Способ изготовления нанокомпозитов в стекле

Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу, сквозные поры которого заполнены раствором соли металла, и проведении электролиза при напряжении электрического поля 1.5-5 В. При этом в порах стекла формируются наноразмерные металлические нити. После проведения электролиза нанопористое стекло помещают в жидкий или газообразный реагент, обеспечивающий химическую реакцию с переходом металла в полупроводниковое химическое соединение. После электролиза стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере. Технический результат – упрощение технологии изготовления нанокомпозита. 2 з.п. ф-лы, 8 ил.

 

Изобретение относится к нанотехнологиям и может быть использовано при изготовлении нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов, сенсоров, элементов электроники и оптоэлектроники и оптических поглотителей.

Известен способ формирования металлических нанокластеров в стекле (Патент РФ №2394001, МПК C03C 17/06, B82B 3/00, дата приоритета от 05.11.2008. опубликован 10.07.2010). Способ заключается в облучении электронным пучком стекла, содержащего ионы серебра, и последующей термообработке стекла. При облучении стекла электронами под поверхностью стекла формируется область отрицательного объемного заряда. Возникающее при этом электрическое поле вызывает полевой дрейф подвижных положительных ионов серебра из объема стекла в эту область, где происходит восстановление ионов термализованными электронами. При последующей термообработке из атомов серебра формируются наночастицы серебра. Данный процесс является твердофазным аналогом электролиза. Недостатком способа является то, что металл-стеклянный нанокомпозит может быть изготовлен только в тонком приповерхностном слое стекла. Недостатком является необходимость использования сложного оборудования - электронного микроскопа. Недостатком является то, нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например, из серебра или меди. Недостатком также является отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.

Известен способ изготовления нанокомпозитов в стекле на основе стекол, содержащих ионы серебра (П.Н. Брунков, А.А. Липовский, В.Г. Мелехин, А.В. Редьков, В.В. Стаценко. // Журнал технической физики, 2015, Т. 85, В. 2, с. 112-117). Способ заключается в том, что на поверхность стекла накладывают электроды, причем положительный электрод изготовлен из серебра. Затем стекло нагревают до температуры 250°C, а к электродам прикладывают электрическое напряжение 250 В. При этом происходит твердофазный электролиз, и ионы серебра дрейфуют от положительного электрода к отрицательному. В результате вблизи отрицательного электрода в приповерхностном слое стекла и на его поверхности возникают микродендриты серебра. Недостатком способа является то, что металл-стеклянный нанокомпозит может быть изготовлен только в тонком приповерхностном слое стекла. Недостатком является то, что нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например из серебра или меди. Недостатком также является необходимость использования высокой температуры и напряжения, что усложняет технологию изготовления нанокомпозита, а также отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.

Известен способ изготовления нанокомпозитов в стекле на основе фосфатных стекол, содержащих ионы серебра (A. Doi, N. Asakura. // Journal of Material Sciense. 2001, V. 36, P. 3897-3901), выбранный в качестве прототипа. Способ заключается в том, что на противоположные поверхности стекла накладывают электроды, причем положительный электрод изготовлен из серебра. Затем стекло нагревают до температуры 148°C в вакууме, а к электродам прикладывают электрическое напряжение 50 В. При этом происходит твердофазный электролиз, и ионы серебра дрейфуют от положительного электрода к отрицательному. В результате вблизи отрицательного электрода в объеме стекла и на его поверхности возникают микродендриты серебра. Недостатком является то, что нанокомпозит может быть изготовлен из металлов, ионы которых имеют высокую подвижность в стекле, например из серебра или меди. Недостатком также является необходимость использования высокой температуры и напряжения и вакуумирования, что усложняет технологию изготовления нанокомпозита, а также отсутствие возможности изготовления данным способом нанокомпозита с полупроводниковыми наночастицами.

Изобретение решает задачи упрощения технологии изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов, а также нанокомпозитов смешанного типа, содержащих металл и полупроводник, и расширения номенклатуры материалов, из которых могут быть изготовлены нанокомпозиты.

Сущность заключается в том, что нанопористое силикатное стекло со сквозными порами заполняют раствором соли металла и проводят электролиз при напряжении электрического поля 1.5-5 В. После чего нанопористое стекло промывают и высушивают. Сущность заключается также в том, что после проведения электролиза нанопористое стекло помещают в жидкий или газообразный реагент. Сущность заключается также в том, что после проведения электролиза нанопористое стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере. Цель достигается также тем, что после электролиза и проведения химической реакции нанопористое стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере.

