терапевтического полинуклеотида, вводится соответствующий лиганд. Согласно альтернативному варианту реализации, лиганд можно добавлять к клеткам даже до того, как их обратного введения субъекту, для того, чтобы терапевтический полипептид или полинуклеотид начал вырабатываться до повторного введения клеток субъекту. Лиганд может вводиться любым возможным способом, как системно (например, орально, внутривенно), так и локально (например, внутрибрюшинно, интратекально, интравентрикулярно или прямой инъекцией в ткань или орган, куда были повторно введены модифицированные клетки, например, внутриопухолево). Оптимальный временной режим введения лиганда может быть определен для каждого типа клеток, заболевания или нарушения, путем применения рутинных процедур.

[0190] Терапевтические методы in vivo согласно настоящему изобретению включают в себя прямое введение полинуклеотидов in vivo в клетки субъекта. Полинуклеотиды можно вводить субъекту системно или локально (например, в пораженную заболеванием или нарушением область). Как только полинуклеотиды введены субъекту, для экспрессии терапевтического полинуклеотида или полипептида может быть введен и соответствующий лиганд. Введение лиганда может быть выполнено любым применимым способом, как системно (например, орально, внутривенно) так и локально (например, внутрибрюшинно, интратекально, интравентрикулярно или прямой инъекцией в ткань или орган, пораженный заболеванием или нарушением, например, внутриопухолево). Оптимальный временной режим введения лиганда можно определить для каждого типа клеток, заболевания или нарушения, путем применения рутинных процедур.

[0191] При применении in vivo, описанные в данном изобретении, лиганды можно быть включены в фармацевтически приемлемые носители, такие, как, например, растворы, суспензии, таблетки, капсулы, мази, эликсиры и композиции, вводимые посредством инъекций. Фармацевтические композиции могут содержать от 0.01% до 99% лиганда по массе. Композиции могут быть в форме как единовременных, так и множественных доз. Содержание лиганда в какой-либо отдельной фармацевтической композиции зависит от эффективной дозы, иначе говоря, от дозы, необходимой для осуществления экспрессии или подавления гена, представляющего интерес.

[0192] К пригодным путям введения фармацевтических препаратов относятся оральный, ректальный, топикальный (включая дермальный, буккальный и сублингвальный), вагинальный, парентеральный (включая подкожный, внутримышечный, внутривенный, внутрикожный, интратекальный, внутриопухолевый и эпидуральный), а также способ с применением назогастральной трубки. Для специалистов в данной области техники очевидно, что предпочитаемый способ введения будет зависеть от условий, вызвавших необходимость лечения, и может меняться относительно различных факторов, как, например, состояние пациента.

[0193] В данном описании, термин ʺrAD.RheoIL12ʺ относится к аденовирусному полинуклеотидному вектору, в который входит ген интерлейкина-12, под контролем переключателя гена RheoSwitch® Therapeutic System (RTS), способного вырабатывать белок IL-12 в присутствии активирующего лиганда.

[0194] В данном описании, термин ʺIL-12p70ʺ относится к белку IL-12, который в природном состоянии состоит из двух субъединиц, обычно обозначаемых как р40 и р35. Термин IL-12p70 охватывает рекомбинантные белки, состоящие из двух субъединиц интерлейкина-12 (p40 и p35), притом, что рекомбинантный белок может содержать линкерные аминокислоты, связывающие субъединицы.

[0195] В данном описании, термин ʺобладающий функцией интерлейкина-12 белокʺ относится к белку, обладающему по меньшей мере 20% (например по меньшей мере 30%, 40%, 50%о, 60%, 70%), 80%), 90%), 95%, 99% или 100%) биологической активности интерлейкина-12 человека. Биоактивность IL-12 хорошо известна в данной области техники и включает в себя, без ограничений, дифференциацию нативных T-клеток в Th1-клетки, стимуляцию роста и функционирования T-клеток, выработку интерферона-гамма (IFN-γ) и фактора некроза опухолей-альфа (TNF-α) T-клетками и NK-клетками, подавление супрессии интерферона-гамма интерлейкином-4, повышение цитотоксической активности NK-клеток и CD8+ цитотоксических T-лимфоцитов, стимуляцию экспрессии IL-12R β1 и IL-12R-B2, а также антиангиогенную активность. Термин ʺобладающий функцией интерлейкина-12 белокʺ охватывает мутированные последовательности IL-12 дикого типа, где последовательность дикого типа меняется добавлением, делецией или замещением аминокислот, а также белки, не являющиеся интерлейкином-12, имитирующие одну или несколько функций последнего.

[0196] В данном описании, термин ʺrAd.cIL12ʺ относится к аденовирусному полинуклеотидному контрольному вектору, содержащему ген интерлейкина-12 который регулируется конститутивным промотором.

[0197] В данном описании, термины «активирующий» или «активировать» относятся к любому измеримому (значительному) повышению клеточной активности переключателя гена, приводящему к экспрессии гена, представляющего интерес (например, гена, кодирующего белок IL-12).

[0198] В данном описании, термины «лечение» или «излечение» заболевания относятся к осуществлению протоколов (лечения), которые могут включать в себя применение одного или нескольких лекарственных препаратов, либо модифицированных клеток по отношению к млекопитающему (человеку или отличному от человека млекопитающему), для облегчения признаков или симптомов заболевания. Таким образом, термин «лечение» или «излечение» не должен обязательно быть интерпретирован в качестве полного избавления от признаков или симптомов, не должен подразумевать полное излечение, и, в частности, включает протоколы, оказывающие лишь минимальное действие на субъекта.

[0199] В данном описании, термин «иммунные клетки» относится к дендритным клеткам, макрофагам, нейтрофилам, тучным клеткам, эозинофилам, базофилам, натуральным (естественным) киллерам и лимфоцитам (например, B и T-клеткам).

[0200] В данном описании, термины «дендритные клетки» и «DC» являются взаимозаменяемыми.

[0201] В данном описании, термин «поддерживающие терапию клетки» (TSC) относится к клеткам, которые могут модифицироваться (например, трансфекцией), вектором согласно изобретению, для доставки одного или более белков, функционирующих в качестве иммуномодуляторов и, как альтернатива, белка, обладающего функцией интерлейкина-12, в отношении опухолевой микросреды. Такие TSC включают в себя (но не ограничиваются) стволовые клетки, фибробласты, эндотелиоциты и кератиноциты.

[0202] В данном описании, термины «модифицированные in vitro дендритные клетки», или «популяция модифицированных дендритных клеток», или «DC, экспрессирующие IL-12», или «DC.RheoIL12» относятся к дендритным клеткам, регулируемо экспрессирующим интерлейкин-12 под контролем переключателя гена, который может быть активирован активирующим лигандом.

[0203] В данном описании, термины «модифицированные in vitro TSC», или «популяция модифицированных in vitro TSC», или «TSC, экспрессирующие иммуномодулятор», или «TSC, экспрессирующие IL-12» относятся к поддерживающим терапию клеткам, например, стволовым клеткам, фибробластам, эндотелиоцитам и кератиноцитам, регулируемо экспрессирующим иммуномодулятор и/или IL-12, в зависимости от конкретного случая под контролем переключателя гена, активируемого активирующим лигандом.

[0204] В данном описании, термины «MOI» или «множественность инфицирования» относится к среднему количеству аденовирусных частиц, инфицирующих отдельную клетку в процессе отдельного эксперимента (например, рекомбинантных аденовирусов или контрольных аденовирусов).

[0205] В данном описании, термин «опухоль» относится к любого рода доброкачественному или злокачественному разрастанию и пролиферации клеток, как in vivo, так и in vitro, и охватывает предраковые или раковые клетки и/или ткани.

[0206] Примеры злокачественных опухолей, которые можно лечить согласно настоящему изобретению, включают: рак груди, рак простаты, лимфому, рак кожи, рак толстой кишки, рак поджелудочной железы, меланому, злокачественную меланому, рак яичников, злокачественные опухоли головного мозга, первичную карциному головного мозга, рак органов головы и шеи, глиому, глиобластому, рак печени, рак мочевого пузыря, не-мелкоклеточный рак легких, карциному органов головы и шеи, карциному легких, карциному яичников, карциному легких, мел ко клеточную карциному легких, опухоль Вильмса, цервикальную карциному (рак шейки матки), тестикулярную карциному, карциному мочевого пузыря, карциному поджелудочной железы, карциному желудка, карциному толстой кишки, карциному простаты, генитоуринарную карциному, карциному щитовидной железы, карциному пищевода, миелому, множественную миелому, карциному надпочечников, почечно-клеточную карциному, эндометриальную карциному, карциному мозгового вещества надпочечников, злокачественную панкреатическую инсулиному, злокачественную карциноидную карциному, хориокарциному, грибовидную гранулему (mycosis fungoides), злокачественную гиперкальциемию, цервикальную гиперплазию, лейкемию, острую лимфоцитарную лейкемию, хроническую лимфоцитарную лейкемию, острую миелогенную лейкемию, хроническую миелогенную лейкемию, хроническую гранулоцитарную лейкемию, острую гранулоцитарную лейкемию, лейкоз ворсистых клеток, нейробластому, рабдомиосаркому, саркому Капоши, истинную полицитемию, эссенциальный тромбоцитоз, ходжкинскую лимфому, не-ходжкинскую лимфому, саркому мягких тканей, остеогенную саркому, первичную макроглобулинемию, ретинобластому и т.п.

[0207] Настоящее изобретение относится к модификации дендритных клеток для обеспечения регулируемой экспрессии интерлейкина-12 (IL-12), их терапевтическому использованию и/или применению при лечении рака, других опухолей, или и того, и другого. Модифицированные in vitro дендритные клетки, регулируемо экспрессирующие белок, обладающий функцией интерлейкина-12, являются безопасным усовершенствованием по отношению к средствам конститутивного синтеза белка IL-12. Кроме того, возможность контролировать продолжительность и уровень экспрессии интерлейкина-12 обеспечивает улучшенный контроль эффективности лечения. Потому, модифицированные in vitro дендритные клетки могут быть включены в фармацевтические композиции в качестве терапевтических препаратов для лечения рака или иных опухолей в организме человека или другого животного. В качестве альтернативы, модифицированные in vitro популяции дендритных клеток или их субпопуляции могут быть применены как средства регулируемой стимуляции выработки интерлейкина-12 в специфической области (здоровой, раковой ткани или в другой опухоли), в организме человека или любом другом организме. Также, модифицированные дендритные клетки могут регулируемо синтезировать интерферон-альфа. Используемые дендритные клетки могут быть аутологичными или неаутологичными. Они могут быть изолированы из костного мозга, любо из циркулирующей периферической крови. В случае, когда пациент является человеком, популяции дендритных клеток могут быть изолированы процедурой лейкофореза, когда фракция белых кровяных клеток изолируется и удаляется, а остальные компоненты крови вновь вводятся пациенту.

[0208] Также настоящее изобретение охватывает модификации отличающихся от дендритных клеток клеток иммунной системы, таких как макрофаги, нейтрофилы, тучные клетки, эозинофилы, базофилы, NK-клетки и лимфоциты (например, B и T-клетки), для регулируемой экспрессии белка, обладающего функцией интерлейкина-12, их терапевтическому использованию и/или применению в лечении рака, других опухолей, или и того, и другого. Модифицированные in vitro, отличные от дендритных клеток клетки иммунной системы, например, макрофаги, нейтрофилы, тучные клетки, эозинофилы, базофилы, NK-клетки и лимфоциты (например, В и T-клетки), регулируемо вырабатывающие белок, обладающий функцией IL-12, являются безопасным усовершенствованием средств конститутивного синтеза белка интерлейкина-12. Более того, возможность контролировать продолжительность и уровень экспрессии интерлейкина-12 обеспечивает улучшенный контроль эффективности лечения. Поэтому модифицированные in vitro, клетки иммунной системы, отличные от дендритных клеток, например, макрофаги, нейтрофилы, тучные клетки, эозинофилы, базофилы, NK-клетки и лимфоциты (например, B и T-клетки), могут быть включены в фармацевтические композиции в качестве терапевтических препаратов для лечения рака или иных опухолей в организме человека или другого животного. В качестве альтернативы, модифицированные in vitro популяции иммунных клеток, отличных от дендритных клеток, например, макрофагов, нейтрофилов, тучных клеток, эозинофилов, базофилов, NK-клеток и лимфоцитов (например, В и Т-клеток), или их субпопуляции могут быть применены как средства регулируемой стимуляции выработки интерлейкина-12 в специфической области (здоровой, раковой ткани или в другой опухоли), в организме человека или любом другом организме. Также, модифицированные иммунные клетки, отличные от дендритных клеток, например, макрофаги, нейтрофилы, тучные клетки, эозинофилы, базофилы, NK-клетки и лимфоциты (например, B и T-клетки), могут регулируемо синтезировать интерферон-альфа. Используемые иммунные клетки могут быть аутологичными или неаутологичными. Они могут быть изолированы из костного мозга, любо из циркулирующей периферической крови. В случае, когда пациент является человеком, популяции иммунных клеток могут быть изолированы процедурой лейкофореза, когда фракция белых кровяных клеток изолируется и удаляется, а остальные компоненты крови вновь вводятся пациенту.

[0209] Согласно другому варианту реализации, дендритные клетки могут быть получены путем трансфекции гематопоэтических стволовых клеток человека вектором согласно настоящему изобретению, экспрессирующим белок, обладающий функцией интерлейкина-12, и дифференциации трансфицированных стволовых клеток с получением дендритных клеток. См. патент США 6,734,014.

[0210] Согласно одному из вариантов реализации, содержащий нуклеиновую кислоту аденовирусный вектор (rAd.RheoIL12), содержащий переключатель гена, в котором кодирующие VP16-RXR и GaW-EcR последовательности разделены последовательностью внутреннего сайта посадки рибосомы вируса энцефаломиокардита EMCV, вставлены в аденовирусный челночный вектор под регуляцией промотора убиквитина С человека. Кодирующие субъединицы р40 и р35 интерлейкина-12 последовательности разделены последовательностью внутреннего сайта посадки рибосомы, помещены под контроль синтетического индуцируемого промотора и расположены в направлении 5’ относительно промотора убиквитина С.

[0211] Согласно другому варианту реализации, в настоящием изобретении предложен челночный вектор, несущий транскрипционные единицы (VP16-RXR и Gal4-EcR) двух рекомбинантных белков и индуцируемые субъединицы IL-12, рекомбинированные с последовательностью, происходящей от аденовируса (AdEasyl) в клетках Е. coli BJ5183. После проверки рекомбинантного клона, плазмиду, несущую геном rAd.RheoIL12, культивируют и подвергают очистке в клетках XLlO-Gold, затем отщепляют от основной кодирующей последовательности плазмиды и переносят в клетки НЕК 293 путем трансфекции.

[0212] Согласно конкретному варианту реализации, полученный первичный препарат вирусов амплифицировали повторной инфекцией клеток HEK 293 и подвергали очистке центрифугированием в градиенте концентрации хлорида цезия.

[0213] Согласно одному из вариантов реализации, ген интерлейкина-12 представляет собой последовательность гена IL-12 дикого типа. Согласно другому варианту реализации, ген интерлейкина-12 представляет собой модифицированную генную последовательность, например, химерную последовательность или последовательность, модифицированную для использования предпочитаемых кодонов.

[0214] Согласно одному из вариантов реализации, ген интерлейкина-12 представляет собой последовательность человеческого гена 1L-12 дикого типа. Согласно другому варианту реализации, последовательность по меньшей мере на 85% идентична последовательности человеческого гена 1L-12 дикого типа, например, по меньшей мере на 90%, 95% или 99%. Согласно другому варианту реализации, последовательность гена 1L-12 кодирует полипептид интерлейкина-12 человека. Согласно другому варианту реализации, ген кодирует полипептид, по меньшей мере на 85% идентичный человеческому IL-12 дикого типа, например, по меньшей мере на 90%, 95% или 99%.

[0215] Согласно одному из вариантов реализации, ген интерлейкина-12 представляет собой последовательность гена IL-12 мыши дикого типа. Согласно другому варианту реализации, последовательность по меньшей мере на 85% идентична последовательности мышиного гена IL-12 дикого типа, например, по меньшей мере на 90%, 95% или 99%. Согласно другому варианту реализации, последовательность гена IL-12 кодирует полипептид интерлейкина-12 мыши. Согласно другому варианту реализации, ген кодирует полипептид, по меньшей мере на 85% идентичный мышиному IL-12 дикого типа, например, по меньшей мере на 90%, 95% или 99%.

[0216] Настоящее изобретение предлагает способ получения популяции модифицированных in vitro дендритных клеток, регулируемо экспрессирующих белок, обладающий функцией интерлейкина-12. Данный способ включает следующие стадии: (а) модификацию по меньшей мере части дендритных клеток, например, взятых из костного мозга, посредством введения в указанные дендритные клетки вектора, который содержит переключатель гена, включающий последовательность нуклеиновой кислоты, кодирующая белок, обладающий функцией интерлейкина-12. Таким образом, данный способ обеспечивает получение популяции модифицированных in vitro дендритных клеток, способных излечить или предотвратить заболевание.

[0217] Согласно другому варианту реализации, настоящее изобретение обеспечивает способ получения популяции модифицированных in vitro клеток иммунной системы, отличных от дендритных клеток, например, макрофагов, нейтрофилов, тучных клеток, эозинофилов, базофилов, NK-клеток, лимфоцитов (например, B и T-клеток), или поддерживающих терапию клеток (TSC), регулируемо экспрессирующих белок, обладающий функцией интерлейкина-12. Данный способ включает следующие стадии: (а) модификацию, по меньшей мере части клеток иммунной системы, отличных от дендритных клеток или поддерживающих терапию клеток, например, взятых из костного мозга, посредством введения в эти иммунные клетки, отличные от дендритных клеток или поддерживающих терапию клеток, вектора, содержащего переключатель гена, который содержит последовательность нуклеиновой кислоты, кодирующей белок, обладающий функцией интерлейкина-12. Таким образом, данный способ обеспечивает получение популяции модифицированных in vitro иммунных клеток, отличных от дендритных клеток или поддерживающих терапию клеток и способных излечить или предотвратить заболевание.

[0218] Согласно другим вариантам реализации, настоящее изобретение предлагает способ выделения и обогащения дендритных клеток, а также клеток иммунной системы, отличных от дендритных клеток и поддерживающих терапию клеток. Дендритные клетки можно выделить из костного мозга человека, мыши или другого млекопитающего, а также из крови человека, мыши или другого млекопитающего. В случае с пациентами-людьми, популяции дендритных клеток могут быть изолированы с помощью лейкофореза, как описано в процедурах, известных в данной области техники, где фракция белых кровяных клеток изолируется и отделяется от остальных компонентов крови, которые повторно вводятся пациенту. Согласно одному из вариантов реализации, дендритные клетки получают из костного мозга мыши, как описано в предыдущих материалах (Tatsumi et al, 2003). Вкратце, костный мозг дикого типа, либо костный мозг мыши EGFP Tg культивируется в регулируемой среде, в которую добавляется 1000 ед./мл рекомбинантного гранулоцитарно-макрофагального колониестимулирующего фактора мыши и рекомбинантного IL-4 мыши (Peprotech, Rocky Hill, NJ), при 37°C в 5% CO2 инкубаторе в течение 7 дней. Затем, с помощью специальных гранул MACSTM, в соответствии с инструкциями производителя (Miltenyi Biotec, Auburn, CA), изолируются CD1 Ic+ дендритные клетки. CD1 Ic+ дендритные клетки, полученные таким способом, имеют степень очистки, превышающую 95%, в отношении морфологии и коэкспрессии CD1 Ib, CD40, CD80, а также антигенов главного комплекса гистосовместимости 1-го и 2-го класса.

