Способ получения узкодисперсных порошков сополимера стирола и α-метилстирола с использованием катионных эмульгаторов

Изобретение относится к области высокомолекулярных соединений, а именно к способу получения порошка сополимера стирола с α-метилстиролом, включающему приготовление раствора сополимера стирола с α-метилстиролом в хлороформе, добавление к полученному раствору водного раствора катионного ПАВ с получением эмульсии, затем ее перемешивание и диспергирование, удаление хлороформа на роторном испарителе, упаривание воды с получением порошка и его промывание водой с последующим высушиванием, при этом в качестве катионного ПАВ используют Катамин АБ. Технический результат - обеспечение узкодисперсных порошков сополимера стирола с α-метилстиролом, и улучшение его диэлектрических свойств, уменьшение значения угла тангенса диэлектрических потерь. 4 ил., 4 пр.

 

Изобретение относится к области высокомолекулярных соединений, а именно к способу получения монодисперсных порошков сополимера стирола и α-метилстирола.

Монодисперсные полимерные порошки сополимера стирола и α-метилстирола применяют в различных областях науки и техники: проектирование полосковых устройств СВЧ и изготовление каркасных изделий в радиоэлектронике, обладающих большей теплостойкостью по сравнению с полистиролом [Михасенок О.Я. Полимерные материалы на основе сополимеров стирола / Полимерные материалы, М. - 2004. - №11. - с. 20-25].

Получение высокодисперсных полимерных порошков является одним из актуальных направлений полимерной химии. Получение высокодисперсных порошков сополимера стирола и α-метилстирола из водных полимерных суспензий, образующихся в результате прямого синтеза, является сложной задачей, так как требует подбора стабилизаторов, обеспечивающих высокую устойчивость системы или повышение концентрации стабилизаторов, что иногда является экологически и экономически не выгодным [патент US 3725506 А, опубл. 03.04.1973; патент 4075404 А, опубл. 21.02.1978]. Кроме того, отмечается, что при высоких конверсиях сополимер начинает твердеть и на выходе получают не гомогенную полимерную суспензию, а единую твердую массу.

В качестве наиболее близкого аналога настоящего изобретения может быть рассмотрен способ получения порошков различных полимерных материалов путем механического измельчения [патент РФ №2173634, опубл. 20.09.2001].

Однако при реализации указанного способа получаемые порошки не отличаются достаточной узкодисперсностью, а тангенс угла диэлектрических потерь имеет достаточно высокое значение порядка (13,9-17,0)⋅10-4.

Задача настоящего изобретения заключается в разработке нового способа получения узкодисперсных порошков сополимера стирола с α-метилстиролом.

Технический результат настоящего изобретения заключается в улучшении дисперсности порошка сополимера стирола с α-метилстиролом и улучшении его диэлектрических свойств (уменьшении значения угла тангенса диэлектрических потерь).

Указанный технический результат достигается способом получения порошка сополимера стирола с α-метилстиролом, включающим приготовление раствора сополимера стирола с α-метилстиролом в хлороформе, добавление к полученному раствору водного раствора катионного ПАВ с получением эмульсии, затем ее перемешивание и диспергирование, удаление хлороформа на роторном испарителе, упаривание воды с получением порошка и его промывание водой с последующим высушиванием.

В качестве катионного поверхностно-активного вещества (ПАВ) используют алкилдиметилбензиламмоний хлорид следующего строения (формула (I)):

Например, в качестве алкилдиметилбензиламмоний хлорида формулы (I) может использоваться ПАВ, имеющий наименование «Катамин АБ», например, производства «НПФ Бурсинтез-М», ТУ 9392-003-48482528-99, содержание активного вещества 70%, или «Азол-129», например, производства ОАО «Котласский химический завод», содержание активного вещества 75%.

Примеры 1-4 демонстрируют осуществление настоящего изобретения и достижение технического результата, а именно получение узкодисперсных порошков сополимера стирола с α-метилстиролом. Примеры носят иллюстрирующий характер и никоим образом не ограничивают объем притязаний.

Пример 1

В предварительно приготовленный раствор, содержащий 14,5 г сополимера стирола с α-метилстиролом и 90 мл хлороформа (концентрация полимера 10,0% мас.), добавляют 80 мл воды, с растворенными в ней 0,87 г Катамина АБ (концентрация ПАВ 6,0% мас. на полимер, рН водного раствора около 3) и осуществляют перемешивание на магнитной мешалке со скоростью 300 об/мин. После получения грубодисперсной эмульсии раствора сополимера в водном растворе ПАВ ее диспергируют в роторно-статорном гомогенизаторе в течение 15 минут при окружной скорости вращения ротора 20000 об/мин, а затем – ультразвуковым диспергатором в течение 5 минут с амплитудой колебаний 14 кГц. Из полученной устойчивой высокодисперсной эмульсии удаляют растворитель на роторном испарителе известным методом. Образование коагулюма не наблюдается.