Нанопористые силикатные стекла (НПСС) содержат сквозные сообщающиеся поры, размер которых может варьироваться от 3 до 2000 нм. Выбор технологических режимов изготовления НПСС позволяет получать стекла с малым разбросом размеров пор. Объемная концентрация пор может варьироваться от 20 до 60%. Каркас НПСС на 90-95% состоит из SiO2. При нагреве НПСС до Т=900-950°C поры НПСС схлопываются, и образуется сплошное кварцоидное стекло. В ряде стран НПСС производятся в промышленных масштабах (например, стекло Vikor фирмы Corning). Наши эксперименты показали, что при заполнении НПСС водным раствором соли металла и проведении электролиза с положительным электродом, изготовленным из металла, входящего в состав соли, в порах стекла формируются металлические нити, поперечный размер которых не превышает поперечный размер пор стекла, рост металлических нитей происходит от отрицательного электрода, и в процессе электролиза они заполняют весь объем пор стекла между электродами. Процесс происходит при комнатной температуре, электрическом напряжении между электродами 1.5-5 В, а его продолжительность составляет от десятков секунд до нескольких минут. После завершения электролиза, промывки и высушивания НПСС представляет собой металл-стеклянный нанокомпозит, состоящий из стекла с наноразмерными металлическими нитями в объеме. Металлические нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, например из Ag, Au, Pd, Cu, Fe, Ni, Cr, Sn, Pb, Zn и др., а также из сплавов металлов. При использовании электродов малого поперечного сечения нанокомпозит может быть изготовлен локально, на небольшом участке НПСС. При последующей обработке нанокомпозита в жидком или газообразном реагенте, при необходимости, включающей в себя термообработку, металл, из которого состоят нити, может быть преобразован в полупроводниковое химическое соединение, например оксид, галогенид или халькогенид. Таким образом, предлагаемый способ позволяет изготавливать металл-стеклянные и полупроводник-стеклянные нанокомпозиты, состоящие из НПСС, объем которых заполнен наноразмерными металлическими или полупроводниковыми нитями. При дополнительной термообработке при Т=900-950°C происходит схлопывание пор НПСС, в результате чего формируется сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные металлические или полупроводниковые нити в объеме.

Достоинством предлагаемого способа является то, что он позволяет изготавливать нанокомпозиты при комнатной температуре, с использованием низкого электрического напряжения. Это упрощает технологию изготовления нанокомпозита. Достоинством является также то, что наноразмерные нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, сплавов металлов, а также из полупроводниковых соединений металла. Совокупность признаков, изложенных формуле, характеризует способ изготовления нанокомпозитов в стекле, заключающийся в проведении электролиза в нанопористом силикатном стекле, содержащем раствор соли металла. Это позволяет формировать в объеме стекла наноразмерные металлические нити. Способ позволяет трансформировать металл, из которого состоят нити, в его полупроводниковое химическое соединение. Это позволяет формировать в объеме стекла наноразмерные полупроводниковые нити. Предлагаемый способ позволяет также изготавливать сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные металлические или полупроводниковые нити в объеме.

Изобретение иллюстрируется следующими чертежами, где на:

фиг. 1 показаны схемы электролиза для изготовления нанокомпозита во всем объеме НПСС: а - электроды расположены на противоположных поверхностях пластины НПСС; б - электроды расположены на противоположных торцах пластины НПСС. 1 - пластина НПСС, заполненная раствором соли металла; 2 - отрицательный электрод; 3 - положительный электрод;

фиг. 2 показаны: а - схема электролиза для локального изготовления нанокомпозита в объеме пластины НПСС; б - схема электролиза для локального изготовления нанокомпозита в приповерхностном слое пластины НПСС. 1 - пластина НПСС, заполненная раствором соли металла; 2 - отрицательный электрод; 3 - положительный электрод;

фиг. 3 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС с наноразмерными нитями серебра, изготовленными при использовании схемы, показанной на фиг. 2, а. 4 - участок НПС без нанокомпозита; 5 - участок НПСС с нанокомпозитом. Масштаб 100 мкм.

фиг. 4 показано изображение, полученное с помощью сканирующего электронного микроскопа, торца скола НПСС с микродендритом из серебра. Масштаб 200 нм.