[0219] Согласно одному из вариантов реализации, настоящее изобретение обеспечивает модифицированные дендритные клетки, регулируемо вырабатывающие белок, обладающий функцией интерлейкина-12 и пригодные для терапевтического применения при лечении рака или иных злокачественных опухолей в процессе генной терапии в человеческом или другом организме. Согласно другому варианту реализации настоящее изобретение обеспечивает модифицированные дендритные клетки, регулируемо вырабатывающие белок, обладающий функцией интерлейкина-12 и/или белок, обладающий функцией интерферона-альфа и пригодный для терапевтического применения при лечении рака или иных злокачественных опухолей в процессе генной терапии в человеческом или другом организме.

[0220] Согласно одному из вариантов реализации, в настоящем изобретении предлагаются модифицированные дендритные клетки, содержащие переключатель гена.

[0221] Согласно другому варианту реализации, настоящее изобретение обеспечивает способ лечения опухолей млекопитающих, включающий в себя введение эффективной дозы диацилгидразинового лиганда.

[0222] Согласно другому варианту реализации, настоящее изобретение обеспечивает способ лечения опухолей млекопитающих, включающий в себя введение эффективной дозы RG-115830 или RG-115932.

[0223] Согласно другому варианту реализации, настоящее изобретение обеспечивает наборы, содержащие дендритные клетки, модифицированные таким образом, что указанные клетки содержат переключатель гена, а также настоящее изобретение обеспечивает лиганд, активирующий этот переключатель гена.

[0224] Согласно другому варианту реализации, настоящее изобретение обеспечивает наборы, содержащие дендритные клетки, модифицированные таким образом, что указанные клетки содержат переключатель гена, а также настоящее изобретение обеспечивает композициии, содержащие RG-1 15830 или RG-115932.

[0225] Согласно другому варианту реализации, настоящее изобретение обеспечивает модифицированные дендритные клетки и клетки, отличные от дендритных клеток и поддерживающих терапию клеток, которые содержат, по меньшей мере часть рецептора экдизона. Согласно другому варианту реализации, настоящее изобретение обеспечивает модифицированные дендритные клетки и клетки, отличные от дендритных клеток и поддерживающих терапию клеток, которые содержат зависимый от рецептора экдизона переключатель гена. Согласно другому варианту реализации, настоящее изобретение обеспечивает модифицированные дендритные клетки и клетки, отличные от дендритных клеток и поддерживающих терапию клеток, которые содержат RheoSwitch. Согласно другому варианту реализации, настоящее изобретение обеспечивает набор, содержащий модифицированные дендритные клетки и клетки иммунной системы, отличные от дендритных клеток и поддерживающих терапию клеток, которые содержат переключатель гена, и лиганд, модулирующий переключатель гена. Согласно другому варианту реализации, указанные наборы содержат также диацилгидразиновый лиганд. Согласно другому варианту реализации, эти наборы содержат RG-115830 или RG-115932.

[0226] Согласно одному из вариантов реализации, настоящее изобретение обеспечивает популяции модифицированных дендритных клеток. На 7-й день культивированные дендритные клетки были либо оставлены интактными, либо инфицированы рекомбинированным аденовирусом, кодирующим IL-12p70 мыши и регулируемым конститутивным (rAd.cIL12) или индуцируемым (rAd.RheoIL12) промотором, либо были инфицированы контрольным аденовирусом без вставки (rAdψ5), в спектре множественного инфицирования (MOI). Через 48 часов, инфицированные дендритные клетки собрали и провели анализ фенотипа, а также исследовали на предмет выработки IL-12p70 с применением специфического набора иммуноферментного анализа ИФА (ELISA kit, BD- PharMingen, San Diego, CA), причем нижний порог детекции составлял 62,5 пг/мл.

[0227] Согласно другому варианту реализации, настоящее изобретение обеспечивает модифицированную in vitro популяцию дендритных клеток, клеток иммунной системы, отличных от дендритных клеток, либо содержащих вектор поддерживающих терапию клеток (TSC), например, содержащих ДНК вектор, включающий в себя переключатель гена, способный регулируемо вырабатывать белок, обладающий функцией интерлейкина-12, и содержащих активирующий лиганд. Согласно другому варианту реализации, настоящее изобретение обеспечивает модифицированную in vitro популяцию дендритных клеток, клеток иммунной системы, отличных от дендритных клеток, либо содержащих вектор поддерживающих терапию клеток (TSC), например, содержащих ДНК вектор, включающий в себя переключатель гена, способный к регулируемой экспрессии белка, обладающего функцией интерлейкина-12 и/или белок, обладающий функцией интерферона-альфа, и содержащих активирующий лиганд.

[0228] Согласно другому варианту реализации, настоящее изобретение обеспечивает способ лечения злокачественных опухолей, например, меланомы или глиомы, путем введения модифицированных дендритных клеток, клеток иммунной системы, отличных от дендритных клеток и поддерживающих терапию клеток пациенту, и последующим введением активирующего лиганда, как, например, RG-115919, RG- 115830 или RG-115932, указанному пациенту. Пациентом может быть пораженный злокачественной опухолью человек или животное. Способы и материалы, применяемые в лечении, модифицированные клетки, наборы и лиганды могут быть применены в лечении людей и в ветеринарии. Поэтому, применение способов и материалов рассматривается в отношении лечения людей и в ветеринарных целях.

[0229] Настоящее изобретение предполагает, что регулируемая экспрессия белка IL-12 в дендритных клетках (обозначаются как DC.RheoIL12), в клетках иммунной системы, отличных от дендритных клеток или в поддерживающих терапию клетках может вызвать иммунный импульс в опухоли на раннем этапе и, позднее, в инфильтрованных опухолью лимфатических узлах, причем такой результат не может быть достигнут при применении традиционных схем генной терапии. Более того, оказалось, что согласование во времени экспрессии интерлейкина-12 после введения модифицированных дендритных клеток, отличных от дендритных клеток иммунных клеток или поддерживающих терапию клеток является критичным для успешного лечения злокачественных опухолей.

[0230] В одном аспекте, настоящее изобретение обеспечивает фармацевтическую композицию, подходящую для введения человеку или другому животному и содержащую популяцию модифицированных in vitro дендритных клеток, отличных от дендритных клеток иммунной системы или поддерживающих терапию клеток, регулируемо вырабатывающих белок, обладающий функцией интерлейкина-12, либо регулируемо вырабатывающих IL-12 и/или интерферон-альфа, притом, что форма данной композиции является подходящей для внутриопухолевого введения. Кроме того, настоящее изобретение обеспечивает фармацевтическую композицию, содержащую активирующий лиганд, такой, как RG-115830 или RG-115932, причем эта композиция пригодна для внутрибрюшинного, орального или подкожного введения.

[0231] Согласно конкретному варианту реализации, настоящее изобретение обеспечивает способ лечения опухоли, включающий:

a) внутриопухолевое введение млекопитающему модифицированных in vitro дендритных клеток, описанных выше; и

b) введение вышеуказанному млекопитающему терапевтически эффективного количества активирующего лиганда.

[0232] Например, настоящее изобретение обеспечивает способ лечения опухоли, включающий в себя стадии, следующие в описанном ниже порядке:

a) обеспечение модифицированных in vitro дендритных клеток;

b) внутриопухолевое введение млекопитающему вышеуказанных модифицированных in vitro дендритных клеток; и

c) введение вышеуказанному млекопитающему терапевтически эффективного количества активирующего лиганда.

[0233] Согласно другому варианту реализации, настоящее изобретение обеспечивает способ лечения опухоли, включающий в себя:

a) внутриопухолевое введение млекопитающему модифицированных in vitro отличных от дендритных клеток клеток иммунной системы, например, макрофагов, нейтрофилов, тучных клеток, эозинофилов, базофилов, NK-клеток и лимфоцитов (например, B и T-клеток), либо поддерживающих терапию клеток, описанных выше; и

b) введение вышеуказанному млекопитающему терапевтически эффективного количества активирующего лиганда.

[0234] Согласно одному из вариантов реализации, модифицированные in vitro дендритные клетки, отличные от дендритных клеток клетки иммунной системы или поддерживающие терапию клетки вводят один раз. Согласно другому варианту реализации, дендритные клетки, отличные от дендритных клетки иммунной системы или поддерживающие терапию клетки вводят несколько раз, при условии, что единичное введение оказалось безопасным и хорошо переносимым, и что дополнительные введения принесут пользу пациенту. Критерием для повторного введения является то, что состояние пациента неизменно или характеризуется клиническими (т. е. результаты компьютерной томографии (регресс опухоли(ей)), химических исследований сыворотки, анализа мочи, гематологии, жизненных сигналов, уменьшение диаметра опухоли и т.п.), либо субъективными признаками улучшения (т. е. улучшающийся статус ECOG и т.п.). Повторное лечение может быть начато на 1, 2, 3 или 4-й неделе, на 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 или 12-м месяце, либо на 1, 2, 3, 4 или 5-й год после первичного лечения.

[0235] Эффективность и безопасность множественных доз трансгена можно оценить с помощью аспирационной биопсии опухоли и дренирующих ее лимфатических узлов тонкой иглой. Эти анализы могут быть получены на -12-й - -7-й и на 14-й день периода повторного лечения для получения данных об экспрессии трансгена IL-12 человека и о клеточном иммунном ответе in vivo. Результаты биопсии можно проанализировать с помощью стандартной световой микроскопии и иммуногистохимии для оценки клеточной инфильтрации Т-клеток в опухоль и дренирующие ее лимфатические узлы, а ОТ-ПЦР на РНК может быть проведена с соответственно приготовленными праймерами. Для получения цитокинового профиля сыворотки, кровь может быть взята в дни -12-й - -7-й, на 8-й и на 14-й дни периода повторного лечения. Профиль сывороточных цитокинов может быть получен для определения, оказало ли влияние лечение трансгеном IL-12 человека на экспрессию других цитокинов. Мультиплексный анализ цитокинов можно провести в сыворотке с помощью Luminex для IL- 12, интерферона-гамма, IP-10 и других цитокинов Th1/Th2, таких как IL- 1, фактора некроза опухолей-альфа, IL-4, IL-5 и IL-10.

[0236] Согласно одному из вариантов реализации, активирующий лиганд вводят практически одновременно с модифицированными in vitro дендритными клетками, отличными от дендритных клеток клетками иммунной системы или поддерживающими терапию клетками, например, в течение одного часа до или после введения клеток. Согласно другому варианту реализации, активирующий лиганд вводят в течение приблизительно 24 часов после введения модифицированных in vitro дендритных клеток, клеток иммунной системы, отличных от дендритных клеток или поддерживающих терапию клеток. Согласно другому варианту реализации, активирующий лиганд вводят в течение приблизительно 48 часов после введения модифицированных in vitro дендритных клеток, клеток иммунной системы, отличных от дендритных клеток или поддерживающих терапию клеток. Согласно другому варианту реализации, лигандом является RG-115932. Согласно другому варианту реализации, лиганд вводят в дозе, равной приблизительно 1-50 мг/кг/в день. Согласно другому варианту реализации, лиганд вводят в дозе, равной приблизительно 30 мг/кг/в день. Согласно другому варианту реализации, лиганд вводят ежедневно в период с 5-й по 28-й день. Согласно другому варианту реализации, лиганд вводят ежедневно в течение 14 дней. Согласно другому варианту реализации, вводят от 1×106 до 1×108 клеток. Согласно другому варианту реализации, вводят 5×107 клеток.

[0237] Для демонстрации эффективной IL-12-опосредованной генной терапии, применяют регулируемую IL-12 кДНК систему экспрессии, которая позволяет инициировать выработку IL-12 клетками DC.RheoIL12 в различные временные моменты после внутриопухолевой инъекции.

Основываясь на результатах, полученных в модели агрессивной меланомы В 16 в мышах C57B L/6, были сделаны следующие выводы: 1) клетки DC.RheoIL12 выделяют повышенные количества интерлейкина-12 в присутствии активирующего лиганда RG-115830, но в отсутствие лиганда этого не происходит; 2) эффективность внутриопухолевой DC.RheoIL12-опосредованной терапии соответствует эффективности внутриопухолевой DC.cEL2-опосредованной терапии, когда RG-115830 вводится животным в течение 24 часов после введения дендритных клеток (в случаях, когда лиганд вводится позже, терапия DC.RheoIL12 оказывается неэффективной); 3) экспрессия IL-12 в дендритных клетках продлевает выживаемость этих клеток в микропространстве опухоли и связана с увеличенным количеством внутриопухолево введенных дендритных клеток, мигрирующих в дренирующие опухоль лимфатические узлы; и 4) главным иммунным коррелятом результата терапии является уровень опухоль-специфичных CD8+ T-клеток, перекрестно примированных терапией, а не количество введенных дендритных клеток, остающихся в микропространстве опухоли. В целом, эти данные указывают на то, что, скорее всего, DC.IL12-опосредованная терапия оказывается успешной благодаря ее положительному влиянию на афферентные (перекрестно примированные) эффекторные CD8+ T-клетки 1 Типа, но не на более поздние эфферентные процессы, такие как вызванный введением дендритных клеток рекрутинг противоопухолевых Т-клеток в микропространство опухоли и т.п.

[0238] Перед внутриопухолевой инъекцией, клетки (иммунные клетки или поддерживающие терапию клетки) могут быть обработаны фактором, стимулирующим клеточную активность. Например, клетки можно обрабатывать костимуляторной молекулой, такой, как положительные костимуляторы, включая OX40L, 4-IBBL, CD40, CD40L, GITRL, CD70, LIGHT или ICOS-L или отрицательные костимуляторы, включая антитела aHTH-CTLA4, анти-PD-L1 или aHTH-PD-L2. Например, клетки (дендритные клетки, иммунные клетки или поддерживающие терапию клетки) можно инкубировать с клеткой, вырабатывающей одну или несколько костимуляторных молекул, например, клетки лимфомы J588, которые экспрессируют молекулу лиганда CD40. Согласно другому варианту реализации, клетки (иммунные клетки или поддерживающие терапию клетки) могут быть обработаны молекулой контр-иммунодепрессанта (ингибитора толерантности), как, например, анти-трансформирующий фактор роста-бета (TGF-beta) антитела (для подавления сигнальной системы трансформирующего фактора роста в микропространстве), анти IL-10 антитела, трансформирующий фактор роста-бета RII DN (для подавления сигнальной системы трансформирующего фактора роста в клетках с модифицированным геном), IL-IOR DN, dnFADD (для подавления в клетках путей гибели клетки), анти-SOCS1 антитела, малые интерферирующие РНК (siPHK), либо «ловушки» (приманки) (для подавления супрессивной цитокиновой сигнальной системы в клетках), либо анти-трансформирующий фактор роста-альфа антитела.

[0239] Выработка интерлейкина-12 дендритными клетками или другими антиген-презентирующими клетками, взаимодействующими с CD4+ и CD8+ T-клетками инициирует их получение фенотипа Th1 или Tc1, соответственно. Поэтому, эффект IL-12 на популяции клеток может быть оценен путем измерения уровня экспрессии или активности цитокинов типа Th1/Tc1, интерферона-гамма в биологическом образце, взятом у пациента.

[0240] В целях настоящего изобретения также обеспечивается способ определения эффективности терапевтического режима онкологических больных, опосредованного модифицированными in vitro дендритными клетками, отличными от дендритных клеток клетками иммунной системы или поддерживающими терапию клетками (TSC), включающему:

a) измерение уровня экспрессии и/или активности интерферона-гамма (IFN-γ) в первом биологическом образце, полученном от пациента-человека до введения in vitro модифицированных дендритных клеток, отличных от дендритных клеток клеток иммунной системы или поддерживающих терапию клеток с получением контрольного уровня;

b) внутриопухолевое введения указанному пациенту модифицированных in vitro дендритных клеток, отличных от дендритных клеток клеток иммунной системы или TSC;

c) введение указанному пациенту эффективного количества активирующего лиганда;

d) измерение уровня экспрессии и/или активности интерферона-гамма (IFN-γ) во втором биологическом образце, полученном от указанного пациента после введения указанного активирующего лиганда с получением тестового уровня; и

e) сравнение указанных контрольного и тестового уровня интерферона-гамма, причем данные, показывающие увеличение уровня экспрессии и/или активности интерферона-гамма, соответствующих тестовому уровню по сравнению с контрольным уровнем, говорят об эффективности терапевтического режима в отношении данного пациента.

[0241] Согласно одному из вариантов реализации, настоящее изобретение обеспечивает способ определения эффективности терапевтического режима онкологических больных, опосредованного модифицированными in vitro отличными от дендритных клеток клетками иммунной системы или поддерживающими терапию клетками (TSC), включающий:

a) измерение уровня экспрессии и/или активности интерферона-гамма (IFN-γ) в первом биологическом образце, полученном от пациента-человека до введения модифицированных in vitro дендритных клеток, отличных от дендритных клеток клеток иммунной системы или поддерживающих терапию клеток с получением контрольного уровня;

b) внутриопухолевое введения указанному пациенту модифицированных in vitro клеток иммунной системы, отличных от дендритных клеток или поддерживающих терапию клеток;

c) введение данному пациенту эффективного количества активирующего лиганда;

d) измерение уровня экспрессии и/или активности интерферона-гамма (IFN-γ) во втором биологическом образце, полученном от указанного пациента после введения указанного активирующего лиганда с получением тестового уровня; и

e) сравнение указанных контрольного и тестового уровня интерферона-гамма, причем данные, показывающие увеличение уровня экспрессии и/или активности интерферона-гамма, соответствующих тестовому уровню по сравнению с контрольным уровнем, говорят об эффективности терапевтического режима для данного пациента.

[0242] Термины «субъект», «индивидуум» относятся к интактному насекомому, растению или животному. Также, подразумевается, что действие лигандов будет не менее эффективным, когда субъектом является гриб или дрожжи. Термин «субъект» относится к любому субъекту, в частности, млекопитающему, диагноз, прогноз или терапию по отношению к которому необходимо получить. Млекопитающие включают в себя (но не ограничиваются) людей, домашних животных, сельскохозяйственных животных, животных, обитающих в зоопарке таких, как медведи, животных, относящихся к спорту, домашних любимцев таких, как собаки, кошки, морские свинки, кролики, крысы, мыши, лошади, домашний скот, медведи, коровы; приматов таких, как низшие обезьяны, высшие обезьяны, орангутаны и шимпанзе; собачьих таких, как собаки и волки; кошачьих, как кошки, львы и тигры; непарнокопытных таких, как лошади, ослы и зебры; животных, принимающихся в пищу, как коровы, свиньи и овцы; копытных, как олени и жирафы; грызунов, как крысы, мыши, хомяки и морские свинки; и так далее. Согласно определенным вариантам реализации, животным является человек.

[0243] Термин «животное» охватывает единичное «животное», а также некое количество «животных» и подразумевает млекопитающих и птиц, а также рыб, пресмыкающихся и амфибий. Также, термин животное охватывает модельных животных, например, животные модели заболеваний. Согласно некоторым вариантам реализации, к термину животное относятся ценные животные, в отношении экономики или в каком-либо ином смысле, например, экономически значимый племенной сток, участвующие в скачках животные, животные для представлений, переданные по наследству животные, редкие или исчезающие животные, животные-спутники. В частности, млекопитающим может быть человек, животное, принимающееся в пищу или животное-компаньон.

[0244] В настоящем описании, термин «нуждающееся в лечении млекопитающее» относится к млекопитающему, которое необходимо вылечить, т. е. уменьшить размер опухоли, либо ликвидировать ее.