Частицы приготовленной таким образом водной дисперсии по данным электронной сканирующей микроскопии («S-570» фирмы Hitachi) и фотонной корреляционной спектроскопии (Zetasizer Nano ZS фирмы «Malvern») имеют сферическую форму, узкое распределение по размерам и диаметр порядка 270 нм. Дисперсия легко концентрируется упариванием до содержания сухого вещества 30% с сохранением устойчивости. Гистограмма распределения частиц по размерам полимерной суспензии, полученной по примеру 1, представлена на фиг. 1.

Затем из приготовленной полимерной дисперсии получают порошок путем упаривания досуха суспензии сополимера в воде в термостате при температуре 65°С, полученную пористую массу заливают водой и выдерживают в течение 5 ч, после чего декантацией удаляют воду с пористой массы сополимера (процесс повторяют 4-5 раз), затем сополимер высушивают при 75°С в течение 24 ч, измельчают в ступке и окончательно высушивают полученный порошок при температуре 80°С в течение 24 ч.

Измерение диэлектрической проницаемости и тангенса угла диэлектрических потерь проводили с использованием измерительного стенда ОАО «Самарский электромеханический завод» на частоте переменного тока 10 ГГц.

Значения диэлектрической проницаемости порошка сополимера, полученного согласно примеру 1, близки к образцу, приготовленному путем механического измельчения сополимера в соответствии с ближайшим аналогом (2,53-2,54 и 2,52-2,53 соответственно), но значения тангенса угла диэлектрических потерь заметно ниже ((9,5-11,8)⋅10-4 и (13,9-17,0)⋅10-4 соответственно).

Пример 2

В предварительно приготовленный раствор, содержащий 14,5 г сополимера стирола с α-метилстиролом и 90 мл хлороформа (концентрация полимера 10,0% мас.), добавляют 80 мл воды, с растворенными в ней 0,87 г Азола-129 (концентрация ПАВ 6,0% мас. на полимер, рН водного раствора около 3) и осуществляют перемешивание на магнитной мешалке со скоростью 300 об/мин. После получения грубодисперсной эмульсии раствора полимера в водном растворе ПАВ ее диспергируют в роторно-статорном гомогенизаторе в течение 15 минут при окружной скорости вращения ротора 20000 об/мин, а затем - ультразвуковым диспергатором в течение 5 минут с амплитудой колебаний 14 кГц. Из полученной устойчивой высокодисперсной эмульсии удаляют растворитель на роторном испарителе известным методом. Образование коагулюма не наблюдается.

Частицы приготовленной таким образом водной дисперсии имеют сферическую форму, узкое распределение по размерам и диаметр порядка 640 нм. Дисперсия легко концентрируется упариванием до содержания сухого вещества 30% с сохранением устойчивости. Гистограмма распределения частиц по размерам полимерной суспензии, полученной по примеру 2, представлена на фиг. 2.

Значения диэлектрической проницаемости и значения тангенса угла диэлектрических потерь порошка сополимера, полученного согласно примеру 2, близки к образцу, полученному путем механического измельчения сополимера.

Пример 3

В предварительно приготовленный раствор, содержащий 14,5 г сополимера стирола с α-метилстиролом и 90 мл хлороформа (концентрация полимера 10,0% мас.), добавляют 80 мл воды, с растворенными в ней 0,87 г Катамина АБ (концентрация ПАВ 6,0% мас. на полимер) и осуществляют перемешивание на магнитной мешалке со скоростью 300 об/мин. После получения грубодисперсной эмульсии раствора полимера в водном растворе ПАВ ее диспергируют в роторно-статорном гомогенизаторе в течение 15 минут при окружной скорости вращения ротора 20000 об/мин. Из полученной устойчивой высокодисперсной эмульсии удаляют растворитель на роторном испарителе известным методом. Образование коагулюма не наблюдается.

Частицы приготовленной таким образом водной дисперсии имеют сферическую форму, узкое распределение по размерам и диаметр порядка 990 нм. Дисперсия легко концентрируется упариванием до содержания сухого вещества 30% с сохранением устойчивости. Гистограмма распределения частиц по размерам полимерной суспензии, полученной по примеру 3, представлена на фиг. 3.

Значения диэлектрической проницаемости и значения тангенса угла диэлектрических потерь порошка сополимера, полученного согласно примеру 2, близки к образцу, полученному путем механического измельчения сополимера.