фиг. 5 показана фотография, сделанная с помощью оптического микроскопа, торца скола НПСС с наноразмерными нитями серебра после частичного йодирования. 6 - Ag, 7 - AgI. Масштаб 500 мкм.

фиг. 6 показан спектр поглощения нанокомпозита на основе НПСС с полупроводниковым йодидом серебра.

фиг. 7 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС с микродендритами меди, изготовленными при использовании схемы, показанной на фиг. 2, а.

фиг. 8 показана фотография, сделанная с помощью оптического микроскопа, участка НПСС наноразмерными нитями железа, изготовленными при использовании схемы, показанной на фиг. 2, а. Масштаб 50 мкм.

Сущность изобретения раскрывается на примерах, которые не должны рассматриваться экспертом как ограничивающие притязания изобретения.

Сведения, подтверждающие возможность осуществления изобретения.

Пример 1

На фиг. 1 и фиг. 2 показаны схемы проведения электролиза при изготовлении нанокомпозита. 1 - пластина НПСС, заполненная раствором соли металла, 2 - отрицательный электрод, 3 - положительный электрод, изготовленный из металла, входящего в состав соли. Схемы, показанные на фиг. 1, используются для формирования нанокомпозита во всем объеме НПСС. Схема, показанная на фиг. 2, а, используется для формирования нанокомпозита локально по всей толщине пластины НПСС. Схема, показанная на фиг. 2, а, используется для формирования нанокомпозита локально в приповерхностном слое пластины НПСС. Пластину НПСС толщиной 1 мм со средним размером пор 25 нм и объемной концентрацией пор 57% помещают в водный раствор AgNO3 (концентрация 20 г/л) с добавлением 10% HNO3. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, а. Положительный электрод 3 на фиг. 2, а изготовлен из серебра. Диаметр электродов равен 1 мм. К электродам прикладывают постоянное напряжение, равное 3 В. Электролиз проводят при комнатной температуре в течение 30 с при плотности тока 2 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора AgNO3, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 3 показана фотография участка пластины НПСС после локального изготовления нанокомпозита серебро-стекло. Исходно бесцветное и прозрачное стекло на фиг. 3 (область 4) приобрело темно-коричневую окраску под электродами и вблизи электродов на фиг. 3 (область 5). Из фиг. 3 видно, что серебро заполнило объем пор стекла в виде микродендритов и серебра. На фиг. 4 показано изображение, полученное с помощью сканирующего электронного микроскопа, торца скола НПСС с микродендритом из серебра на поверхности скола. Из фиг. 4 видно, что микродендрит состоит из наноразмерных нитей серебра толщиной 20-25 нм. Удельное сопротивление исходного НПСС превышает 200 МОм/см. В области формирования нанокомпозита удельное сопротивление НПСС равно 1.4 МОм/см.

Пример 2

В пластине НПСС толщиной 1 мм со средним размером пор 25 нм и объемной концентрацией пор 57% изготавливают нанокомпозит с серебром способом, описанным в примере 1. После этого пластину НПСС при комнатной температуре помещают в воздушную атмосферу с насыщенным давлением паров йода и выдерживают в течение 1 ч. При этом в результате химической реакции серебра с йодом серебро преобразуется в полупроводниковое соединение йодид серебра (AgI). В результате этого нанокомпозит изменяет окраску с черной на желтую. На фиг. 5 показан торец скола НПСС после частичного йодирования. Из фиг. 5 видно, что в приповерхностных слоях стекла серебро трансформировалось в йодид серебра (6 на фиг. 5), а в глубине стекла серебро осталось в металлическом виде (7 на фиг. 5). Таким образом, предложенный способ позволяет изготавливать нанокомпозиты смешанного типа, содержащие как металл, так и полупроводник. После полного йодирования на спектре поглощения нанокомпозита на длине волны 410 нм появляется экситонная полоса поглощения, характерная для кристаллического йодида серебра (фиг. 6).