[0245] Способ согласно настоящему изобретению зависит от захвата опухолевых антигенов из окружения опухоли внутриопухолево введенными дендритными клетками и примирование T-клеток в дренирующих опухоль лимфатических узлах с развитием опухоль-специфичного T-клеточного ответа. Поэтому для оптимального положительного лечебного эффекта, во время внутриопухолевой инъекции дендритные клетки должны быть в статусе высокой эндоцитотической активности. Было показано, что незрелые дендритные клетки, полученные из CD14+ моноцитов путем их обработки гранулоцитарно-моноцитарным колониестимулирующим фактором (GM-CSF) и IL-4 в течение 6-7 часов, имеют незрелый фенотип и показывают высокую скорость эндоцитоза, т. е. обладают высокой эндоцитотической активностью (Cella et al. 1999; Gilboan, 2007). Созревание дендритных клеток связано с подавлением эндоцитотической активности. Имеющиеся данные свидетельствуют о том, что IL-12 оказывает влияние на незрелые дендритные клетки и дает сигнал к экспрессии факторов, индуцирующих созревание (Nagayama et al. 2000). Поэтому, применение переключателя гена RheoSwitch® Therapeutic System (RTS), позволяет оптимизировать терапевтический результат у людей задержкой экспрессии интерлейкина-12 в трансдуцированных дендритных клетках до момента их введения в опухоль. Так как система конститутивной экспрессии не обладает способностью временного контроля экспрессии, аутокринное действие вырабатываемого IL-12 и вызванный этим процесс созревания не может регулироваться (Mazzolini et al. 2005). Кроме этого, изобретение, тестирующее производительность регулируемой системы экспрессии генов в человеке, может найти применение в других областях генной терапии человека.

[0246] Без ограничения рамками какой-либо теории, предполагается, что настоящее изобретение будет способствовать применению терапии, опосредованной внутриопухолево вводимыми модифицированными in vitro дендритными клетками, отличными от дендритных клеток клетками иммунной системы или поддерживающими терапию клетками, в клинических ситуациях, фокусирующихся на объективном клиническом результате в качестве первого результата исследования, и на перекрестно примированных (инициированных) противоопухолевых CD8+ T-клетках (вырабатывающих интерферон-гамма) в качестве второго результата исследования. Согласно полученным данным, возможность включать и выключать экспрессию интерлейкина-12 in vivo привносит в лечение элемент безопасности и терапевтического контроля как за счет того, что введением лиганда можно контролировать время и уровень экспрессии IL-12, так и за счет того, что время экспрессии IL-12 считается критичным по отношению к терапевтической эффективности способа.

[0247] Настоящее изобретение дополнительно способствует терапевтическому применению модифицированных in vitro клеток, регулируемо экспрессирующих представляющие интерес гены, в качестве инновационных средств для эффективного и успешного лечения заболеваний у людей.

[0248] В случае выявления противоречий между любой идеей или предположением в любой ссылке, указанной в данном описании, и настоящей заявкой, в рамках настоящего изобретения последняя будет иметь преимущественную силу (превалировать).

[0249] Специфические варианты реализации согласно способам настоящего изобретения описаны в нижеследующих примерах, которые являются исключительно иллюстративными и не ограничивают настоящее изобретение каким-либо образом.

ПРИМЕРЫ

Пример 1

DC.RheoIL12 регулируемо вырабатывает большие количества IL-12p70 под воздействием лиганда RG-115830 in vitro

1.1 Материалы и Методы

1.1.1 Мыши

[0250] 6-8-недельных самок мышей C57B L/6 дикого типа и мышей C57B L/6-TgN(ACTbEGFP)10sb/J EGFP Tg приобрели у Jackson Laboratory (Bar Harbor, ME) и содержали их в клетках микроизоляторных клетках. С животными обращались в соответствии с рекомендациями по правильному уходу и использованию лабораторных животных.

1.1.2 Клеточные линии

[0251] Клеточные линии меланомы B16 и EL-4 тимомы H-2b, изогенные по отношению к мышам C57B L/6, были описаны ранее (Itoh et ah, 1994). Линии клеток инкубировали в питательной среде (RPMI 1640, вместе с 10% фетальной бычей сывороткой, инактивированной нагреванием, 100 ед./мл пенициллина, 100 мкг/мл стрептомицина и 10 мМ L-глутамина; все реагенты получены у Invitrogen, Carlsbad, CA) в увлажненном инкубаторе в 5% CO2 и 37°C.

1.1.3 Получение дендритных клеток (DC)

[0252] Дендритные клетки получили из костного мозга мыши, как описано ранее (Tatsumi et al., 2003). Вкратце, костный мозг мыши дикого типа или мыши EGFP Tg культивировали в питательной среде, содержащей 1000 ед./мл рекомбинантного гранулоцитарно-макрофагального колониестимулирующего фактора мыши и рекомбинантного IL-4 мыши (Peprotech, Rocky Hill, NJ) при 37°C в увлажненном инкубаторе в 5% CO2 и 37°C в течение 7 дней. CD1 Ic+ дендритные клетки затем отделили с помощью специфических гранул MACSTM, в соответствии с протоколом производителя (Miltenyi Biotec, Auburn, СА). CD1 Ic+ дендритные клетки, полученные таким образом, были беспримесными на более, чем 95%, как показала морфология и коэкспрессия CD1 Ib, CD40, CD80 и антигенов главного комплекса гистосовместимости 1-го и 2-го класса.

1.1.4 Вирусные векторы

[0253] Контрольные аденовирусные векторы rAd.ψ5 и rAd.cIL12, кодирующие IL-12 мыши и контролируемые промотором цитомегаловируса (Tatsumi et al., 2003), были созданы и предоставлены Векторным Центром (Vector Core Facility) Института Онкологии при Университете Питсбурга.

[0254] Вектор rAd.RheoIL12 получили следующим образом. Кодирующие последовательности VP16-RXR и Gal4-EcR, разделенные участком внутренней посадки рибосомы (IRES) вируса энцефаломиокардита (EMCV), ввели в аденовирусный челночный вектор под контролем промотора убиквитина C человека. Затем, кодирующие последовательности субъединиц p40 и p35 IL-12, разделенные последовательностью участка внутренней посадки рибосомы и помещенные под контроль синтетического индуцируемого промотора, вставили в направлении 5’ относительно промотора убиквитина С (См. Фигура 1). Применение системы, заключающееся в экспрессии двух рекомбинантных белков (VP-16 RXR v. Gal4-EcR) под контролем разных промоторов разной силы показала, что более высокое соотношение экспрессии VP16-RXR к экспрессии Gal4-EcR дает наилучшую производительность. Таким образом, расположение VP-16 RXR с 5’ конца участка внутренней посадки рибосомы, a Gal-4 EcR с 3’ конца участка внутренней посадки рибосомы обеспечило оптимальную производительность, в сравнении с обратным взаиморасположением.

[0255] Челночный вектор, несущий единицы транскрипции двух рекомбинантных белков и индуцируемые субъединицы интерлейкина-12, рекомбинировали с основной кодирующей последовательностью аденовируса (AdEasyl, stratagene, La Jolla, CA) в клетках BJ5183 E. coli. После того, как выявили образование рекомбинантного клона, в клетках XLlO-Gold размножили плазмиду, несущую геном rAd.RheoIL12, которую затем выделили из клеток, после чего основную кодирующую последовательность плазмиды отщепили и путем трансфекции ввели в клетки НЕК 293.

[0256] Полученный первичный препарат вирусов амплифицировали повторным инфицированием клеток HEK 293, а затем очистили центрифугированием в градиенте концентрации хлорида цезия.

1.1.5 ИФА (ELISA)

[0257] На 7 день необработанные дендритные клетки инфицировали рекомбинантным Ads кодирующим IL-12p70 мыши, регулируемым конститутивным (rAd.cIL12) или индуцируемым (rAd.RheoIL12) промотором, либо инфицировали, контрольным вектором rAdψ5 в рамках MOI. Начиная с различных моментов времени после этого (0-48h) дендритные клетки культивировали в отсутствие или присутствие активирующего лиганда (10-200 мкг/мл) в течение еще 24 часов, после чего секрецию IL-12p70 измерили с помощью специфического набора иммуноферментного анализа (ELISA kit) (BDPharMingen, San Diego, CA; нижний порог детекции = 62.5 pg/мл). В некоторых случаях, для выявления точности регулируемой выработки цитокинов, дендритные клетки инфицировали rAd.RheoIL12 (т. е. DC.RheolL12), заранее обработанным активирующим лигандом, затем лиганд удалили промыванием, а клетки выращивали в контрольной питательной среде еще 24 часа для оценки выработки IL-12p70. В качестве альтернативы, через 48 часов инфицированные дендритные клетки выделили и проконтролировали в отношении фенотипа и синтеза IL-12p70 с помощью набора иммуноферментного анализа (ELISA kit) (BD-PharMingen, San Diego, CA), нижний порог детекции = 62.5 pg/мл.

1.1.6 Поточная цитометрия

[0258] Для анализа фенотипа инфицированных аденовирусом клеток, применили PE- или FITC-конъюгированные антитела (mAb), специфичные к поверхностным молекулам клеток мыши (CD1 Ib, CD1 Ic, CD40, CD54, CD80, CD86, H-2Kd, I-Ad (все из BD-PharMingen)) и соответствующие изотипичные контроли, после чего провели цитометрический анализ с помощью поточного цитометра FACscan (Becton Dickinson, San Jose, CA).

1.2 Результаты

1.2.1 Взятые из костного мозга дендритные клетки мыши, инфицированные Rheo-IL12, регулируемо синтезировали большие количества IL-12p70 при обработке лигандом in vitro.

[0259] Дендритные клетки из костного мозга мышей C57B L/6 (В6) культивировали в течение 7 дней в присутствии рекомбинантного IL-4 мыши и рекомбинантного гранулоцитарно-макрофагального колониестимулирующего фактора мыши, после чего часть оставили необработанными, а часть инфицировали различными MOI под контролем rAd.ψ5, rAd.cIL-12 (кодирующим p70 IL-12 мыши под регуляцией конститутивного цитомегаловирусного промотора) или rAd.RheoIL12 (кодирующим p70 IL-12 под регуляцией регулируемого промотора, реагирующего на малый молекулярный лиганд RG-115830). Через 48 часов после инфицирования, дендритные клетки культивировали в отсутствие или присутствие RG-115830 еще 24 часа, после чего надосадочную жидкость культур собрали для количественного анализа выработки IL-12p70 с помощью иммуноферментного анализа. Как видно из Фигуры 2A, контрольные неинфицированные дендритные клетки и дендритные клетки, инфицированные Ad.ψ5, в отсутствие или присутствие экзогенного препарата, не вырабатывали повышенных количеств IL-12p70 по сравнению с дендритными клетками, инфицированными rAd.cIL12 (DC.cIL12). Дендритные клетки, инфицированные rAd.RheoIL-12 (DC.RheoIL12), синтезировали IL-12p70 лишь после обработки RG-115830 (см. Фигура 2A и 2B). Судя по результатам перекрестных экспериментов, оптимальная выработка 1L-I2p70 дендритными клетками произошла при значении множественного инфицирования (MOI), равном 100, где клетки обработали 50-200 мкг/мл RG-115830 (Фигура. 2A). Отсроченное обеспечение RG-115830 для DC.RheoIL12, достигающее 48 часов, не привело к какому-либо значительному понижению выработки EL-12p70 по сравнению с тем, когда лиганд добавляли in vitro одновременно с инфицированием (Фигура 2B). В заключение, удаление лиганда резко подавило способность DC.RheolL12 (до этого времени активируемый лигандом) продолжать выработку повышенного количества IL-12p70 in vitro (Фигура 2C).

Пример 2

Внутриопухолевое введение модифицированных in vitro дендритных клеток животным

2.1 Материалы и методы

2.1.1 Опухолевая модель B16

[0260] Мышам B6 в правый бок подкожно ввели 1×105 клеток меланомы B16 в день 0. На 7 день, опухоли достигли диаметра, приблизительно равного 20-30 mm2, после чего мышам внутриопухолево ввели (PBS) или 1×106 контрольных либо трансдуцированных аденовирусом (множественное инфицирование MOI=100) дендритных клеток в общем объеме PBS, равном 50 мкл. Также, для инициации, мышам внутрибрюшинно ввели 200 мкг RG-115830 (в 50 мкл диметилсульоксида (DMSO)), либо контрольного носителя DMSO, одновременно, через 24 ч или через 48 ч после введения дендритных клеток, как указано. После инициации, мышам в течение 5 дней ежедневно внутрибрюшинно вводили RG-115830 в тех же дозах. В дополнительных исследованиях, лиганд вводили начиная со дня введения дендритных клеток, затем инъекции прекращали через 1, 3 или 5 дней после инъекции дендритных клеток для определения, понижает ли раннее прекращение стимуляции трансгена IL-12p70 терапевтическую эффективность данного способа. Во всех случаях, размер опухоли контролировали каждые 3 или 4 дня и фиксировали в мм2 путем вычисления произведения наибольших перпендикулярных диаметров, измеренных штангельциркулем с нониусом. Все данные запротоколировали в виде средней площади опухоли ± стандартное отклонение. Группы животных включали в себя 5 особей.

[0261] В указанных экспериментах, животных, избавившихся от опухоли, через 45 дней после проведения терапии повторно инфицировали клетками меланомы B16 (105 клеток ввели в левый бок, т. е. со стороны, противоположной месту первичной инфекции B16) и карциномы толстой кишки MC38 (105 клеток в правый бок) для определения наличия и специфичности иммунной памяти у этих мышей. Все данные протоколировали в виде средней площади опухоли ± стандартное отклонение. Группы животных включали в себя 5 особей.

[0262] Для оценки поведения и функции введенных дендритных клеток, 7-дневные дендритные клетки CD1 Ic+, взятые из костного мозга, выделили из мышей C57B L/6-TgN(ACTbEGFP)10sb/J EGFP Tg. Дендритные клетки EGFP+ CD1 Ic+ не инфицировали или инфицировали вирусами rAd, как описано выше. Через 48 часов после заражения, собрали 1×106 контрольных или зараженных вирусом дендритных клеток, промыли в PBS и ввели в места поражения 7-дневной опухолью В16 изогенных мышей В6. Через 3 дня после введения дендритных клеток, произвели резекцию опухоли и паховых лимфатических узлов, зафиксировали их выдерживанием в течение 1 часа в 2% параформальдегиде (на PBS) и подвергли криопротекции в 30% сахарозе на PBS перед шоковой заморозкой в изопентане, охлажденном жидким азотом. Изготовленные пятимикронные срезы контрастно окрасили трехминутным промыванием 2 мг/мл Hoechst 33258 (Sigma-Aldrich, St. Louis, MO). Промытые срезы заключили в Gelvatol (Monsanto Chemical Co., St. Louis, МО) и микроскопировали с помощью микроскопа Olympus ВХ51, снабженного охлаждаемой цветной камерой с полупроводниковым детектором света (с ПЗС-матрицей).

2.1.2 Оценка специфического CD8+ T-клеточного ответа в отношении меланомы B16

[0263] Объединенные CD8+ T-клетки выделяли до степени очистки, превышающей 95% из селезенок обработанных мышей 2 особи/группа через 25 дней после прививки опухолей, произведенной сортировки клеток с помощью магнитных гранул (MACSTM; Miltenyi Biotec), затем их повторно культивировали (1×105/ячейка) с 1×104 облученными (10,000 рад) опухолевыми клетками B16 или EL-4. После 48-часовой инкубации, надосадочную жидкость культур собрали и проконтролировали на предмет выработки интерферона-гамма с помощью коммерческого иммуноферментного анализа (BD-PharMingen), с нижним порогом детекции, равном 31,5 пг/мл. Все данные запротоколировали в виде средней площади опухоли ± стандартное отклонение.

2.1.3 Статистический анализ

[0264] Все исследования, проведенные с тремя или более группами, где лечение проводилось в абсолютно произвольном порядке, сначала анализировали с помощью одно- и двухфакторного дисперсионного анализа (ANOVA). Если полученное значение P было намного ниже 3.05, специфические попарные отличия оценивали с применением T-теста с коррекцией по Вельчу для неравных вариаций. Параметры распределения данных проверили, после чего применили соответствующие преобразования. Результаты анализа продукции интерферона-гамма T-клеток, полученных из селезенки, подвергли точному тесту Краскала-Уоллиса. Если значение P теста Краскала-Уоллиса было ниже 0.05, полученные ранее разницы оценивали тестом Вилкоксона. Анализ моделей лечения мыши единичной терапевтической прививки опухоли проводился со смешанными линейными моделями. Данные протокола откорректировали, в соответствии с ковариацией и постоянные эффекты лечения округлили с учетом произвольных индивидуальных эффектов. Необработанные значения Р для одновременного сравнения пар групп определили методом «расшнурованной» выборки (bootstrap method). Значения скорости отторжения опухоли привели к генерализованной линейной модели (с биномиальной связью), включающую в себя исследуемую группу, день наблюдения и их взаимосвязь.

2.2 Результаты

2.2.1 Внутриопухолевое введение только DC.cIL12 или DC.RheoIL12 вместе с внутрибрюшинным введением RG-115830 вызывает регресс образовавшихся подкожных поражений меланомой B16.

[0265] Изогенным мышам H-2b B6 подкожно ввели клетки меланомы B16 (1×105), после чего опухоли позволили развиться. На 7 день, мышей разбили на группы, по 5 особей в каждой, со средним диаметром опухоли в группе, равным приблизительно 20-30 мм2. Затем, мышам провели инъекции PBS или 106 дендритных клеток (предварительно инфицированных in vitro rAd.ψ5, rAd.cIL12 или rAd.RheoIL12 48-часовой инкубацией) в общем объеме 50 мкл PBS. Также, животным провели внутрибрюшинные инъекции диметилсульфоксида DMSO или RG-115830 (в DMSO) одновременно с введением дендритных клеток (т. е. на 1 день лечения), либо через 24 ч, либо через 48 ч после введения дендритных клеток (т. е. на 2 день лечения). Как показано на Фигуре 3A и 3B, лечение мышей одним RG-115830 или одним DC.RheoIL12 в отсутствие RG-115830 не оказало никакого терапевтического эффекта. Напротив, опухоли, которые лечили DCcIL-12 или DC.RheoEL-12+RG-115830 (введенными в течение 24 ч после инъекции дендритных клеток 5-дневным курсом), уменьшились в размере в течение следующих 3 недель. Эти терапевтические методы оказались статистически одинаковыми, в отношении размера опухолей, и вызвали регресс опухолей в 100% (5 мышей из 5) случаев. Любопытно, что когда введение RG-115830 было отсрочено до 48 часов после внутриопухолевой инъекции DC (временной точки, когда этот агент может эффективно стимулировать выработку JL-12p70 DC.RheoIL-12 in vitro, см. Фигура 2B), DC.RheoIL12-опосредованная терапия привела к незначительному подавлению скорости роста опухоли (p<0.05 для всех временных точек после 10 дня), при этом, опухоль у всех животных прогрессировала, и их пришлось усыпить на 30 день (Фигура ЗА). Это предполагает, что лечебный эффект внутриопухолевого введения DC.IL12 находится в критической зависимости от выработки IL-12p70 особенно на раннем этапе (происходящей, судя по всему, в месте опухолевого поражения и/или в дренирующих опухоль лимфатических узлах).

[0266] Также провели дополнительные эксперименты, в которых активирующий лиганд (RG-115830) вводили получившим DC.RheolL-12 мышам в течение 1, 3 или 5 дней после инъекции дендритных клеток (Фигура 3B-3C). Результаты этих исследований показали, что раннее прекращение введения лиганда влияет на противоопухолевую эффективность внутриопухолево введенного DC.RheolL-12, причем подавление роста опухоли ограничивается или прекращается, если введение лиганда отсрочено на 5 и более дней после введения генетически модифицированных дендритных клеток. Эти данные сходятся с данными, иллюстрированными на Фигурах 2B и 2C, и подтверждают жесткую (лиганд-зависимую) регуляцию терапевтического воздействия, вызванного введенными DC.RheolL-12 в данной модели. Кроме того, рассмотренные в совокупности, результаты, иллюстрированные на Фигура 3, определенно подразумевают, что оптимальный противомеланомный эффект, обусловленный внутриопухолевым введением DC.RheoIL12, возникает благодаря введению лиганда в период с 1 по 5 день после инъекции дендритных клеток в опухоли В16.

2.2.2 Отсроченная активация регулируемой терапии DC.RheoIL12 является неэффективной ввиду очевидной неспособности дендритных клеток выживать in vivo.