Пример 4

В предварительно приготовленный раствор, содержащий 14,5 г сополимера стирола с α-метилстиролом и 90 мл хлороформа (концентрация полимера 10,0% мас.), добавляют 60 мл воды (объемное соотношение углеводородной и водной фаз составляет 2,4:1) с растворенными в ней 0,87 г Катамина АБ (концентрация ПАВ 6,0% мас. на полимер) и осуществляют перемешивание на магнитной мешалке со скоростью 300 об/мин. После получения грубодисперсной эмульсии раствора полимера в водном растворе ПАВ ее диспергируют в роторно-статорном гомогенизаторе в течение 15 минут при окружной скорости вращения ротора 20000 об/мин, а затем - ультразвуковым диспергатором в течение 5 минут с амплитудой колебаний 14 кГц. Из полученной устойчивой высокодисперсной эмульсии удаляют растворитель на роторном испарителе известным методом. Образование коагулюма не наблюдается.

Частицы приготовленной таким образом водной дисперсии имеют сферическую форму, унимодальное распределение по размерам и диаметр порядка 360 нм. Дисперсия легко концентрируется упариванием до содержания сухого вещества 30% с сохранением устойчивости. Гистограмма распределения частиц по размерам полимерной суспензии, полученной по примеру 4, представлена на фиг. 4.

Значения диэлектрической проницаемости порошка сополимера, полученного согласно примеру 4, близки к образцу, приготовленному путем механического измельчения сополимера (2,53-2,54 и 2,52-2,53 соответственно), но значения тангенса угла диэлектрических потерь ниже ((10,5-12,3)⋅10-4 и (13,9-17,0)⋅10-4 соответственно).

Способ получения порошка сополимера стирола с α-метилстиролом, включающий приготовление раствора сополимера стирола с α-метилстиролом в хлороформе, добавление к полученному раствору водного раствора катионного ПАВ, затем осуществление перемешивания на магнитной мешалке скоростью 300 об/мин с получением эмульсии и диспергирование, которое проводят сначала в роторно-статорном гомогенизаторе в течение 15 мин при скорости вращения ротора 20000 об/мин, а затем ультразвуковым диспергатором, удаление хлороформа на роторном испарителе, упаривание воды с получением порошка и его промывание водой с последующим высушиванием, при этом в качестве катионного ПАВ используют Катамин АБ.



 

Похожие патенты:

Изобретение относится к сухой порошкообразной композиции, содержащей растворимые в воде порошкообразные полимеры, к способу получения порошкообразной композиции (варианты), к водной композиции защитного покрытия и к способу получения водного состава защитного покрытия.

Изобретение относится к смешанным композициям фторполимеров, используемым для получения покрытий. В состав композиции входят: низкомолекулярный политетрафторэтилен (LPTFE), имеющий среднечисловую молекулярную массу (Mn) менее 500000 и начальную температуру плавления (Tm) 332°C или менее, в виде жидкой дисперсии частиц со средним размером 1,0 мкм или менее, где жидкая дисперсия включает менее 1,0 вес.% поверхностно-активного вещества от массы дисперсии LPTFE, при этом дисперсию получают эмульсионной полимеризацией и ее не подвергают агломерации, деградации при воздействии температуры, или облучению, и перфторалкокси (PFA) в форме жидкой дисперсии частиц со средним размером частиц 1,0 мкм или менее и имеющий скорость течения в расплаве (MFR) по меньшей мере 4,0 г/10 мин, где содержание PFA в вышеуказанной композиции составляет от 37 до 65 вес.%, а содержание LPTFE составляет от 35 до 63 вес.% от общего содержания твердых веществ вышеуказанных LPTFE и PFA.

Настоящее изобретение относится к способу получения формовочного порошка политетрафторэтилена, а также к способу получения агломерированного продукта из политетрафторэтилена.

Изобретение относится к эластомерной композиции в виде гранул с хорошей сыпучестью для производства, хранения и применения. Сырая эластомерная композиция в гранулированной форме с сыпучестью содержит сырой эластомер с молекулярной массой от 50000 дo 400000 Да и 1-15 мас.% от общей массы антиадгезива, содержащего неорганические наполнители.
Изобретение относится к полимерам винилиденхлорида (ВДХ). Способ смешивания частиц твердой добавки с твердыми частицами полимера ВДХ, при этом способ включает следующие стадии: A) полимеризация мономера ВДХ, необязательно с одним или более моноэтиленненасыщенными сомономерами в зоне полимеризации в условиях полимеризации с образованием твердых частиц полимера ВДХ; B) остановка полимеризации мономеров ВДХ после образования твердых частиц полимера ВДХ; и C) приведение в контакт твердых частиц полимера ВДХ с твердыми частицами добавки (I) до того, как твердые частицы полимера ВДХ обезвожены, (II) во время и/или после удаления остаточного мономера из твердых частиц полимера ВДХ и (III) при температуре, достаточной для плавления или размягчения частиц твердой добавки, но недостаточной, чтобы расплавить или размягчить твердые частицы полимера ВДХ таким образом, чтобы расплавленные или размягченные частицы твердой добавки прилипали к твердым частицам полимера ВДХ при контакте.