Пример 3

Пластину НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% помещают в водный раствор CuSO4 (концентрация 15 г/л) с добавлением 10% H2SO4. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, б. Положительный электрод 3 на фиг. 2, б изготовлен из меди. Диаметр электродов равен 1 мм. Расстояние между электродами 3 мм. К электродам прикладывают постоянное напряжение, равное 3.5 В. Электролиз проводят при комнатной температуре в течение 10 мин при плотности тока 3 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора CuSO4, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 7 показана фотография участка пластины НПСС на начальной стадии электролиза (через 2 мин после начала электролиза) при локальном изготовлении нанокомпозита медь-стекло. Из фиг. 7 видно, что на поверхности и в приповерхностном слое НПСС вблизи отрицательного электрода формируются микродендриты из меди, состоящие из групп наноразмерных нитей и имеющие коричневую окраску. На концах микродендритов, соответствующих начальной стадии роста микродендритов, окраска переходит в желтую. При проведении полного цикла электролиза НПСС между электродами приобретает коричневую окраску из-за полного заполнения пространства микродендритами. В области формирования нанокомпозита удельное сопротивление НПСС равно 5 МОм/см.

Пример 4

В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с медью способом, описанным в примере 3. После этого пластину НПСС нагревают в воздушной атмосфере при температуре 400°C в течение 30 мин. При этом в результате химической реакции меди с кислородом воздуха медь преобразуется в полупроводниковое соединение оксид меди (CuO). В результате этого нанокомпозит изменяет окраску с коричневой на черную.

Пример 5

Пластину НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% помещают в водный раствор FeCl2 (концентрация 20 г/л) с добавлением 10% HCl. После заполнения пор раствором пластину помещают между электродами по схеме, показанной на фиг. 2, а. Положительный электрод 3 на фиг. 2, б изготовлен из железа. Диаметр электродов равен 0.5 мм. К электродам прикладывают постоянное напряжение, равное 3.5 В. Электролиз проводят при комнатной температуре в течение 10 мин при плотности тока 5 А/дм2. После проведения электролиза пластину НПСС помещают в дистиллированную воду на 30 мин для удаления остатков раствора FeCl2, после чего пластину высушивают на воздухе при комнатной атмосфере. На фиг. 8 показана фотография участка пластины НПСС после электролиза в области нанокомпозита железо-стекло. Из фиг. 8 видно, что в объеме НПСС формируются наноразмерные нити из железа, создающие темно-коричневую окраску. В области формирования нанокомпозита удельное сопротивление НПСС равно 7 МОм/см. Нанокомпозит с железом обладает магнитными свойствами.

Пример 6

В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с железом способом, описанным в примере 5. После этого пластину НПСС при комнатной температуре помещают в водный раствор Na2S на 30 мин. При этом в результате химической реакции железа с Na2S железо преобразуется в полупроводниковое соединение сульфид железа (FeS). В результате этого нанокомпозит изменяет окраску с коричневой на черную. После этого НПСС промывают в дистиллированной воде и высушивают.

Пример 7

В пластине НПСС толщиной 1 мм со средним размером пор 3.5 нм и объемной концентрацией пор 22% изготавливают нанокомпозит с сульфидом железа способом, описанным в примере 6. После этого пластину НПСС подвергают термообработке в воздушной атмосфере при температуре 950°C в течение 30 мин. При этом происходит схлопывание пор НПСС, в результате чего формируется сплошной нанокомпозит, состоящий из кварцоидного стекла, содержащего наноразмерные полупроводниковые нити из сульфида железа в объеме.

Промышленная применимость изобретения

Предложенный способ позволяет изготавливать нанопористые электроды для батарей, аккумуляторов и солнечных элементов, прозрачные и непрозрачные проводящие электроды, катализаторы, среды с усилением рамановского рассеяния, оптические поглотители, элементы электроники и оптоэлектроники, чувствительные элементы химических сенсоров и биосенсоров. Метод позволяет также изготавливать магнитные стекла, при использовании в нанокомпозите переходных и редкоземельных металлов, а также поглотители и накопители водорода при использовании в нанокомпозите никеля, палладия или ванадия.

Таким образом, предлагаемое техническое решение позволяет решить задачу упрощения технологии изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов, а также нанокомпозитов смешанного типа, и расширения номенклатуры материалов, из которых могут быть изготовлены нанокомпозиты. Достоинством предлагаемого способа является то, что он позволяет изготавливать нанокомпозиты при комнатной температуре, с использованием низкого электрического напряжения. Это упрощает технологию изготовления нанокомпозита. Достоинством является также то, что наноразмерные нити, входящие в состав нанокомпозита, могут быть изготовлены из любого металла, для которого возможно проведение электролиза, сплавов металлов, а также из полупроводниковых соединений металла.

1. Способ изготовления нанокомпозитов в стекле заключающийся в том, что на поверхности стекла, которое содержит ионы металла, накладывают электроды и проводят электролиз, отличающийся тем, что используют нанопористое силикатное стекло со сквозными порами, заполненное раствором соли металла, а электролиз проводят при напряжении электрического поля 1.5-5 В, после чего нанопористое стекло промывают и высушивают.