[0267] Наше предыдущее сообщение (Tatsumi et al, 2003) предполагает, что введение гена IL-12 в дендритные клетки способствует лучшей выживаемости этих клеток после их инъекции в микропространство опухоли, и вследствие этого, обеспечивает способность этих клеток перекрестно примировать (инициировать) противоопухолевые CD8+ T-клетки и рекрутировать циркулирующие эффекторные Т-клетки в опухолевое микропространство in vivo. Таким образом, следующая попытка была направлена на определение, была ли отрицательная эффективность DC-RheoIL12-onocpeflOBaHHofl терапии, инициированной (внутрибрюшинным введением RG-115830) через 48 ч после инъекции дендритных клеток, обусловлена неспособностью дендритных клеток существовать в опухолевом микропространстве, неспособностью этих клеток проникать в дренирующие опухоль лимфатические узлы и/или неспособностью специфичных CD8+Т-клеток перекрестно примироваться (инициироваться) в результате лечения. Эксперименты, иллюстрированные на Фигуре 3A, провели повторно, при этом усыпляли по 2 мыши на группу через 72 ч после внутриопухолевого введения дендритных клеток, с той лишь разницей, что источником костного мозга для получения дендритных клеток были мыши EGFP Tg (H-2b). Опухоль и лимфоузлы подвергли резекции, после чего для анализа дендритных клеток EGFP+ флуоресцентной микроскопией приготовили срезы ткани. За оставшимися мышами (по 3 в группе) наблюдали в течение 25 дней, после чего их усыпили, а дендритные клетки объединили со спленоцитами, изолированными для анализа B16-специфичного CD8+ T-клеточного ответа.

[0268] Как иллюстрировано на Фигуре 4, наличие EGFP+ дендритных клеток в опухоли или лимфоузлах через 72 ч после внутриопухолевой инъекции строго зависело от активации трансгена IL-12 в течение 24-48 ч после введения этих клеток in vivo. Клетки EGFP+ DC.cIL12 и DC.RheoIL12 могли быть легко обнаружены в зоне поражения В16, но реже наблюдались в лимфатических узлах мышей, которым внутриопухолево ввели DC.cIL12 или DC.RheoIL12 (если RG-115830 вводили внутрибрюшинно в течение 0-24 ч после введения дендритных клеток). В тканях, взятых у мышей, которым вводили контрольные дендритные клетки (неинфицированные) или DC.RheoIL12 (где введение RG-115830 было отсрочено на 48 после инъекции DC), дендритные клетки были обнаружены в очень малых количествах (или не обнаружены вообще). При сравнении тканей, взятых у мышей, которым ввели DC.RheoIL12 и после этого ввели RG-115830 через 0 ч и 24 ч, было больше EGFP+ дендритных клеток как в самой опухоли (p=0.001), так и в лимфоузлах (р=0.02), в случае, когда активирующий препарат ввели ранее.

2.2.3 Терапевтические преимущества введения DC.RheoIL12 связаны с активацией специфичных CD8+ T-клеток и стойким противоопухолевым иммунитетом

[0269] Ввиду очевидной зависимости жизнеспособности введенных дендритных клеток от времени введения лиганда, мы можем предположить, что уровень перекрестного примирования (инициации) специфичных CD8+ Т-клеток в случае с мышами, получившими DC.RheoIL12, активированный сразу (временная точка 0 ч), будет выше, по сравнению с мышами, получившими активирующий лиганд в более позднее время. Любопытно, что в то время, как это очевидно подтвердилось в случае, когда сравнивали группы DC.RheoIL-12 0 ч (DC.RheoIL-12, день 1-5) и 48 ч (DC.RheoIL- 12, день 3-7), в случае, когда сравнивались группы 0 ч (DC.RheoIL-12, день 1-5) и 24 ч (DC.RheoIL- 12+L, день 2-6), предположение не подтвердилось (Фигура 5А). На самом деле, иммунный ответ селезеночных CD8+ T-клеток in vitro (выделение интерферона-гамма), направленный против соответствующих В16 опухолей и направленный против не соответствующих EL-4 опухолей, оказался сравнимым в отношении этих групп, и в обоих случаях реакция приблизительно соответствовала таковой, наблюдаемой у мышей, которым ввели DC.cIL12. В целом, оказалось, что эти профили CD8+ T-клеточного ответа прямо коррелировали с результатами терапии (Фигура A). Как и на Фигуре 5А, иммунная реакция, выражающаяся в выработке интерферона-гамма селезеночными T-клетками по отношению к специфичным клеткам опухоли В16, по сравнению с реакцией к неспецифичным клеткам МС38, коррелировала с результатами терапии.

[0270] Чтобы определить, была ли DC.RheolL12-опосредованная терапия эффективной ввиду возникновения стойкого противоопухолевого иммунитета, излеченным от опухоли животным повторно ввели соответствующие клетки меланомы B16 и клетки другой опухоли - карциномы толстой кишки М38 через 45 дней после первичного инфицирования B16. Как показано на Фигуре 5B, все мыши, прошедшие до этого курс лечения от меланомы В16, показали наличие специфической защитной реакции на клетки B16, в то время как опухоли МС38 характеризовались прогрессирующим ростом. Это доказывает, что дендритные клетки представленные в настоящем изобретении обеспечивают дополнительную безопасность и потенциальный терапевтический контроль способа лечения (в том, что как время, так и уровень экспрессии интерлейкина-12 могут быть регулируемы введением лиганда).

Пример 3

Сравнение зависимости терапевтического эффекта от пути введения/дозировки лиганда

3.1 Методы и материалы

[0271] Клетки меланомы B16, введенные подкожно в правый бок изогенным мышам В6, развивались в течение 7 дней. На 7 день, внутриопухолево ввели 106 DC.SP1-IL12 (оптимальный переключатель показан в сравнении на Фигуре 10). Активирующий лиганд (RG-115932) ввели внутрибрюшинной инъекцией, либо орально через желудочный зонд в Лабразоле (Labrasol), либо с содержащей препарат пищей ad libitum, за день до начала введения дендритных клеток (и затем ежедневно в течение 6 дней). В каждую группу входило 5 животных, рост опухоли контролировали каждые 3-4 дня и протоколировали в виде среднего размера (в мм2, основываясь на произведении ортогональных измерений). Лечение, полученное каждой группой, описано ниже.

3.2 Результаты

[0272] Результаты показали, что введение одного лишь лиганда в любых дозах любым путем не оказывает эффекта на рост опухоли В16 (Фигуре 6). DC-SP1 внутриопухолевая терапия эффективна в контроле роста В16, но только в присутствии лиганда, причем все пути введения обеспечивают некоторую степень эффективности. Внутриопухолевая терапия DC-SP1 с внутрибрюшинным введением лиганда дала профиль четкой зависимости между дозировкой и подавлением опухоли, с оптимальным противоопухолевым эффектом при дозировке лиганда, превышающей 30 мг/кг/день. Введение дозы лиганда, равной 30 мг/кг/день, при внутриопухолевой терапии DC-SP1 оказалось одинаково эффективным, если лиганд вводили внутрибрюшинно, орально через зонд или вместе с пищей. Более высокая доза лиганда, принимаемого вместе с пищей, оказалась несколько менее эффективной. Так как только R-оптический изомер (RG-115932) способен активировать RheoSwitch® Therapeutic System (RTS), пища, содержащая рацемическую смесь, обеспечивает лишь с.а. 20-22.5 мг/кг/день активного оптического изомера. В этом отношении, регресс опухоли, наблюдаемый у животных, получавших рацемическую смесь активирующего лиганда с пищей (т. е. ~20-22.5 мг/кг/день активного энантиомера RG-115932), соответствовал таковому при внутрибрюшинном введении чистого RG-1 15932 при том, что противоопухолевый эффект в группе, принимающей препарат с пищей, по интенсивности оказался промежуточным наблюдаемому при внутрибрюшинном введении RG-115932 в группах с дозировками 10 и 30 мг/кг/день. Эти данные подтверждают то, что оральное введение лиганда эффективно в обеспечении терапевтического эффекта. Простота орального введения лиганда облегчит процесс лечения пациентов.

[0273] Зависимый от активирующего препарата эффект был связан с (1) экспрессией трансгена в опухоли и дренирующих опухоль лимфоузлах, (2) пролонгируемой выживаемостью Ad-DC в микропространстве опухоли, (3) миграцией и персистенцией Ad-DCs в дренирующих опухоль лимфоузлах и (4) активацией специфичных к B16 CD8+ T-клеток.

[0274] На Фигуре 10 показан результат сравнения эффективности различных аденовирусных векторов, содержащих IL-12. Вариант SP1-RheoIL-12 был наиболее эффективным среди Rheoswitch-содержащих вариантов. SP1-RheoIL-12 отличается от oldRheoIL-12 основной кодирующей последовательности вектора (AdEasyl в OldRheoIL-12 и RAPAd в ViraQuest на SpI-RheoIL-12). TTR-RheolL-12 отличается от oldRheoIL-12 содержанием минимального промотора TTR в направлении 3’ относительно элемента отклика Gal4. Как иллюстрирует Фигура 10, SP1-RheoIL-12 был более эффективным, чем TTR-RheoIL-12 при уменьшении опухолевого размера меланому В16.

[0275] Фигура 11 иллюстрирует, что опухоль меланомы В16 не развивается после повторного заражения у мышей, которые до этого получили лечение дендритными клетками, содержащими рекомбинантный аденовирусный Rheoswitch индуцируемый IL-12 (DC-SP1-RheoIL-12). Это говорит о том, что рост опухоли меланомы В16 предотвращается на срок до 25 дней, когда В16-иммунные мыши подвергаются повторной прививке через 45 дней после первичного инфицирования клетками В16. DC мыши получили из костного мозга мышей В6 путем 7-дневного культивирования в полной питательной среде (RPMI-1640, 10% FBS), содержащей рекомбинантный IL-4 мыши и рекомбинантный гранулоцитарно-макрофагальный колониестимулирующий фактор GM-CSF. CD1 Ic-положительные дендритные клетки затем выделили с помощью специфических гранул MACS, следуя инструкциям производителя (Miltenyi Biotech), и инфицировали при множественном инфицировании MOI=100 вектором rAd.IL-12 (RheoIL-12 vs. SP1 vs. TTR) 24-часовой инкубацией до инъекции дендритных клеток 10E6 в 9-дневные сформировавшиеся подкожные опухоли меланомы B16 (5 мышей в группе, опухоль на правом боку). Некоторым мышам делали ежедневные внутрибрюшинные инъекции активирующего лиганда RG-115830 (30 мг/кг в 50 мкл DMSO) на 0-4 дни после введения дендритных клеток. Размер опухоли контролировали каждые 3-4 дня и протоколировали в кв. мм в виде произведения ортогональных диаметров. Для оценки специфичности связанной с терапией защиты, всем избавившимся от опухоли животным в левый бок повторно ввели клетки меланомы 10E5 B16, а в правый бок ввели клетки карциномы толстой кишки MC38 на 45 день после первичного заражения опухолью B16. Произошло формирование опухолей МС38, а опухоли В16 не развились.

[0276] На Фигуре 12 приведены данные по сравнению между количеством дендритных клеток (DC-SP 1-RheoIL-12), введенных в опухоль В16 (105, 106, 107), продолжительностью введения лиганда, и регрессом опухоли в модели меланомы В16 мыши (6 дней, 13 дней). Фигура

12 иллюстрирует зависимость подавления опухолевого роста от дозы введенных в опухоль трансдуцированных дендритных клеток и длительности введения активирующего лиганда (внутрибрюшинные инъекции, 30 мг/кг/день). Зараженным опухолью мышам провели единичную внутриопухолевую инъекцию AdDC в дозировке 105, 106, и 107 клеток, а также ежедневные внутрибрюшинные инъекции активирующего препарата одной дозой 30 мг/кг/день в течение 6 или 13 дней, начиная со дня введения 107 клеток. Значительно более интенсивное подавление опухолевого роста наблюдали, когда активирующий препарат вводили в течение 13 дней, по сравнению с 6-дневным курсом. Лиганд (RG-115932), вводимый в течение 13 дней последовательно в комбинации с 107 дендритными клетками, оказался эффективным средством, вызвавшим регресс опухоли за 25-дневный период. Это позволяет предположить, что в противоположность мнению, что трансдуцированные ex vivo дендритные клетки живут всего лишь несколько дней после инъекции в опухоль, клетки AdDC, вырабатывающие IL-12 под контролем RheoSwitch® Therapeutic System RTS, с большой вероятностью останутся интактными в течение более, чем 1 недели после внутриопухолевой инъекции, и даже могут оставаться живыми и реагирующими на активирующий препарат через 13 дней после инъекции. Активирующий препарат в одиночку (без AdDC) не оказывал эффект на рост опухоли.

[0277] В эксперименте, сходном с иллюстрированным на Фигуре 12, активирующий препарат вводили орально через зонд в течение 9 и 12 дней. Таким образом, оценили зависимость противоопухолевого иммунного ответа от дозы введенного в оральной форме в Labrasol активирующего лиганда. После наблюдения зависимого от дозировки противоопухолевого эффекта, обнаружили, что лучший иммунный ответ возникает у животных, принимающих 50 мг/кг/день активирующего лиганда орально в течение 12 дней. Как оказалось, из всех тестированных дозировок, 13 дней приема активирующего лиганда были эффективнее 9-дневного режима. Из этого можно заключить, что дендритные клетки, выжившие и способные вырабатывать IL-12 в течение, как минимум, 9-12 дней in vivo (в микропространстве опухоли или в лимфоидных органах), являются наиболее важными для оптимальной эффективности лечения.

[0278] Фигура 13 иллюстрирует, что способ терапии, описанной в данной заявке, не связан с неблагоприятной потерей массы у животных ввиду истощения. Истощение и потеря массы часто связаны с высоким уровнем интерферона-гамма и фактора некроза опухолей-альфа, синтез которых, как известно, положительно регулируется интерлейкином-12.

[0279] 5 изогенным В6 мышам в правый бок подкожно привили меланому В16. После 7-дневного развития опухоли, в дозах 10E5, 10E6 и 10E7 внутриопухолево ввели DC.SP1-IL-12 (выделенные из костного мозга дендритные клетки, инфицированные при множественном инфицировании MOI=100, под оптимальным переключателем SP1). Начиная со дня инъекции дендритных клеток (и затем ежедневно в течение 6 или 13 дней) внутрибрюшинно вводили RG-115932. В каждую группу входило 5 животных, рост опухоли контролировали каждые 3-4 дня и протоколировали в виде среднего размера (кв. мм, как произведение ортогональных измерений). Во время оценки роста опухолей, каждое животное также взвешивали (Фигура 13). Всех животным, излеченным от опухоли любым видом терапии, на 50-й день (после первичной прививки опухолью В16) в противоположный бок (левый бок) повторно ввели клетки меланомы 10Е5 В16, а в правый бок ввели клетки 10Е5 МС38 карциномы толстой кишки. Рост опухоли контролировали каждые 3-4 дня и сравнивали с ростом, наблюдаемым у не получивших лечение животных (см.Фигура 12).

[0280] На Фигуре 14 показано, что опухоль не формируется после повторного заражения клетками В16 мышей, до этого получивших лечение дендритными клетками, содержащими рекомбинантный аденовирусный Rheoswitch-индуцируемый IL-12 и активирующий лиганд RG-1 15932. Таким образом, Фигура 14 показывает, что рост меланомы В16 у В16-иммунных мышей подавлется в течение менее 24 дней после повторной прививки. На Фигуре 14 также показано, что не инфицированные В16 мыши не были защищены от формирования опухоли, как не были защищены МС38-иммунные и не инфицированные МС38 мыши. МС38 - это карцинома толстой кишки, известная в данной области техники. Таким образом, данная фигура свидетельствует о специфичности вызванной первичной инъекцией опухоли В16 иммунизации дендритными клетками, содержащими рекомбинантный аденовирусный Rheoswitch-индуцируемый IL-12.

[0281] Дендритные клетки, полученные в результате дифференциации CD 14+ клеток, обладают незрелым фенотипом и не вырабатывают выявляемых количеств IL-12 (Cella et al. 1999). Из Фигуры 15 видно, что дендритные клетки мыши, полученные путем 7-дневной обработки клеток костного мозга гранулоцитарно-макрофагальным колониестимулирующим фактором GM-CSF и IL-4 и последующего отбора CD1 Ic+ клеток, также характеризуются неспособностью экспрессировать выявляемые количества IL-12 после трансдукции аденовирусным вектором, кодирующим интерлейкин-12 под контролем RheoSwitch® Therapeutic System RTS. Обработка трансдуцированных клеток различными дозами активирующего препарата (RG-115932) привела к выработке IL-12 в зависимом от дозировки режиме.

[0282] По имеющимся данным, аденовирусная трансдукция в некоторой степени стимулирует созревание дендритных клеток с помощью пентон-интегриновых взаимодействий, вызывающих синтез фактора некроза опухолей-альфа путем активации ядерного фактора каппа-В (NFkB). Известно, что аутокринное действие фактора некроза опухолей-альфа в этом случае служит стимулирующим созревание сигналом для дендритных клеток (Philpott et al. 2004). Считается, что краткая аденовирусная трансдукция (2-3 часа) и подборка минимального достаточного значения множественного инфицирования MOI ограничивают этот эффект раннего созревания.

Пример 4

[0283] В этом примере дендритные клетки выделили из костного мозга, модифицировали аденовирусными конструкциями, изображенными на Фигуре 7, а затем мышам, зараженным изогенной интракраниальной глиомой GL261, внутриопухолево ввели модифицированные дендритные клетки; RG-115830 был введен внутрибрюшинно. На Фигуре 7 показаны результаты внутриопухолевой инъекции дендритных клеток, трансдуцированных кодирующими IL-12 и/или интерферон-альфа под контролем RheoSwitch® Therapeutic System RTS или без него, полинуклеотидами. Данные показали, что лиганд-индуцированная экспрессия интерферона-альфа и 1L-12, опосредованная активацией RheoSwitch® Therapeutic System RTS лигандом RG-115830, обеспечила 50-дневную выживаемость зараженных глиомой GL261 мышей в 75% случаев; в сравнении с экспрессией лишь одного интерферона-альфа. Более того, осуществляемая RheoSwitch и лигандом регуляция обеспечила повышенную выживаемость.

Пример 5

[0284] Безопасность, переносимость, трансгенная функция и иммунологические эффекты внутриопухолевой инъекции трансдуцированных аденовирусом аутологичных дендритных клеток, модифицированных для экспрессии IL-12 человека под контролем RheoSwitch® Therapeutic System RTS, у субъектов с меланомой 3 и 4 стадии можно оценить с применением процедур, подобных описанным ниже.

[0285] Исследование, включающее в себя изучение субъектов, пораженных меланомой 3 и 4 стадии, осуществляют на 4 группах субъектов, каждому из которых делают единичную внутриопухолевую инъекцию (в опухоль меланомы) трансдуцированных аденовирусом аутологичных (введенных субъекту, у которого они были взяты) дендритных клеток (DC), модифицированных для экспрессии интерлейкина-12 человека (IL-12 человека), в дозах 5×107, в комбинации с ежедневными оральными дозами активирующего препарата (активирующего лиганда). В исследовании применяют инъекции дендритных клеток, трансдуцированных ex vivo (после того, как клетки выведены из субъектов) аденовирусным вектором для индуцируемой экспрессии IL-12 человека. Выработка интерлейкина-12 введенными дендритными клетками «включается» (индуцируется) активацией RheoSwitch® Therapeutic System RTS, вызванной оральным приемом активирующего препарата (RG-115932). Безопасность и переносимость оценивают физическими исследованиями (включая статус ECOG), измерением показателей жизнедеятельности, химическим анализом сыворотки, анализом мочи, гематологических параметров, контролем нежелательных явлений (побочных эффектов), а также клеточному и гуморальному иммунному ответу на аденовирус, компоненты RheoSwitch® Therapeutic System RTS и активирующий препарат. Для оценки прогресса, измеряют фармакокинетику/всасывание, распределение, метаболизм и выведение (ADME) единичных доз и в стационарном состоянии, уровень интерлейкина-12 и клеточного иммунного ответа (T-клеток) в биоптатах опухолей-мишеней, дренирующих опухоль лимфоузлов и периферической циркуляции, а также цитокиновый профиль сыворотки.