Изобретение относится к способу пассивирования полимерных частиц для предупреждения нежелательного взаимодействия их с окружающей средой. Способ пассивирования полимерного материала включает (а) обработку поверхности полимерного материала, где полимерный материал составляет поверхность одной или более частиц тонера, содержащих кристаллический сложный полиэфир, и где обработка поверхности включает (i) погружение полимерного материала в водный раствор либо тетраоксида рутения, либо тетраоксида осмия, (ii) промывание полимерного материала, и (iii) сушку полимерного материала с получением пассивированного полимерного материала.

Изобретение относится к порошку растворимого при низкой температуре полисахарида и полиола, частицы которого имеют по существу несферическую форму, причем полисахарид и полиол физически связаны друг с другом, полисахарид имеет форму частиц и полиол преимущественно имеет кристаллическую форму.

Предметом изобретения является способ изготовления дисперсионных порошков посредством распылительной сушки водных полимерных дисперсий и добавления средства против слеживания в сушилке с дисковым распылителем, отличающийся тем, что средство против слеживания подают посредством транспортировочного воздуха, полностью или частично, в кольцевую щель, которая образована расположенной концентрически вокруг корпуса дискового распылителя формованной деталью, и которая заканчивается на расстоянии над верхним краем распылительного диска дискового распылителя.

Изобретение относится к области технологии получения гранулированных ТПУ и может найти широкое применение при производстве различных длинномерных изделий различной конфигурации, получаемых методом экструзии.
Изобретение относится к способу гранулирования сополимера этилен/тетрафторэтилен. Способ включает перемешивание и гранулирование суспензии сополимера этилен/тетрафторэтилен вместе с водой в присутствии как этилена, так и тетрафторэтилена при температуре гранулирования от 10 до 130°С в течение времени гранулирования от 30 до 240 мин при отгонке летучих компонентов, где этилен и тетрафторэтилен присутствуют в суспензии сополимера этилен/тетрафторэтилен, при инициировании гранулирования в количестве от 0,01 до 0,5 Нм3/л.

Изобретение относится к области получения галогенированных каучуков, конкретнее к способу приготовления базового полимера для производства галобутилкаучуков. Способ осуществляется путем растворения влажной крошки бутилового каучука в углеводородном растворителе путем подачи влажной крошки каучука, растворителя, подачи и вывода раствора базового полимера и вывода воды в полом аппарате.
Изобретение относится к способу получения водных дисперсий полимеров, применяемых в качестве композиций фасадных красок и покрытий для использования в металлических контейнерах для пищевых продуктов и напитков.

Изобретение относится к приготовлению растворов каучуков, например, таких как бутилкаучук, с целью его последующей модификации или получения латекса, и к оборудованию для растворения полимерных материалов.

Изобретение относится к нефтехимической промышленности и может быть использовано в производстве галобутилкаучуков. .

Изобретение относится к способу получения искусственного латекса. .
Изобретение относится к технологии получения связующего для лакокрасочных материалов, в частности к способу получения водной дисперсии низкомолекулярного хлорсульфированного полиэтилена для использования в лакокрасочных материалах с целью защиты строительных конструкций.

Изобретение относится к получению растворов сверхвысокомолекулярных полимеров (СВМПЭ), применяющихся в гель-формовании волокнисто-пленочных материалов. .
Изобретение относится к химии высокомолекулярных соединений и может быть применено в сельском хозяйстве в качестве средств поддержания необходимого уровня влажности почв, а также в производстве средств личной гигиены.

Изобретение относится к области высокомолекулярных соединений, а именно к способу получения порошка сополимера стирола с α-метилстиролом, включающему приготовление раствора сополимера стирола с α-метилстиролом в хлороформе, добавление к полученному раствору водного раствора катионного ПАВ с получением эмульсии, затем ее перемешивание и диспергирование, удаление хлороформа на роторном испарителе, упаривание воды с получением порошка и его промывание водой с последующим высушиванием, при этом в качестве катионного ПАВ используют Катамин АБ. Технический результат - обеспечение узкодисперсных порошков сополимера стирола с α-метилстиролом, и улучшение его диэлектрических свойств, уменьшение значения угла тангенса диэлектрических потерь. 4 ил., 4 пр.

Наверх