[0286] Например, 16 субъектов с 3 и 4 стадией меланомы разделены на 4 группы, где в группы 1 и 2 входит по 3 человека, а в группы 3 и 4 - по 5 человек. Всем субъектам проводят единичную внутриопухолевую инъекцию 5×107 аутологичных дендритных клеток, трансдуцированных аденовирусным вектором, кодирующим IL-12 человека под контролем RheoSwitch® Therapeutic System RTS. Субъекты получают по единичной оральной ежедневной дозе активирующего препарата (группа 1: 0.01 мг/кг, группа 2: 0.1 мг/кг, группа 3: 1.0 мг/кг и группа 4: 3 мг/кг); первая доза принимается приблизительно за 3 часа до инъекции дендритных клеток в 1-й день, затем курс продолжается последовательно в течение 13 дней. Дополнительные инъекции трансдуцированных аденовирусом аутологичных дендритных клеток в комбинации с 14 единичными ежедневными оральными дозами активирующего препарата можно вводить подходящим субъектам, отвечающим условиям повторного лечения. Безопасность, переносимость и функция дендритных клеток для всех членов каждой группы оценивают в течение 1 месяца после инъекции модифицированных in vitro дендритных клеток перед тем, как субъекты начинают получать следующую по величине дозу активирующего препарата. Оценку безопасности у всех субъектов проводят в течение 3 месяцев после первичной инъекции модифицированных дендритных клеток, с возможным продолжением времени наблюдения до 6 месяцев для контроля безопасности субъектов, в случае если обнаружены признаки токсичности или субъект получает дополнительные инъекции дендритных клеток.,.

[0287] Такое исследование наглядно демонстрирует безопасность и переносимость единичных или множественных внутриопухолевых инъекций трансдуцированных аденовирусом аутологичных дендритных клеток в комбинации с оральным применением активирующего препарата у субъектов, пораженных меланомой. Исследование обеспечивает фармакокинетику/всасывание, распределение, метаболизм и выведение (ADME) орального активирующего препарата в стационарном состоянии. Исследование демонстрирует функциональность RheoSwitch® Therapeutic System RTS у субъектов путем измерения экспрессии IL-12 человека трансдуцированными аденовирусом дендритными клетками в опухоли-мишени и/или дренирующих опухоль лимфоузлах в ответ на активацию RheoSwitch® Therapeutic System RTS оральным введением активирующего препарата. Более того, исследование демонстрирует иммунологические эффекты трансдуцированных аденовирусом аутологичных дендритных клеток по величине клеточного иммунного ответа в опухоли-мишени, дренирующих опухоль лимфоузлах и периферической циркуляции, возникающего после орального введения активирующего препарата.

[0288] Меланома была выбрана в качестве примера злокачественной опухоли (для применения RheoSwitch® Therapeutic System RTS), поскольку для пациентов, находящихся на 3 и 4 стадии заболевания на сегодняшний день не существует способов эффективного лечения; по известным данным, меланома, в частности, среди опухолей твердых тканей, поддается иммунотерапевтическим методам; и опухоли меланомы легко доступны для внутриопухолевых инъекций и биопсии. Субъекты, участвующие в исследовании, находятся на неоперабельной 3 и 4 стадии меланомы, с размером опухоли, по меньшей мере равным 0,5 см в диаметре, с любой толщиной опухоли, с любым количеством включенных в процесс лимфатических узлов, близлежащих и отдаленных метастазов.

5.1. Получение аденовируса, несущего RheoSwitch Therapeutic System (RTS) и IL-12 [0289] Рекомбинантную ДНК вводят в дендритные клетки (DC) путем ex vivo трансдукции аденовирусным вектором. Рекомбинантная ДНК применяется для экспрессии IL-12(p70) человека внутриопухолево введенными незрелыми дендритными клетками, обеспечивает выживаемость и стимулирует созревание дендритных клеток в опухолевом пространстве, приводящее к последующей миграции дендритных клеток в дренирующие лимфатические узлы. Это, в свою очередь, обусловливает сдвиг дифференцировки T-хэлперных клеток в сторону подтипа Th1 а также активацию опухолеспецифических цитотоксических Т-клеток перекрестным примированием (инициацией) опухолевыми антигенами.

[0290] Рекомбинантная ДНК, которую применяют в качестве аденовирусного вектора, позволяет вырабатывать IL- 12 человека под контролем RheoSwitch® Therapeutic System (RTS). RheoSwitch® Therapeutic System RTS представляет собой бицистронную последовательность, экспрессируемую с промотора убиквитина С человека и кодирующую два рекомбинантных белка: GaW-EcR and VP16-RXR. Gal4-EcR является комплесом ДНК-связывающего домена (аминокислоты 1-147) Gal4 дрожжей и домена DEF рецептора экдизона насекомого Choristoneura fumiferana. Согласно другому варианту реализации, RheoSwitch® Therapeutic System RTS представляет собой бицистронную последовательность, экспрессируемую с промотора убиквитина С человека и кодирующую два рекомбинантных белка: GaW-EcR and VP16-RXR. Gal4-EcR комплексом ДНК-связывающего домена (аминокислоты 1-147) Gal4 дрожжей и домена DEF рецептора экдизона насекомого Choristoneura fumiferana. VP16-RXR представляет собой комплекс домена активации транскрипции HSV-VP 16 и домена EF химерного RXR, полученного из последовательностей человека и саранчи. Последовательности Gal4-EcR и VP16-RXR разделены участком внутренней посадки рибосомы (IRES) вируса энцефаломиокардита (EMCV). Эти два рекомбинантных белка димеризуются, когда Gal4-EcR связывается с низкомолекулярным препаратом (RG-115932) и активируют транскрипцию IL-12 человека под Са14-зависимым промотором, содержащим 6 Са14-связывающих участков и синтетический минимальный промотор. Транскрипционная единица RheoSwitch® Therapeutic System RTS, описанная выше, расположена с 3' конца транскрипционной единицы IL-12 человека. Эта целая RTS-IL12 экспрессионная кассета встроена в геном аденовируса 5 на участке, откуда был удален участок Е1. Последовательность аденовируса, используемая в качестве основы для вектора также не содержит ген Е3. Карта аденовирусного вектора Ad-RTS-IL-12 человека изображена на Фигуре. 8.

[0291] Рекомбинантный аденовирусный вектор, применяемый в данном исследовании, содержит следующие типичные регуляторные последовательности, кроме последовательностей вирусного вектора: промотор убиквитина С человека, участок внутренней посадки рибосомы (IRES) вируса энцефаломиокардита, индуцируемый промотор, содержащий 6 копией участков связывания Gal4, 3 копии участков связывания SP-I, последовательность синтетического минимального промотора, участки полиаденилирования вируса SV40 и последовательность терминации транскрипции из гена альфа-глобина человека. Следует иметь в виду, что в качестве альтернативы могут присутствовать другие регуляторные элементы.

[0292] Типичный рекомбинантный аденовирусный вектор Ad-RTS-hDL-12 получили следующим способом. Кодирующие последовательности рецепторных рекомбинантных белков VP 16-RXR и Gal4-EcR, разделенные участком внутренней посадки рибосомы (IRES) вируса энцефаломиокардита EMCV-IRES, встраивали в аденовирусный челночный вектор под контролем промотора убиквитина С человека (конститутивный промотор). Затем, кодирующие последовательности субъединиц p40 и p35 IL-12 человека, разделенные участком внутренней посадки рибосомы (IRES) вируса энцефаломиокардита, поместили под контроль синтетического индуцируемого промотора, содержащего 6 копий Са14-связывающего участка, и встроили с 5’ конца промотора убиквитина С и рецепторных последовательностей. Челночный-вектор содержит последовательности серотипа 5 аденовируса с левого конца до 16-й точки карты (mulo), от которой отщепили последовательности Е1 и заменили на последовательности RheoSwitch® Therapeutic System RTS и IL-12 (RTS-IL-12 человека). Челночный вектор, несущий RTS-IL-12 человека, проверили временной трансфекцией в клетки НТ-1080 на зависимую от активирующего препарата экспрессию интерлейкина-12. Затем челночный вектор рекомбинировали с основной кодирующей последовательностью аденовируса путем совместной трансфекции в клетки НЕК 293 для получения рекомбинантного аденовируса Ad-RTS-IL-12 человека. Последовательность аденовируса, используемая в качестве основы для вектора содержит делеции от mu 0 до 9.2 с левого конца генома и гена Е3. Челночный вектор и последовательность аденовируса содержат перекрывающуюся последовательность от mu 9.2 до mu 16, позволяющую им рекомбинировать друг с другом, и получить рекомбинантный аденовирусный вектор. Так как в рекомбинантном аденовирусном векторе не хватает участков E1 и E3, вирус является дефектным в отношении репликации в нормальных клетках млекопитающих. Тем не менее, вирус может реплицироваться в клетках НЕК 293, несущих участок E1 аденовируса-5 и, таким образом, позволяющий Е1 функционировать в транс-конфигурации.

[0293] Типичный рекомбинантный аденовирусный вектор получили следующим способом: линеаризованный рекомбинантный аденовирусный челночный вектор, несущий элементы ДНК для индуцируемой экспрессии человеческого интерлейкина-12, и основную кодирующую последовательность аденовируса трансфицировали в клетки HEK293. Рекомбинация между перекрывающимися последовательностями челночного вектора и основной кодирующей последовательностью вируса приводит к получению рекомбинантного аденовируса, который упаковали в вирусные частицы в клетки HEK293. Клетки HEK293 культивировали в питательной среде DMEM, содержащей фетальную бычью сыворотку.

[0294] Вирус, применяемый в предлагаемом исследовании, очистили центрифугированием в градиенте концентрации хлорида цезия. Рекомбинантный аденовирус подвергли двум циклам очистки бляшек, а полученный семенной препарат использовали для получения главного банка вирусов (MVB) амплификацией в клетках НЕК293 из главного банка полностью характеризованных клеток. Главный банк вирусов MVB подвергли расширенным тестам, выпуска cGMP/GLP, включая те сты на аденовирус без дефекта репликации (replication competent adenovirus, RCA), стерильность, микоплазмы, адвентициальные вирусы, ретровирусы, человеческие вирусе ВИЧ 1/2, Т-лимфотропные вирусы человека 1/2, вирус гепатита А, вирус гепатита В, вирус гепатита С, вирус Эпштейна-Барра, парвовирус В19, цитомегаловирус, вирус герпеса 6, 7 и 8 вирусы, коров и свиные, полное секвенирование векторов и функциональное тестирование индуцируемой активирующим препаратом экспрессии IL-12 в клеточных линиях человека.

[0295] Вирус из полного банка вирусов MVB можно применять для получения чистого вируса в лаборатории cGMP, после чего может вновь быть подвергнут тестам выпуска, включая тесты на: целостность, аденовирус без дефекта репликации, стерильность, микоплазму, адвентициальные вирусы, соотношение вирусных частиц и инфекционных единиц, контаминацию ДНК клетки-хозяина, эндотоксин и белки, а также функциональным тестам индуцированной активирующим препаратом экспрессии интерлейкина-12 в клеточных линиях человека.

6.2. Трансдукция аутологичных дендритных клеток аденовирусом, содержащим трансген IL-12 человека и RheoSwitch® Therapeutic System (RTS)

[0296] Дендритные клетки, полученные от человека, подвергли трансдукции ex vivo и ввели в опухоль. Перед вирусной трансдукцией, дендритные клетки характеризовали в отношении жизнеспособности, степени очистки (как правило, более 80% клеток, обладающих фенотипом DC), стерильность, микоплазмы и эндотоксины. После вирусной трансдукции, клетки неоднократно промыли для удаления неабсорбированных вирусов. Надосадочную жидкость после последней промывки протестировали с помощью полимеразной цепной реакции для определения содержания остаточного вируса. Так как дендритные клетки трансдуцировали ex vivo аденовирусным вектором (неинтегрирующим вирусом), а продолжительность жизни дендритных клеток после внутриопухолевой инъекции и последующей миграции в дренирующие лимфатические узлы коротка, предполагается, что вирусная ДНК не попадает в не являющиеся мишенями клетки. Ожидается, что протокол, который применяли для трансдукции дендритных клеток аденовирусами обеспечит 80-90% трансдукцию, поэтому он считается весьма эффективным.

[0297] Получение мононуклеарных клеток периферической крови (РВМС) лейкофорезом: пациентов подвергли стандартному 90-120-минутному лейкофорезу с помощью Аферезного блока UPCI Outpatient. Процедура включила в себя взятие крови из вены одной руки; центрифугирование крови (в сепараторе клеток), где происходит разделение ее компонентов, после которого один или более компонентов удаляются; и возвращение оставшихся компонентов в вену той же или другой руки пациента. За один цикл обработки крови сепаратором клеток у пациента брали не более 15% общего объема крови. В сепараторе клеток кровь разделили на плазму, тромбоциты, лейкоциты и эритроциты. Лейкоциты (белые клетки крови) отделили, а остальные компоненты возвратили в циркуляцию субъекта. Для этой процедуры желательно использовать две периферические линии 4. Если это невозможно, может возникнуть необходимость в использовании центральной линии. Перед лейкофорезом, пациент должен быть осмотрен врачом, также, как правило, берут его основные жизненные показатели (включая АД).

[0298] Обработка: после сбора, лейкоцитарную фракцию вручную перенесли на CPL и сразу же подвергли центрифугальной элютриации в приборе ELUTRA™. Эта закрытая система одобрена для клинического применения. Моноцитарную фракцию восстановили и, после того, как жизнеспособность клеток была установлена, их перенесли в картридж Aastrom для 6-дневной культивировании в присутствии IL-4 and гранулоцитарно-макрофагального колиниестимулирующего фактора GM-CSF. Все этапы обработки и промывки провели в условиях полной стерильности.

[0299] Первичное посев: моноциты, выделенные из одной лейкоцитарной фракции, подсчитали в трипановом синем для определения числа жизнеспособных (живых) клеток. Путем поточной цитометрии оценили чистота моноцитов. Затем, моноциты взвесили при 5-10×106 клеток/мл в не содержащей сыворотку и антибиотики среде CellGenix, в которую входит 1,000 МЕ/мл IL-4 и 1,000 МЕ/мл GM-CSF в SOP-CPL-0166, и перенесли в картридж Aastrom. Минимальный объем загрузки, равный 50 мл, и минимальное количество клеток необходимы для прививки кассеты.

[0300] Культура: картридж Aastrom поместили в инкубатор Replicell System - полностью закрытый, cGMP-совместимый культивационный прибор для генерации незрелых дендритных клеток.

[0301] Сбор незрелых дендритных клеток: на 6 день, картридж Aastrom извлекли из инкубатора, после чего собрали незрелые дендритные клетки. Клетки восстановили центрифугированием при 1,500 об/мин, промыли средой CellGenix, подсчитали в трипановом синем и проверили на морфологические и фенотипические характеристики.

[0302] Жизнеспособность: определили путем подсчета клеток с помощью гемоцитометра в трипановом синем. Как правило, более 95% собранных клеток оказываются живыми, т. е. не окрашиваются трипановым синим. Если жизнеспособность составляет менее 70%, незрелые дендритные клетки отбраковываются.

[0303] Определение фенотипа: культивированные клетки подсчитали путем микроскопирования на гемоцитометре, получив предварительный дифференциальный (DC и лимфоциты) итог с применением трипанового синего. Поточной цитометрией подтвердили дифференциальный подсчет, фокусируясь на разделении дендритных клеток и лимфоцитов и используя высокие характеристики прямого и бокового рассеивания незрелых дендритных клеток в качестве критерия идентификации. Обычно, незрелые дендритные клетки составляют более 80% клеток, обладающих морфологией и фенотипом дендритных клеток.

[0304] Оценка эффективности IL-12p70: установили, что зрелые дендритные клетки (mDC) обладают способностью вырабатывать IL-12р70 самопроизвольно или после активации CD40L с помощью сигналов врожденного иммунитета (например, липополисахаридов) или без нее. Недавно был разработан стандартизированный способ выработки IL-12p70, применимый для получения небольших образцов или больших количеств дендритноклеточных вакцин, получаемых при различных условиях. Современные способы оценки эффективности состоят из двух отдельных стадий, первая из которых включает в себя совместную инкубацию дендритных клеток-респондеров с клетками лимфомы J588, постоянно трансфицируемых геном лиганда CD40 человека в качестве стимулятора.

Вторая стадия включает в себя проверку надосадочной жидкости этих совместных культур на уровень секреции IL-12р70 дендритными клетками, стимулированными J558/CD40L +/- липополисахарид LPS в системе Luminex. В этот способ оценки эффективности также входит промежуточная процедура с 18.5%-ным CV (n=30) и широкой областью динамических значений, облегчающая оценку различных продуктов дендритных клеток, характеризующихся весьма разными степенями выработки IL-12p70. Нормальная область значений процедуры, установленная с применением дендритных клеток, полученных из моноцитов 13 здоровых доноров, составляла 8-999 пг/мл, со средним значением, равным 270 пг/мл Критерия Продукции и Выработки для Дендритных Клеток.

[0305] Каждую группу полученных in vitro дендритных клеток протестировали на наличие контаминации микроорганизмами (аэробные и анаэробные бактерии, грибы и микоплазмы), на эндотоксин и на их фенотипические и функциональные характеристики. Все дендритные клетки, вводимые субъектам, должны быть свежими и не подвергавшимися заморозке.

[0306] Тестирование гарантии качества дендритных клеток: дендритные клетки, полученные, как описано выше, исследуются на стерильность, жизнеспособность, чистоту, эффективность и стабильность. Критерии выпуска клеточного продукта утверждены и тщательно контрол ируются.

[0307] Жизнеспособность: выращенные в культуре клетки подсчитали с помочью микроскопии на гемоцитометре, после чего в трипановом синем осуществили дифференциальный подсчет (дендритные клетки и лимфоциты). Этот подсчет обеспечивает оценку процентного содержания живых клеток. Для соответствия критерию клеточного выпуска, необходимо, чтобы выживаемость клеток была не ниже 70% при исключении трипановом синим, а также более 70% клеток экспрессировали HLA-DR и CD86 как маркеры полученных из моноцитов дендритных клеток. Также, для исследовательского анализа можно применять дополнительные маркеры, как, например, CD83 и CCR7 для оценки статуса зрелости и CD3 и CD19 для оценки лимфоцитарной контаминации.

[0308] Чистота: для определения того, что морфологически идентифицированная популяция дендритных клеток экспрессирует поверхностные антигены, установленные для дендритных клеток, и не несет антигены семейств моноцитов, B- и T-клеток, применили двухцветную поточную цитометрию клеток, окрашенных FITC- и PE-конъюгированными антителами. Для приготовления вакцин, генерированные дендритные клетки должны экспрессировать HLA-DR и CD86 и не должны экспрессировать CD3, CD 19 и CD 14. Для того, чтобы считаться зрелыми дендритными клетками, клетки должны экспрессировать CD83+ и CCR7+.

[0309] Эффективность: для оценки степени эффективности дендритных клеток, определили их способность вырабатывать IL-12p70, как описано выше.

[0310] Стерильность: дендритные клетки тестировали на бактериальные (аэробные и анаэробные) и грибковые культуры с применением системы BD Bactec system (Becton Dickinson Co., Sparks, MD) в Микробиологической Лаборатории Медицинского Центра Питсбургского университета. Окончательные результаты в отношении культур микроорганизмов были получены в течение 14 дней. До выпуска дендритных клеток для применения их в вакцинах, производится окрашивание по Граму. Его результаты на наличие микроорганизмов должны быть отрицательными.

[0311] Тесты IMCPL для выявления микоплазмы, проводимые с применением системы Gen-Probe Mycoplasma Tissue Culture Rapid Detection System (Gen-Probe, Inc. San Diego, CA), основываются на технологии гибридизации нуклеиновых кислот. Тесты на эндотоксин провели с применением Limulus Amoebocyte Lysate Pyrogen Plus assay (Bio Whittaker, Inc., Walkerville, MD). Клеточную культуру исследовали на эндотоксин во время сбора и до выпуска окончательного продукта. Приемлемый уровень эндотоксина составляет менее 5 EU/кг веса тела. Для дальнейшего анализа трансдуцированные и нетрансдуцированные дендритные клетки замораживали.

[0312] Предполагается, что все трансдуцированные клетки экспрессируют трансген. Также предполагается, что более 80% дендритных клеток подверглись удачной трансдукции. Продукт является биологически активным, так как нативные кодирующие последовательности сохранены в трансгене. Трансдуцированные вирусом дендритные клетки, введенные в опухоль, обладают фенотипом незрелых дендритных клеток и не вырабатывают интерлейкин-12 до созревания, поэтому на данном этапе экспрессия IL-12 происходит, в основном, с трансгена. Так как экспрессия трансгена IL-12 индуцируется низкомолекулярным активирующим препаратом RG-115932 в зависимом от дозы режиме, уровень экспрессии трансгена трансдуцированными дендритными клетками может быть контролирован и удержан на нужном уровне. Небольшая часть трансдуцированных дендритных клеток, приготовленных для введения человеку, может быть исследована in vitro на зависимую от активирующего препарата активацию экспрессии IL-12. Процедурой, в данном случае, может быть иммуноферментный анализ с уровнем чувствительности, равном 4 нг/мл.

[0313] In vivo модель опухоли мыши является сходной с исследованиями человека в том аспекте, что мышей, пораженных подкожной меланомой В16, лечили так же, как предложено в протоколе исследования на людях, а именно инъекцией трансдуцированных аденовирусом дендритных клеток и активацией трансгена IL-12 мыши. После выявления регресса опухоли, повторное инфицирование клетками такой же опухоли не привело к опухолевому росту, свидетельствуя о системном противоопухолевом иммунитете.

[0314] Предполагается, что активация выработки IL-12 in vitro клетками, трансдуцированными вектором, применяемым в предложенном исследовании, обеспечивает приблизительно 500 нг IL-12/10 клеток/24 часа, как определено иммуноферментным анализом. В преклинических исследованиях с применением модели меланомы мыши, внутриопухолевое введение 106 или более трансдуцированных дендритных клеток оказалось эффективным. Однако предполагается, что необходимая внутриопухолевая инъекция может быть эффективной при меньших количествах клеток, поэтому инъекции 5×107 трансдуцированных дендритных клеток могут быть взяты как начальная точка для определения, большие или меньшие количества трансдуцированных клеток будут необходимы.

[0315] Так, in vitro клеточные линии человека и мыши, а также первичные дендритные клетки, трансдуцированные рекомбинантным аденовирусным вектором, несущим гены IL-12, характеризовались активацией экспрессии интерлейкина-12 в ответ на действие активирующего препарата в зависимом от дозировки режиме.

[0316] Аденовирусная трансдукция дендритных клеток человека при различном множественном инфицировании MOI и при различной продолжительности вирусной адсорбции оказалась эффективной, когда процесс продолжался 3 часа, а значение множественного инфицирования MOI было равным 500. Активирующий препарат индуцировал экспрессию IL-12 в таких трансдуцированных дендритных клетках человека (Фигура 9).

[0317] В экспериментах in vivo на модели меланомы мыши, описанной выше, мышам C57/BL6 проводили подкожные инъекции клеток В16 для формирования опухоли. Внутриопухолевая инъекция дендритных клеток, трансдуцированных несущим гены IL-12 мыши под контролем RheoSwitch® Therapeutic System RTS аденовирусным вектором, с последующим введением активирующего лиганда вызвала возникновение системного опухоль-специфического иммунитета. Лечение привело к регрессу опухоли. Повторное введение клеток В16 через 50 дней мышам, прошедшим терапию, показало, что клетки В16 не сформировали опухоль. Такого рода активация противоопухолевого иммунитета обусловливалась введением активирующего препарата и последующей экспрессии IL-12 трансдуцированными дендритными клетками. Активирующий препарат проявил эффект при введении как внутрибрюшинно, так и орально. См. Фигура 11 и Фигура 14.

6.3. Формы введения активирующего препарата

[0318] Активирующий препарат, в данном описании, может быть в любой из нижеперечисленных форм:

(1) 100% лабразол;

(2) Ароматизированный листерином лабразол (Latitude Pharmaceuticals Inc., USA), содержащий (a) ментол, (b) тимол, (c) эвкалиптол, (d) аспартам, (e) сахарин натрия, (f) лимонная кислота, (g) ароматизатор с запахом перечной мяты, (h) ароматизатор с запахом сливок, (i) лабразол;

(3) Миглиол 812 и фосфолипон 90G (Latitude Pharmaceuticals Inc., USA); или

(4) Миглиол 812, фосфолипон 90G и витамин Е токоферола полиэтиленгликоля сукцинат (Latitude Pharmaceuticals Inc., USA).

6.4. Введение

[0319] В то время, как можно предложить различные концентрации и специфические протоколы, один из вариантов лечения пациентов включает в себя внутриопухолевую(ые) инъекцию(ии) трансдуцированных аутологичных дендритных клеток (AdDCs) в концентрации 5×107, взвешенных в стерильном солевом растворе и модифицированных для экспрессии IL-12 человека (интерлейкина-12 человека) под контролем RheoSwitch® Therapeutic System RTS, в комбинации с оральным введением активирующего препарата (RG-115932).

6.4.1. Первичное лечение

[0320] День 1. Осмотр стационарного больного: на 1 день проводят общее физическое обследование (включая жизненные параметры, вес и статус ECOG). Берут мочу и кровь для общего химического анализа сыворотки, анализа мочи и гематологического анализа (профиль безопасности). Приблизительно за 3 часа до внутриопухолевой инъекции in vitro модифицированных in vitro дендритных клеток, каждому пациенту вводят активирующий препарат (группа 1 - 0.01 мг/кг, 0.3 мг/кг, 1.0 мг/кг и 3 мг/кг) сразу после приема пищи. В 1 день, для оценки фармакокинетики единичной дозы активирующего препарата и его основных метаболитов, кровь берут с определенными временными интервалами (перед дозой активирующего препарата, через 0.5, 1, 1.5, 2, 4, 6, 8, 12, 16 и 24 часа после введения дозы). Каждому субъекту делают единичную внутриопухолевую инъекцию 5×107 трансдуцированных аденовирусом аутологичных дендритных клеток, модифицированных для экспрессии IL-12 человека под контролем RheoSwitch® Therapeutic System RTS. За пациентами тщательно наблюдают на предмет возникновения локальных реакций в месте инъекции и/или реакций гиперчувствительности. Дни 2-14. Осмотр стационарного больного. Со 2 по 14 день каждому субъекту сразу после еды дают дозу активирующего препарата. Ежедневно, со 2 по 14 день протоколируются жизненные параметры и побочные реакции. На день 4±24 часа, у приблизительно половины пациентов берут биоптаты опухоли и/или дренирующих опухоль лимфоузлов для измерения уровня IL-12 человека и клеточной иммунной реакции. На 8 день проводят взвешивание. На день 8±24 часа, у пациентов, не прошедших биопсию на 4 день, берут биоптаты опухоли и/или дренирующих опухоль лимфоузлов для измерения уровня IL-12 человека и клеточной иммунной реакции. Для определения потенциональных антител и клеточной иммунной реакции на аденовирус и/или компоненты RheoSwitch® Therapeutic System RTS на 4 день ± 24 часа и 8 день ± 24 берут анализы крови. Также, оценивают цитокиновый профиль сыворотки, чтобы выяснить, повлияло ли введение трансгена IL-12 на экспрессию других цитокинов. На 8 день, берут мочу и кровь для общего химического анализа сыворотки, анализа мочи и гематологического анализа (профиль безопасности). На 8 день, для оценки фармакокинетики/ADME (всасывания, распределения, метаболизма и выведения) активирующего препарата и его основных метаболитов в стационарной фазе, кровь берется с определенными временными интервалами (перед дозой активирующего препарата, через 0.5, 1, 1.5, 2, 4, 6, 8, 12, 16 и 24 часа после введения дозы).

[0321] День 14. Осмотр стационарного больного: На 14 день каждый пациент получает дозу активирующего препарата сразу после приема пищи. Каждый субъект проходит физическое обследование (включая жизненные параметры, вес и статус ECOG). берется моча и кровь для общего химического анализа сыворотки, анализа мочи и гематологического анализа (профиль безопасности). Для определения потенциальных антител и клеточной иммунной реакции на аденовирус и/или компоненты RTS на 14 день ± 24 часа берут анализы крови. Также, оценивают цитокиновый профиль сыворотки, чтобы выяснить, изменилась ли экспрессия других цитокинов.

[0322] Во время определенных стационарных или амбулаторных осмотров пациенты сдают кровь для определения потенциональных антител и клеточной иммунной реакции на аденовирус и/или компоненты RheoSwitch® Therapeutic System RTS. Также, оценивают цитокиновый профиль сыворотки. Для выявления гуморальной иммунной реакции на аденовирусный вектор, применяют блокирующий инфицирующую способность протокол AdVeGFP (Gambotto, Robins et al. 2004). Оценить реакцию антител на компоненты RheoSwitch® Therapeutic System RTS можно, применяя вестерн блоттинг или иммуноферментный анализ сыворотки пациента и белков RheoSwitch® Therapeutic System RTS, синтезированных вектором экспрессии. Кроме того, для оценки уровня экспрессии IL- 12, интерферона-гамма, IP-10 и других цитокинов Th1/Th2, как IL-2, фактор некроза опухолей-альфа, IL-4, IL-5 и 1L-10, проводят мультиплексный иммуноанализ с помощью Luminex. Такие исследования антител и цитокинов потребуют около 10 мл крови.

[0323] Анализы на клеточную иммунную реакцию требуют около 50-60 мл крови, из которой выделяют субпопуляции CD4 и CD8 T-клеток. Выделенные T-клетки смешивают с аутологичными дендритными клетками, трансдуцированными пустым вектором AdV, векторами AdV-RTS или AdV-RTS-hIL12 в процедуре иммуноферментного спот-анализа (ELISPOT) для оценки синтеза интерферона-гамма T-клетками, активированными антигенами AdV-RTS, если таковые присутствуют. Подобные же анализы проводят с применением клеток опухоли и/или дендритных клеток, экспрессирующих перекрестно реагирующие антигены меланомы, для выявления раннего противоопухолевого ответа. При необходимости, проводят и другие дополнительные анализы.

[0324] На день 14±24 часа, при наличии доступной для исследования ткани, у всех пациентов берут биоптаты опухоли и/или дренирующих опухоль лимфоузлов для измерения IL-12 человека и клеточной иммунной реакции. Протоколируют побочные реакции. После окончания всех процедур, на 14 день все пациенты выписываются из стационара с просьбой придти на амбулаторный осмотр приблизительно через 3-4 недели.

[0325] Осмотр в целях раннего прекращения исследования: если пациент не может завершить фазу стационарного лечения, перед выпиской будут проведены процедуры ранней выписки. Каждый пациент проходит физическое обследование (включая жизненные параметры, вес и статус ECOG). Берут моча и кровь для общего химического анализа сыворотки, анализа мочи и гематологического анализа (профиль безопасности). Кровь берут для определения потенциальных антител и клеточной иммунной реакции на аденовирус и/или компоненты RheoSwitch® Therapeutic System RTS, как описано выше. Также, кровь берут, чтобы выяснить, изменилась ли экспрессия других цитокинов, оценивают цитокиновый профиль сыворотки, как описано выше. При наличии доступной для исследования ткани, у всех пациентов берут биоптаты опухоли и/или дренирующих опухоль лимфоузлов для измерения уровня IL-12 человека и клеточной иммунной реакции. Протоколируются побочные реакции. После завершения всех процедур ранней терминации, каждый субъект выписывается из стационара с просьбой придти на амбулаторный осмотр через приблизительно 3-4 недели.

[0326] Месяц 1-4. Контрольные посещения: Во время контрольного периода в месяцы 1-4 протоколируют побочные эффекты. Во время посещений в месяцы 1, 2 и 3, пациент проходит физическое обследование (включая жизненные параметры, вес и статус ECOG), также берется моча и кровь для общего химического анализа сыворотки, анализа мочи и гематологического анализа (профиль безопасности). На 1 и 3 месяце кровь берут для определения потенциальных антител и клеточной иммунной реакции на аденовирус и/или компоненты RheoSwitch® Therapeutic System RTS. Также, в 1 месяц кровь берется, чтобы выяснить, изменилась ли экспрессия других цитокинов, оценивают цитокиновый профиль сыворотки. Во время посещения в 1 месяц, при наличии доступной для исследования ткани, у всех пациентов берут биоптаты опухоли и/или дренирующих опухоль лимфоузлов для измерения уровня IL-12 человека и клеточной иммунной реакции. Сканирование позитронной эмиссионной компьютерной томографией СТ/РЕТ проводится на 2 и 4 месяце для оценки общего прогресса или регресса заболевания.

[0327] Месяц 5-6. Контрольные посещения: если на 3 или 4 месяц обнаружены проявления токсичности, связанной с приемом препаратов, на 5 и 6 месяц проводят контрольные посещения. В течение 5 и 6 месяца протоколируются побочные реакции. Состояние каждого пациента может контролироваться по телефону персоналом клиники в течение 5 месяца вплоть до амбулаторного осмотра на 6 месяц. Если токсичность, связанная с приемом препаратов, возникает или продолжается в течение 5 месяца и расценивается лечащим врачом как серьезная, нестабильная или для гарантии дальнейшей адекватной оценки состояния, персонал клиники не только контролирует состояние пациента по телефону, но и просит этого пациента придти в клинику. Во время посещения на 6 месяц, пациент проходит контрольное физическое обследование (включая жизненные параметры, вес и статус ECOG), также берут мочу и кровь для общего химического анализа сыворотки, анализа мочи и гематологического анализа (профиль безопасности). На 6 месяц кровь берут для определения потенциальных антител и клеточной иммунной реакции на аденовирус и/или компоненты RheoSwitch® Therapeutic System RTS. Сканирование позитронной эмиссионной космпьютерной томографией СТ/РЕТ проводится для оценки общего прогресса или регресса заболевания.

[0328] Критерии дозировки и прекращения приема активирующего препарата: Если определена лимитруемая дозой токсичность (DLT; т. е. степень токсичности превышает 3 у более 2 из 3 пациентов, взятых из группы 1, по версии 3 общих терминологических критериев побочных эффектов (СТСАЕ)), на данном уровне дозировки следующей группе из 3 пациентов активирующий препарат будет вводиться именно в этой дозировке. Если лимитируемая дозой токсичность DLT наблюдается у 1 или нескольких субъектов в группе повышенной дозировки, повышение дозы приостанавливается, и максимально переносимой дозой (MTD) считается следующая низшая доза, в противном случае повышение дозы возобновляется, пока не достигнет максимально переносимой дозы или максимальной дозы 10 мг/кг (что бы ни произошло раньше).

[0329] Безопасность, переносимость и трансгенная функция для всех пациентов в каждой группе оценивается в течение 1 месяца после инъекции AdDC до приема следующей более высокой дозы активирующего препарата.

[0330] Если степень токсичности у субъекта превышает 3 по СТСАЕ v3.0, и это вероятно, возможно или определенно связано с лечением согласно исследованию, прием активирующего препарата этим субъектом будет прекращен, и пациент будет направлен на процедуры ранней выписки.

[0331] Критерии завершения исследования: Если степень токсичности у более 70% субъектов в группе превышает 3 по СТСАЕ v3.0, и это возможно, вероятно или определенно связано с лечением согласно исследованию, прием активирующего препарата всеми пациентами будет прекращен, и все пациенты будут направлены на процедуры ранней выписки.

[0332] Исследуемый экспериментальный препарат: комбинация двух способов лечения, относящихся к исследованию, оценивается на безопасность, переносимость, функцию трансгена и иммунологические эффекты данного процесса. Субъектам с меланомой 3 или 4 стадии орально, в форме раствора ежедневно, единичными дозами 0.01 мг/кг, 0.1 мг/кг, 1.0 мг/кг and 10.0 мг/кг, в течение 14 дней последовательно вводится низкомолекулярный активирующий препарат в комбинации с единовременной внутриопухолевой инъекцией 5×107 трансдуцированных аденовирусом аутологичных дендритных клеток, модифицированных для экспрессии IL-12. Также, у субъектов есть возможность получить дополнительную внутриопухолевую инъекцию аутологичных дендритных клеток в комбинации с 14-дневным приемом активирующего препарата.

6.5. Взаимосвязь оценки безопасности и оценки функции трансгена и иммунологических эффектов

[0333] Клеточную культуру исследовали на эндотоксин во время сбора и до выпуска окончательного продукта. Приемлемый уровень эндотоксина составляет менее 5 EU/кг веса тела. Для дальнейшего анализа трансдуцированные и нетрансдуцированные дендритные клетки замораживали.

[0334] Оценка безопасности: безопасность единичной внутриопухолевой инъекции трансдуцированных аденовирусом аутологичных дендритных клеток в комбинации с орально принимаемым активирующим препаратом оценивается физическим осмотром, жизненными параметрами, химическим анализом сыворотки, анализом мочи, гематологическим анализом, нежелательными реакциями, а также гуморальной и клеточной иммунной реакцией на аденовирус и компоненты RheoSwitch® Therapeutic System RTS в течение лечебного курса и последующих 12 месяцев. При наблюдении, женщинам, которые могут быть беременными, делают тесты на беременность. Во время наблюдения, а также в 0 день повторного лечения у субъектов берется список принимаемых лекарственных препаратов для выявления связи между принимаемыми лекарствами и потенциальными нежелательными реакциями. Примерное количество крови, равное 89 чайным ложкам (439 мл) берется у пациентов во время наблюдения и начальной фазы стационарного лечения (26 дней), помимо лейкофореза. Примерное количество крови, равное 75 чайным ложкам (370 мл) берется у пациентов во время фазы повторного стационарного лечения (26 дней, через 5-6 недель после начальной госпитализации), помимо лейкофореза. Примерное количество крови, равное 46 чайным ложкам (227 мл) берут у пациентов во время постамбулаторной фазы (1-6 месяцы).

[0335] Физическое обследование: Во время предусмотренных стационарных и амбулаторных осмотров проводят полное физическое обследование. Во время наблюдения также протоколируют историю болезни и демографические данные каждого пациента.

[0336] Жизненные параметры: В каждое запланированное физическое обследование включена оценка жизненных параметров, однако она проводится также и во время всех стационарных и амбулаторных обследований. К жизненным параметрам относят артериальной давление, пульс, температуру и характеристики дыхания. Во время предусмотренных обследований также измеряются рост и вес. Жизненные параметры (исключая рост и вес) протоколируются каждый час в течение первых двух, а затем каждые 8 часов после приема активирующего препарата.

[0337] Химический анализ крови: Во время каждого стационарного или амбулаторного приема, у каждого пациента не натощак берут произвольный образец крови и сыворотки. Проводится оценка следующих параметров: AST (аспартат аминотрансфераза), ALT (аланин аминотрансфераза), GGT (гаммаглутамил транспептидаза), LDH (лактат дегидрогеназа), LAP (лейцин аминопептидаза), щелочная фосфатаза, креатинин, общий билирубин, общий белок, альбумин, азот мочевины крови, общий холестерин, глюкоза и электролиты.

[0338] Анализ мочи: Во время каждого стационарного или амбулаторного приема, у каждого пациента берется произвольный образец средней струи мочи. Проводится оценка следующих параметров: описание цвета и вида, относительная плотность, рН, глюкоза, кетоновые тела, белок, количество эритроцитов и лейкоцитов и пиролурия.

[0339] Гематологический анализ: Во время каждого стационарного или амбулаторного приема, у каждого пациента не натощак берут произвольный образец крови. Проводится оценка следующих параметров: общий клинический анализ крови, включая количество лейкоцитов, дифференциальный подсчет лейкоцитов, подсчет эритроцитов, гематокрит, гемаглобин, индексы эритроцитов и подсчет тромбоцитов. Также, оцениваются активированное парциальное тромбопластиновое время и протромбиновое время.

[0340] Нежелательные реакции: Для оценки токсичности во время курса и в пост-лечебный 3-6 месячный период применяются общие номенклатурные критерии токсичтости и побочных явлений NCI (СТСАЕ версия 3). Побочный эффект - это любая реакция, эффект или другое нежелательное явление (признаки, симптомы, изменения в лабораторных показателях), связанные с применением тестируемого объекта (препарат, биопрепарат или прибор), имеющий отношение к тестируемому объекту или нет. Серьезный побочный эффект/явление - это любой побочный эффект или явление, вызывающий любое из ниже перечисленных последствий: смерть, угрожающее жизни состояние, врожденная аномалия, госпитализация или продление настоящей госпитализации, либо стойкое или серьезное увечье/нетрудоспособность. Важные связанные с лечение случаи/явления, которые не могут привести к смерти, угрожать жизни или вызвать необходимость госпитализации, могут быть рассмотрены как серьезные нежелательные реакции, если на основании соответствующего медицинского заключения, они могут подвергнуть опасности пациента или могут вызвать необходимость медицинского или хирургического вмешательства во избежание исходов, перечисленных в данном определении.

[0341] Опасность нежелательных реакций классифицируют следующим образом: I степени (легкая), 2 степени (средняя), 3 степень (тяжелая), 4 степени (угрожающая жизни или увечащая), 5 степени (вызвавшая смерть). Связь между нежелательной реакцией и терапией исследования определяется на основе клинического заключения и следующих определений: a) определенно связанная - это нежелательная реакция, следующая согласно логичной временной последовательности после применения терапии исследования, возникшая в соответствии с известной реакцией на терапию исследования и, в случае соответствия протоколу, подтверждается наступлением улучшения после прекращения применения терапии исследования (положительная отмена препарата) и повторным возникновением после возобновления лечения (положительное повторное назначение препарата), но при этом не может быть удовлетворительно объяснена известными характеристиками клинического состояния пациента или другой проводимой терапией, b) вероятная - это нежелательная реакция, следующая согласно временной последовательности после применения терапии исследования, возникшая в соответствии с известной реакцией на терапию исследования и, в случае соответствия протоколу, подтверждается наступлением улучшения после прекращения применения терапии исследования, но при этом не может быть удовлетворительно объяснена известными характеристиками клинического состояния пациента или другой проводимой терапией, c) Возможная - это нежелательная реакция, следующая согласно временной последовательности после применения терапии исследования, возникшая в соответствии с известной реакцией на терапию исследования, но может быть вызвана известными характеристиками клинического состояния пациента или другой проводимой терапией, d) Не связанная - это нежелательная реакция, о которой существует достаточно достоверной информации для утверждения, что ее этиология не связана с механизмом исследования. Две или более из ниже перечисленных переменных применимы к не связанной нежелательной реакции: 1) Нежелательная реакция не следует согласно временной последовательности после применения терапии исследования, 2) Нежелательная реакция легко объяснима клиническим состоянием пациента или другой проводимой терапией, 3) Нежелательная реакция не исчезает после уменьшения дозы или прекращения терапии (предполагая, что резонно ожидать исчезновения нежелательной реакции во время периода наблюдения).

[0342] Все наблюдаемые или подтвержденные нежелательные явления, возникшие после приема пациентов на лечение, протоколируются. Любое состояние, имевшее место при приеме и ухудшившееся, протоколируется как нежелательное явление. Нежелательные явления определяются на основании возникших симптомов и клиническом обследовании во время осмотров. Во время каждого стационарного или амбулаторного осмотра, пациентам задаются непрямые вопросы на предмет нежелательных действий, например: «Как вы себя чувствуете?» Изменения в лабораторных параметрах протоколируются как нежелательные явления, в случае если они сочтутся клинически важными, либо если они вызывают необходимость клинических изменений или действий, как, например, начать соответствующее лечение.

[0343] Потенциальная гуморальная или клеточная иммунная реакция на аденовирус и/или компоненты RheoSwitch® Therapeutic System RTS:

Во время определенных стационарных или амбулаторных осмотров, у пациентов берется кровь для оценки потенциальной гуморальной или клеточной иммунной реакции на аденовирус, компоненты RheoSwitch® Therapeutic System RTS и опухолевые антигены. Для выявления гуморального иммунного ответа на аденовирусный вектор применяется процедура блокирования инфицирующей способности AdVeGFP (Nwanegbo, et al. 2004). Реакция антител на компоненты RheoSwitch® Therapeutic System RTS оценивается вестерн блоттингом и/или иммуноферментным анализом сыворотки пациентов и белками RheoSwitch® Therapeutic System RTS, синтезированными вектором экспрессии. Кроме того, для оценки уровня IL-12, интерферона- гамма, IP-10 и других цитокинов Th1/Th2, как IL-2, фактор некроза опухолей-альфа, IL-4, IL-5 и IL-10, проводят мультиплексный иммуноанализ с помощью Luminex. На эти анализы цитокинов и антител требуется приблизительно 10 мл крови.

[0344] Анализы на клеточную иммунную реакцию требуют около 50-60 мл крови, из которой выделяют субпопуляции CD4 и CD8 Т-клеток. Выделенные T-клетки смешивают с аутологичными дендритными клетками, трансдуцированными пустым вектором AdV, векторами AdV-RTS или AdV-RTS-hlL12 в процедуре иммуноферментного спот-анализа (ELISPOT) для оценки синтеза интерферона-гамма T-клетками, активированными антигенами AdV-RTS, если таковые присутствуют. Подобные же анализы проводят с применением клеток опухоли и/или дендритных клеток, экспрессирующих перекрестнореагирующие антигены меланомы, для выявления раннего противоопухолевого ответа. При необходимости, проводят дополнительные анализы.

[0345] ТЕСТ НА БЕРЕМЕННОСТЬ: Женщины, способные выносить плод, проходят тест на беременность, сдавая пробу мочи, при наблюдении и перед первым стационарным осмотром на стадии повторного лечения. Тест проводится, по меньшей мере за 72, 48, 24 или 12 часов до приема активирующего препарата, во время как первичной, так и повторной терапии. Если тест мочи дает положительный результат, его подтверждают тестом сыворотки. В случае подтверждения беременности, пациентке не разрешается начинать курс терапии или повторной терапии. Тестирование на беременность может быть повторено столько раз, сколько необходимо.

[0346] ОПРОС О СОПУТСТВУЮЩЕМ ЛЕЧЕНИИ: Во время наблюдения и до первого осмотра на стадии повторной терапии, у каждого пациента запрашивается список принимаемых препаратов и проводимых процедур для определения любой возможной связи с нежелательными реакциями, возникающими во время курса терапии и стадии контроля.

[0347] КРИТЕРИИ ПОВТОРНОЙ ТЕРАПИИ: Если пациент перенес начальную прививку AdDC без ограничивающих нежелательных реакций, а также у него не было замечено прогрессирования заболевания или спада симптомов во время потенциального повторного лечения, может быть рассмотрен вопрос о повторной терапии. Если, по мнению руководителя исследования и лечащего врача, существует потенциальная клиническая польза в проведении дополнительной(ых) внутриопухолевой(ых) инъекции(ий) аутологичных дендритных клеток в комбинации с активирующим препаратом (максимально переносимая доза группы 1) в течение 14 последовательных дней, данному пациенту предлагают повторную терапию, при соответствии следующим критериям:

1. Не было выявлено лимитирующей токсичности,

2. Заболевание пациента устойчиво, либо нет клинических или субъективных признаков улучшения и

3. Не получено подтверждения гуморальной или клеточной иммунной реакции на аденовирусные компоненты RheoSwitch® Therapeutic System.

[0348] ОЦЕНКА ТРАНСГЕННОЙ ФУНКЦИИ И ИММУНОЛОГИЧЕСКИХ ЭФФЕКТОВ:

Для оценки in vivo трансгенной экспрессии интерлейкина-12 и клеточного иммунного ответа проводятся пункции и биопсии опухоли и дренирующих опухоль лимфоузлов во время наблюдения (дни - 12 - - 7), на 4, 8 и 14 дни курса терапии и на 1 месяце контрольного постстационарного периода. Биоптаты опухоли и инфильтрованных опухолью лимфоузлов берут с помощью аспирации тонкой иглой в дни -12 - -7 и день 14 периода повторной терапии для оценки in vivo трансгенной экспрессии интерлейкина-12 и клеточного иммунного ответа. Биоптаты исследуются микроскопически и иммуногистохимически для оценки клеточной инфильтрации Т-клеток в опухоль и дренирующие лимфоузлы. Срезы биоптатов исследуются патологом, не знающем о сущности объекта исследования. Чтобы различить эндогенную и индуцированную экспрессию интерлейкина-12 дендритными клетками в опухоли и инфильтрованных лимфатических узлах, применяется полимеразная цепная реакция с обратной транскрипцией ОТ-ПЦР на РНК с соответственно приготовленными праймерами. Для оценки цитокинового профиля сыворотки, во время наблюдения, на 4, 8 и 14 день курса терапии, через месяц во время постстационарного периода наблюдения, и в - 12, - 7, 8 и 14 день повторной терапии у пациентов берется кровь на анализ. Цитокиновый профиль позволяет выяснить, повлияло ли введение трансгена IL-12 на экспрессию других цитокинов. Для оценки уровня 1L-12, интерферона-гамма, IP-10 и других цитокинов Th1/Th2, как IL-2, фактора некроза опухолей-альфа, IL-4, IL-5 и IL-10, проводят мультиплексный иммуноанализ с помощью Luminex. На эти анализы цитокинов и антител требуется приблизительно 10 мл крови.

[0349] ФАРМАКОКИНЕТИКА АКТИВИРУЮЩЕГО ПРЕПАРАТА В СЛУЧАЕ ЕДИНИЧНОЙ ДОЗЫ И В СТАБИЛЬНОМ СОСТОЯНИИ:

Для оценки фармакокинетики/ADME (всасывания, распределения, метаболизма и выведения) единичной дозы, кровь берется в определенные временные фазы (перед приемом препарата, через 0.5, 1, 1.5, 2, 4, 6, 8, 12, 16 и 24 часа после утреннего приема), для их оценки в стационарном состоянии кровь берется на 8 день курса терапии.

Для получения нижеперечисленных фармакокинетических предельных значений активирующего лиганда и его основных метаболитов в стационарном состоянии плазма исследуется высокоэффективной жидкостной хроматографией:

Cmax (максимальная отмеченная концентрация плазмы), Tmax (время выявления максимальной концентрации плазмы), Ctrough (минимальная отмеченная концентрация плазмы, вычисленная как среднее значение в интервале от 0 до 24 часов), C24h (концентрация плазмы при значении времени, равном 24 часам), AUC24h (площадь области под кривой зависимости концентрации плазмы от времени в интервале от 0 до 24 часов), Ke (наблюдаемая скорость элиминации) и T112 (наблюдаемое время полувыведения). Следует иметь в виду, что приведенные выше примеры являются исключительно иллюстративными и не ограничивают настоящее изобретение каким-либо образом, а приведенные пункты охватывают все варианты реализации, описанные в деталях или теоретически осуществимые согласно изобретению.

ЛИТЕРАТУРА

Abdi K., et al. (2006). T-cell control of IL-12p75 production. Scand J Immunol 64: 83-92.

Adorini, L. (1999). Interleukin-12, a key cytokine in Till-mediated autoimmune diseases. Cell Mol Life Sci 55: 1610-25.

Adorini, L., (2001). Interleukin 12 and autoimmune diabetes. Nat Genet 27: 131-2.

Adorini, L., et al. (2002). Understanding autoimmune diabetes: insights from mouse models. Trends Mol Med 8: 31-8.

Adorini, L., et al. (1996). The role of IL-12 in the pathogenesis of Th1 cell-mediated autoimmune diseases. Ann N Y Acad Sci 795: 208-15.

Akhtar, N., et al. (2004). Interleukin-12 inhibits tumor growth in a novel angiogenesis canine hemangiosarcoma xenograft model. Neoplasia 6: 106-16.

Akiyama, Y., et al. (2000). Enhancement of antitumor immunity against B16 melanoma tumor using genetically modified dendritic cells to produce cytokines. Gene Ther 7: 2113-21.

Al-Mohanna, F., et al. (2002). IL-12-dependent nuclear factor-kappaB activation leads to de no vo synthesis and release of IL-8 and TNF-alpha in human neutrophils. J Leukoc Biol 72: 995-1002.

Aliberti, J.C., et al. (1996). Interleukin-12 mediates resistance to Trypanosoma cruzi in mice and is produced by murine macrophages in response to live trypomastigotes. Infect Immun 64: 1961-7.

Allavena, P., et al. (1994). Interleukin-12 is chemotactic for natural killer cells and stimulates their interaction with vascular endothelium. Blood 84: 2261-8.

AlIi, R.S. and Khar, A. (2004). Interleukin-12 secreted by mature dendritic cells mediates activation of NK cell function. FEBS Lett 559: 71-6.

Alzona, M., et al. (1996). Interleukin-12 activates interferon-gamma production by targeted activation of CD30+ T cells. Ann N Y Acad Sci 795: 127-36.

Amemiya, K., et al. (2006). Interleukin-12 induces a Th1-like response to Burkholderia mallei and limited protection in BALB/c mice. Vaccine 24: 1413-20.

Anderson, R.D., et al. (2000). Ad-RTS-hIL-1. A simple method for the rapid generation of recombinant adenovirus vectors. Gene Therapy, 4, 1034-1038.

Araujo, M.I., et al. (2001). Interleukin-12 promotes pathologic liver changes and death in mice coinfected with Schistosoma mansoni and Toxoplasma gondii. Infect Immun 69: 1454-62.

Arthur, F.F., et al. (1997). A comparison of gene transfer methods in human dendritic cells. Cancer Gene Therapy, 4, 17-25.

Arulanandam, B.P., et al. (1999). IL-12 is a potent neonatal vaccine adjuvant. Eur J Immunol 29: 256-64.

Athie, M.V., et al. (2000). IL-12 selectively regulates STAT4 via phosphatidylinositol 3-kinase and Ras-independent signal transduction pathways. Eur J Immunol 30: 1425-34.

Athie-Morales, V., et al. (2004). Sustained IL-12 signaling is required for Th1 development. J Immunol 172: 61-9.

Atkins, M.B., et al. (1999). High-dose recombinant interleukin 2 therapy for patients with metastatic melanoma: analysis of 270 patients treated between 1985 and 1993. J Clin Oncol; 17: 2105-2116.

Atkins, M.B., et al. (1997). Phase I evaluation of intravenous recombinant human interleukin 12 in patients with advanced malignancies. Clin Cancer Res 3: 409-17.

Balch, СМ., et al. (2001). Final version of the American joint committee on cancer staging system for cutaneous melanoma. Journal of Clinical Oncology, 19: 3635-3648, 2001.

Berard, F., et al. (2000). Cross-priming of naive CD8 T cells against melanoma antigens using dendritic cells loaded with killed allogeneic melanoma cells. J Exp Med 192: 1535-44.

Bertagnolli, M.M., et al. (1992). IL-12 augments antigen-dependent proliferation of activated T lymphocytes. J Immunol 149: 3778-83.

Bhardwaj, N., et al. (1996). IL-12 in conjunction with dendritic cells enhances antiviral CD8+CTL responses in vitro. J CHn Invest 98: 715-22.

Biedermann, Т., et al. (2006). BL-12 instructs skin homing of human Th2 cells. J Immunol 111: 3763-70.

Brunda, MJ, and Gately, M.K. (1994). Antitumor activity of interleukin-12. Clin Immunol Immunopathol 71: 253-5.

Buchanan, J.M., et al. (1995). Interleukin 12 alters the isotype-restricted antibody response of mice to hen eggwhite lysozyme. Int Immunol 7: 1519-28.

Butterfield, L., et al. (2003). Determinant spreading associated with clinical response in dendritic cell-based immunotherapy for malignant melanoma. Clinical Cancer Research, 9, 998-1008.

Cella M., et al, (1999) Maturation, Activation, and Protection of Dendritic Cells Induced by Double stranded РНК. J. Exp. Med. 189, 821-829.

Chada, S., et al. (2003). Cytokine- and chemokine-based gene therapy for cancer. Curr Opin Mot Ther, 5: 463-474.

Faure, F., et al. (1998). Tumor-specific immune response: current in vitro analyses may not reflect the in vivo immune status. Crit Rev Immunol 18: 77-86.

Gambotto, Robins et al. 2004

Gilboa, E. (2007). DC-based Clinical Vaccines. J. Clinic. Invest. 117: 1195-1203.

Gogas, H., et al. (2006). Prognostic significance of autoimmunity during treatment of melanoma with interferon. New England Journal of Medicine, 354, 709-718.

Heinzerling, L., et al. (2005). Intratumoral injection of DNA encoding human interleukin 12 into patients with metastatic melanoma: clinical efficacy. Hum Gene Ther 16: 35-48.

Itoh, Т., et al. (1994). Partial purification of murine tumor-associated peptide epitopes common to histologically distinct tumors, melanoma and sarcoma, that are presented by H-2Kb molecules and recognized by CD8+tumor-infiltrating lymphocytes. J Immunol 153: 1202-15.

Kaka, K.S., et al. (2008). Using Dendritic Cell Maturation and IL-12 Producing Capacity as Markers of Functin; A Cautionay Tale. J. Immunother, 31 (4): 359.

Kalinski, P., et al. (2005). Natural killer-dendritic cell cross-talk in cancer immunotherapy. Expert Opinion Biological Therapy, 1303-1315.

Kang, W.K., et al. (2001). Interleukin 12 gene therapy of cancer by peritumoral injection of transduced autologous fibroblasts: outcome of a phase I study. Hum Gene Ther 12: 671-84.

Karzenowski, D., et al. (2005). Inducible control of transgene expression with ecdysone receptor: gene switches with high sensitivity, robust expression, and reduced size. Biotechniques 39, 191-192.

Kikuchi, T. (2006). Genetically modified dendritic cells for therapeutic immunity. Journal of Experimental Medicine, 208, 1-8.

Kumar, P., and Katakam. A. (2007). RheoSwitch® System: a highly sensitive ecdysone receptor-based gene regulation system induced by synthetic small-molecule ligands. In Gene Transfer: Delivery and Expression of DNA and RNA b Ed. Friedmann, T. and Rossi, J., Cold Spring Harbor Laboratory Press, 643-651.

Liu, Y., et al. (2002). In situ adenoviral interleukin 12 gene transfer confers potent and long-lasting cytotoxic in glioma. Cancer Gene Therapy, 9, 9-15.

Mazzolini, G., et al. (2005). Intratumoral injection of dendritic cells engineered to secrete interleukin-12 by recombinant adenovirus in patients with metastic gastrointestinal carcinomas. Journal of Clinical Oncology, 23, 999-1010.

Murphy, A., et al. (2005). Gene modification strategies to induce tumor immunity. Immunity, 22, 409-414.

Nagayama, H., et al. (2000). IL-12 Responsiveness and Expression of IL-12 Receptor in Human Peripheral Blood Monocyte-derived Dendritic Cells. J. Immunol. 165: 59-66.

Nwanegbo E., et al. (2004). Prevalence of neutralizing antibodies to adenoviral serotypes 5 and 35 in the adult populations of The Gambia, South Africa, and the United States. Clinical Diagnostic Lab Immunology. March, 11(2), 351-357.

Palli, S.R., et al. (2003). Improved ecdysone receptor-based inducible gene regulation system. European Journal of Biochemistry, 270, 1308-1315.

Philpott, NJ., et al. (2004). Adenovirus-induced maturation of Dendritic Cells through a PI3 kinase-mediated TNF-alpha induction pathway. PNAS 101, 6200-6205.

Ranieri, E., et al. (1999). Dendritic cells transduced with an adenovirus vector encoding epstein-barr virus latent membrane protein 2B: a new modality for vaccination. Journal of Virology, 73, 10416-10425.

Ribas, A., et al. (2002). Cancer immunotherapy using gene-modified dendritic cells. Cancer Gene Therapy, 2, 57-78.

Romani, N., et al. (1994). Proliferating dendritic cell progenitors in human blood. Journal of Experimental Medicine, 180, 83-93.

Romani L, et al. (1997). Interleukin-12 in infectious diseases. Clin Microbiol Rev 10: 611-36.

Rothe, H., et al. (1996). Interleukin-12 gene expression mediates the accelerating effect of cyclophosphamide in autoimmune disease. Ann N Y Acad Sci 795: 397-9.

Sangro, В., et al. (2004). Phase I trial of intratumoral injection of an adenovirus encoding interleukin-12 for advanced digestive tumors. J CHn Oncol 22: 1389-97.

Sangro, В., et al. (2005). Gene therapy of cancer based on interleukin 12. Curr Gene Ther 5: 573-81.

Satoh, Y., et al. (2002). Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol 2: 337-49.

Satoskar, A.R., et al. (2000). IL-12 gene-deficient C57BL/6 mice are susceptible to Leishmania donovani but have diminished hepatic immunopathology. Eur J Immunol 30: 834-9.

Schopf, L.R., et al. (1999). Interleukin-12 is capable of generating an antigen-specific Th1-type response in the presence of an ongoing infection-driven Th2-type response. Infect Immun ol: 2166-71.

Spatz, M., et al., (2000). Immune response to the Herpes Simplex Type I regulatory Proteins ICP8 and VP 16 in Infected Persons. J. Med. Virol. 62, 29-36.

Svane, I.M., et al. (1999). The role of cytotoxic T-lymphocytes in the prevention and immune surveillance of tumors-lessons from normal and immunodeficient mice. Med Oncol 16: 223-38.

Tang, H.L. and Cyster, J. G., (1999). Chemokine up-regulation and activated T cell attraction by maturing dendritic cells. Science, 284, 819-822.

Tatsumi, Т., et al. (2003). Intratumoral delivery of dendritic cells engineered to secrete both interleukin (IL)-12 and IL-18 effectively treats local and distant disease in association with broadly reactive TeI-type immunity. Cancer Res 63: 6378-86.

Thomas, G.R., et al. (2000). IL-12- and IL-2-induced tumor regression in a new murine model of oral squamous-cell carcinoma is promoted by expression of the CD80 co-stimulatory molecule and interferon-gamma. Int J Cancer 86: 368-74.

Trinchieri, G. (2003). Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol 3: 133-46.

Triozzi, P.L., et al. (2005). Phase I study of the intratumoral administration of recombinant canarypox viruses expressing B7.1 and interleukin 12 in patients with metastatic melanoma. Clin Cancer Res 11: 4168-75.

Tsugawa, Т., et al. (2004). Sequential delivery of interferon-gene and DCs to intracranial gliomas promotes an effective anti-tumor response. Gene Therapy, 11, 1551-1558.

Tsung, K., et al. (1997). IL-12 induces T helper 1-directed antitumor response. J Immunol 158: 3359-65.

Vujanovic, L., et al. (2006). IL-12p70 and IL-18 gene-modified dendritic cells loaded with tumor antigen-derived peptides о recombinant protein effectively stimulate specific Type-1 CD4(+) T-cell responses from normal donors and melanoma patients in vitro. Cancer Gene Therapy, 13, 798-805.

Wigginton, J.M. and Wiltrout, R.H. (2002). IL-12/IL-2 combination cytokine therapy for solid tumours: translation from bench to bedside. Expert Opin Biol Ther, 2: 513-524.

Wolf, S.F., et al. (1994). Interleukin 12: a key modulator of immune function. Stem Cells 12: 154-68.

Yamanaka, R., et al. (2002). Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12. J Neurosurg 97: 611-8.

Yuminamochi, E., et al. (2007). Interleukin-12- and interferon-gamma-mediated natural killer cell activation by Agaricus blazei Murill. Immunology.

1. Модифицированная in vitro дендритная клетка, содержащая вектор, который содержит полинуклеотид, кодирующий переключатель гена, при этом указанный переключатель гена содержит:

(1) первую последовательность транскрипционного фактора и необязательно вторую последовательность транскрипционного фактора, причем каждая из указанных последовательностей транскрипционных факторов кодирует лиганд-зависимый транскрипционный фактор, содержащий лиганд-связывающий домен рецептора экдизона, и функционально связана с промотором, и

(2) полинуклеотид, кодирующий полипептид, последовательность которого по меньшей мере на 85% идентична полипептидной последовательности человеческого интерлейкина-12 дикого типа, и который обладает функцией интерлейкина-12, связанный с промотором, который активируется указанным лиганд-зависимым транскрипционным фактором,

причем внутриопухолевое введение указанной модифицированной in vitro дендритной клетки млекопитающему, имеющему опухоль, и первое введение указанному млекопитающему лиганда менее чем через 48 часов после введения указанной модифицированной in vitro дендритной клетки обеспечивает значительное уменьшение размера указанной опухоли у указанного млекопитающего.

2. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный вектор представляет собой аденовирусный вектор.

3. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный полинуклеотид, кодирующий переключатель гена, содержит первую последовательность транскрипционного фактора и вторую последовательность транскрипционного фактора под контролем промотора, причем белки, кодируемые указанной первой последовательностью транскрипционного фактора и указанной второй последовательностью транскрипционного фактора, взаимодействуют с образованием белкового комплекса, функционирующего в качестве лиганд-зависимого транскрипционного фактора.

4. Модифицированная in vitro дендритная клетка по п. 3, отличающаяся тем, что указанный первый транскрипционный фактор и указанный второй транскрипционный фактор соединены участком внутреннего сайта посадки рибосомы.

5. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный полинуклеотид, кодирующий переключатель гена, содержит первую последовательность транскрипционного фактора под контролем первого промотора и вторую последовательность транскрипционного фактора под контролем второго промотора, причем белки, кодируемые указанной первой последовательностью транскрипционного фактора и указанной второй последовательностью транскрипционного фактора, взаимодействуют с образованием белкового комплекса, который функционирует как лиганд-зависимый транскрипционный фактор.

6. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный вектор дополнительно содержит полинуклеотид, кодирующий интерферон-альфа, связанный с промотором, который активируется указанным лиганд-зависимым транскрипционным фактором.

7. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанная опухоль представляет собой раковую опухоль молочной железы.

8. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанная опухоль представляет собой меланому.

9. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанное введение лиганда осуществляют менее чем за один час до введения указанной модифицированной in vitro дендритной клетки или после введения указанной модифицированной in vitro дендритной клетки.

10. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанное введение лиганда осуществляют менее чем через 24 часа после введения указанной модифицированной in vitro дендритной клетки.

11. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанная дендритная клетка представляет собой дендритную клетку человека.

12. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанная дендритная клетка представляет собой аутологичную дендритную клетку.

13. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанная дендритная клетка представляет собой дендритную клетку костного мозга.

14. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный вектор представляет собой вирусный вектор.

15. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный вектор представляет собой rAD.RheoIL12.

16. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный лиганд-связывающий домен рецептора экдизона содержит мутацию в виде замены.

17. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный лиганд-связывающий домен рецептора экдизона представляет собой лиганд-связывающий домен рецептора экдизона Choristoneura fumiferana.

18. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанная полинуклеотидная последовательность, кодирующая переключатель гена, содержит полинуклеотидную последовательность, кодирующую лиганд-связывающий домен ретиноидного X-рецептора (RXR).

19. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный лиганд-связывающий домен рецептора RXR выбран из группы, состоящей из лиганд-связывающего домена рецептора RXR позвоночных, лиганд-связывающего домена рецептора RXR беспозвоночных и химерного лиганд-связывающего домена рецептора RXR.

20. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный лиганд-связывающий домен рецептора RXR позвоночных представляет собой лиганд-связывающий домен рецептора RXR человека.

21. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный лиганд представляет собой диацилгидразин.

22. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный полипептид, последовательность которого по меньшей мере на 85% идентична полипептидной последовательности человеческого интерлейкина-12 дикого типа, по меньшей мере на 90% идентичен последовательности человеческого интерлейкина-12 дикого типа.

23. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный полипептид, последовательность которого по меньшей мере на 85% идентична полипептидной последовательности человеческого интерлейкина-12 дикого типа, по меньшей мере на 95% идентичен последовательности человеческого интерлейкина-12 дикого типа.

24. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный полипептид, последовательность которого по меньшей мере на 85% идентична полипептидной последовательности человеческого интерлейкина-12 дикого типа, по меньшей мере на 99% идентичен последовательности человеческого интерлейкина-12 дикого типа.

25. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанный полипептид, последовательность которого по меньшей мере на 85% идентична полипептидной последовательности человеческого интерлейкина-12 дикого типа, представляет собой человеческий интерлейкин 12.

26. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанное введение лиганда осуществляют ежедневно в течение периода по меньшей мере от 5 до 28 дней.

27. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанное введение лиганда указанному млекопитающему осуществляют ежедневно в течение периода по меньшей мере 14 дней.

28. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанное млекопитающее представляет собой человека.

29. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанную модифицированную in vitro дендритную клетку обнаруживают в указанной опухоли через 72 часа после введения указанному млекопитающему популяции модифицированных in vitro дендритных клеток и указанного лиганда.

30. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что введение указанного лиганда указанному млекопитающему осуществляют перорально.

31. Модифицированная in vitro дендритная клетка по п. 1, отличающаяся тем, что указанное млекопитающее представляет собой человека;

причем указанная модифицированная in vitro дендритная клетка является аутологичной дендритной клеткой костного мозга человека;

при этом указанный вектор представляет собой аденовирусный вектор;

при этом указанный полинуклеотид, кодирующий переключатель гена, содержит: (1) последовательность первого транскрипционного фактора, кодирующего VP-16 трансактивационный домен и химерный лиганд-связывающий домен рецептора RXR, (2) IRES вируса энцефаломиокардита (EMCV) и (3) последовательность второго транскрипционного фактора, кодирующую ДНК-связывающий домен GAL4 и лиганд-связывающий домен Choristoneura fumiferana, содержащий мутацию в виде замены;

при этом указанный интерлейкин-12 содержит субъединицу р40 человеческого интерлейкина-12 и субъединицу р35 человеческого интерлейкина-12;

при этом указанный лиганд представляет собой диацилгидразин, который вводят один раз в день в течение 14 дней подряд, начиная с того дня, в который осуществляют введение указанных модифицированных in vitro дендритных клеток.

32. Способ получения модифицированной in vitro дендритной клетки по п. 1, включающий модифицирование дендритной клетки путем введения в указанную дендритную клетку вектора, содержащего полинуклеотид, кодирующий переключатель гена, при этом указанный переключатель гена содержит:

(1) первую последовательность транскрипционного фактора и необязательно вторую последовательность транскрипционного фактора, причем каждая из указанных последовательностей транскрипционных факторов кодирует лиганд-зависимый транскрипционный фактор, содержащий лиганд-связывающий домен рецептора экдизона, и функционально связана с промотором, и

(2) полинуклеотид, кодирующий полипептид, последовательность которого по меньшей мере на 85% идентична полипептидной последовательности человеческого интерлейкина-12 дикого типа, и который обладает функцией интерлейкина-12, связанный с промотором, который активируется указанным лиганд-зависимым транскрипционным фактором.

33. Фармацевтическая композиция для регулируемой экспрессии полипептида, обладающего функцией интерлейкина-12, причем указанный полипептид регулируемо экспрессируется после введения эффективного количества активирующего лиганда, содержащая эффективное количество модифицированных in vitro дендритных клеток по п. 1.

34. Применение популяции модифицированных in vitro дендритных клеток по п. 1 для ингибирования роста опухоли у млекопитающего, где указанные клетки предназначены для введения млекопитающему с опухолью.

35. Набор для регулируемой экспрессии полипептида, обладающего функцией интерлейкина-12, содержащий модифицированную in vitro дендритную клетку по п. 1 и активирующий лиганд.

36. Применение модифицированных in vitro дендритных клеток по п. 1 для получения лекарственного средства для индуцирования регулируемой экспрессии полипептида, по меньшей мере на 85% идентичного человеческому интерлейкину-12 дикого типа, в дендритных клетках.



 

Похожие патенты:

Настоящая группа изобретений относится к биотехнологии и иммунологии. Предложены способы получения целевого антитела с модулированным галактозилированием (варианты), способы модулирования галактозилирования целевого антитела (варианты) путем оптимизации культуральной среды.

Настоящее изобретение относится к области биотехнологии, конкретно к способу улучшения сократительной способности сердца, повышения капиллярной плотности или снижения миокардиальной гипертрофии у пациента с поврежденным миокардом, что может быть использовано в медицине.

Изобретения касаются безбелковой среды и способа ее использования. Охарактеризована безбелковая среда для культивирования клеток СНО.
Изобретение относится к области медицинской биотехнологии, а именно к применению клеточной линии меланомы кожи человека 369 ADmel, хранящейся в Специализированной коллекции культур клеток позвоночных Российской коллекции клеточных культур под регистрационным номером РККК (П) 727Д.
Изобретение относится к области биохимии. Изобретение представляет собой культуральную среду для мезенхимальных клеток человека, включающую базальную среду для мезенхимальной стволовой клетки, лизат наружного слоя лейкоцитов/тромбоцитов человека (лейкоцитарную пленку) в количестве от 5 до 20% (об./об.); инсулин в количестве от 2 от 20 мг/л; селенит натрия в количестве от 0,005 до 1,730 мг/л; этаноламин в количестве от 1 до 8 мг/л и основной фактор роста фибробластов (bFGF) в количестве от 5 до 25 нг/мл, причем упомянутая среда дополнена эмбриональной бычьей сывороткой (FBS) в количестве от 10% до 20% (об./об.) или добавкой клеточной культуры, полученной из плазмы человека (CCS) в количестве от 10 до 40% (об./об.).

Изобретение относится к области биотехнологии. Предложены способы промотирования регенерации ткани или органа у пациента путем уничтожения частично функционирующих или не функционирующих клеток или стареющих клеток, содержащих конечный продукт гликирования, а также способ преодоления эффектов старения и способ селективного уничтожения стареющих клеток у пациента.

Изобретение относится к области биохимии, в частности к индуцирующему иммунитет агенту, содержащему эффективное количество по меньшей мере одного полипептида, обладающего индуцирующей иммунитет активностью, который индуцирует цитотоксические Т-клетки, способные уничтожать опухолевые клетки, экспрессирующие полипептид CAPRIN-1.

Изобретение относится к области иммунологии и биотехнологии. Изобретение представляет собой способ получения антиген-специфических цитотоксических клеток, обладающих противоопухолевой цитотоксической активностью против клеток немелкоклеточного рака легкого, включающий получение дендритных клеток из моноцитов периферической крови больного немелкоклеточным раком легкого, культивирование дендритных клеток в присутствии рекомбинантного человеческого гранулоцитарно-макрофагального колониестимулирующего фактора (рчГМ-КСФ) и интерлейкина-4 (рчИЛ-4), с последующей нагрузкой антигенами опухоли и созреванием с помощью фактора некроза опухоли (ФНО-α) и интерлейкина-1β (ИЛ-1β) в течение 24 часов, после чего зрелые дендритные клетки культивируют совместно с неприлипающей фракцией аутологичных мононуклеарных клеток, где совместное культивирование зрелых дендритных клеток и неприлипающей фракции аутологичных мононуклеарных клеток проводят в присутствии ингибитора ИДО 1-метил-L-триптофана (1 МТ).

Настоящее изобретение относится к области генной инженерии, конкретно к клеточным культуральным средам без глутамина, дополненным аспарагином, и может быть использовано для получения полипептида, выбранного из антител, фрагментов антител и иммуноадгезинов, в клетке-хозяине млекопитающего.

Изобретение относится к области биотехнологии, конкретно к белку «цинковые пальцы» неприродного происхождения, который связывается с геном Htt, что может быть использовано в медицине.

Изобретения касаются молекулы нуклеиновой кислоты, кодирующей гомодимерный белок, гомодимерного белка, аминокислотной цепи, способной формировать гомодимерный белок, их применения для получения лекарственного средства, клетки-хозяина, фармацевтической и вакцинной композиций, способа получения гомодимерного белка или аминокислотной цепи и способа получения вакцины.

Настоящее изобретение относится к новым ДНК-аптамерам, способным прочно и специфически связываться с гельзолином. Кроме того, изобретение относится к применению этих аптамеров для оценки уровня гельзолина в данном образце и для очистки немеченного гельзолина и его аналогов в большом объёме.

Изобретение относится к области биотехнологии, конкретно к слитым белкам для ингибирования серин-протеаз, и может быть использовано в медицине. Получают слитые белки имеющие, по меньшей мере, один человеческий полипептид альфа-1-антитрипсина (ААТ), функционально связанный с Fc-полипептидом иммуноглобулина, имеющего аминокислотную последовательность, которая по меньшей мере на 98% идентична аминокислотной последовательности SEQ ID NO: 6.

Изобретение относится к области биотехнологии, конкретно к получению иммунотерапевтических композиций на основе дрожжей, содержащих муцин-1 (MUC1), что может быть использовано в медицине.

Группа изобретений относится к биотехнологии и медицине. Предложены стабильный поперечно-сшитый p53 пептидомиметический макроцикл, способ его получения и его применение.

Настоящее изобретение относится к области биотехнологии, конкретно к бифункциональному пептиду, способному активировать синтез коллагена и ингибировать продуцирование матриксных металлопротеиназ, и может быть использовано в медицине и косметологии.

Изобретения касаются пептида, синтезированного химическим способом или способом генной инженерии, композиции, включающей такой пептид, ДНК, кодирующей полипептид, вектора, включающего такую ДНК, клетки-хозяина для экспрессии представленного пептида, набора для скрининга пептида, способного подавлять инфекцию респираторного вируса, и способа скрининга пептида, способного подавлять инфекцию респираторного вируса.

Изобретение относится к области биотехнологии, конкретно к слитым белкам для ингибирования нейтрофильных серин-протеаз, и может быть использовано в медицине. Получают слитые белки имеющие по меньшей мере один полипептид человеческого секреторного ингибитора лейкоцитарных протеаз (SLPI), функционально связанный с полипептидом Fc-фрагмента иммуноглобулина, имеющего аминокислотную последовательность, которая по меньшей мере на 98% идентична аминокислотной последовательности SEQ ID NO: 10.

Изобретение относится к области биотехнологии, конкретно к аналогам фактора комплемента B, и может быть использовано в медицине для лечения заболевания, опосредованного активацией альтернативного пути комплемента.

Изобретение относится к области биохимии, в частности к индуцирующему иммунитет агенту, содержащему эффективное количество по меньшей мере одного полипептида, обладающего индуцирующей иммунитет активностью, который индуцирует цитотоксические Т-клетки, способные уничтожать опухолевые клетки, экспрессирующие полипептид CAPRIN-1.

Настоящее изобретение относится к области биотехнологии, конкретно к способу улучшения сократительной способности сердца, повышения капиллярной плотности или снижения миокардиальной гипертрофии у пациента с поврежденным миокардом, что может быть использовано в медицине.

Изобретение относится к области биотехнологии, конкретно к модифицированным in vitro дендритным клеткам, и может быть использовано в медицине. Полученные определенным способом дендритные клетки используют в составе фармацевтической композиции или набора для регулируемой экспрессии полипептида, обладающего функцией интерлейкина-12 в присуствии активирующего лиганда. Изобретение позволяет эффективно ингибировать рост опухоли у млекопитающих. 6 н. и 30 з.п. ф-лы, 18 ил., 5 пр.

Наверх