2. Способ по п. 1, отличающийся тем, что после электролиза проводят химическую реакцию, помещая нанопористое стекло в жидкий или газообразный реагент.

3. Способ по пп. 1 и 2, отличающийся тем, что после электролиза стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере.



 

Похожие патенты:

Изобретение относится к способу получения катализаторов, в частности к способу получения электрокатализатора платины на углероде для электродов топливных элементов.

Изобретение относится к области электротехники, а именно к литиевому электроду, содержащему пористый металлический токоотвод и металлический литий, введенный в поры, присутствующие в металлическом токоотводе.

Изобретение относится к электротехнической области и может быть использовано в транспортных и космических системах. Выбирают наноразмерный порошок катодного материала на основе соединения Li2MeSiO4, либо Li2Me1SiO4, либо LiMe1PO4, либо LiMe1O2, где Me1 - переходные металлы, например Fe, Со, Ni, Mn, после чего наносят на поверхность порошка покрытие на основе системы Lix(Me2)yO, где Ме2 - Sc, V, Ge, Nb, Mo, La, Та, Ti, толщиной 5-7 нм, затем проводят термообработку покрытых порошков при температуре 300-500°С в течение 10-12 ч.

Изобретение может быть использовано для получения катодных материалов литий-ионных аккумуляторов. Для получения сложного оксида лития и кобальта состава LiCoO2 нагревают исходный раствор, содержащий азотнокислый кобальт, соединение лития и гелирующий агент.

Изобретение относится к применению нанообъектов из не полностью фторированного углерода в качестве электродного материала для первичных литиевых элементов, к полученному в результате этого применения электроду и к литиевому элементу с таким электродом.

Изобретение относится к разделительной мембране для литий-серного аккумулятора. Мембрана содержит первый слой, включающий в себя проводящее по ионам лития соединение, имеющее функциональную группу -SО3Li, второй слой, включающий в себя частицу неорганического оксида и связующее, и третий слой, включающий в себя пористый материал основы, предусмотренный между первым слоем и вторым слоем.

Изобретение относится к области электротехники, а именно к материалу для изготовления анодов литий-ионных аккумуляторов, содержащих частицы графенового углерода, который получен термически из углеродсодержащих материалов-предшественников, подвергнутых нагреву в термической зоне до температуры по меньшей мере 1000°С.

Изобретение относится к получению нанокомпозиционных порошковых катодных материалов для литий-ионных аккумуляторов. В качестве исходного материала выбирают наноразмерный порошок аэросила (SiO2) с удельной поверхностью 350-380 м2/г, который сушат в вакууме в течение 1-3 ч.

Изобретение относится к области электротехники, а именно к способу получения нанокомпозиционных положительных электродов для литий-ионных аккумуляторов. При реализации способа выбирают наноразмерный порошок катодного материала на основе соединения Li2MeSiO4, либо LiMePO4, либо LiMeO2, где Me - переходные металлы, покрывают их тонкой пленкой на основе системы LixMeyO, где Me - V, Ge, Nb, Mo, La, Ta, Ti, толщиной 5-7 нм, затем проводят термообработку покрытых порошков при температуре 300-500°С в течение 10-12 ч, из полученного композиционного материала изготавливают положительный электрод, на который наносят пассивационное покрытие на основе Al2O3 с использованием реагента триметилалюминия (ТМА) и паров воды, далее проводят термообработку электродов в течение 10-12 ч при температуре 180-200°С.

Изобретение относится к литий-ионной батарее с неводным электролитом и способу ее изготовления. Вторичная литий-ионная батарея (100) с неводным электролитом включает токособирающую фольгу (21) отрицательного электрода и смесевой слой (22) отрицательного электрода, который расположен на токособирающей фольге отрицательного электрода, при этом смесевой слой отрицательного электрода содержит множество гранулированных частиц, каждая из которых содержит активный материал (2) отрицательного электрода и покрывающую пленку (4).

Изобретение относится к способу финишной планаризации поверхности оптической стеклокерамики. Обработку поверхности оптической стеклокерамики проводят в две стадии.

Изобретение относится к способу модифицирования структуры стекла под действием лазерного пучка для формирования люминесцирующих микрообластей. Фосфатное стекло, содержащее ионы серебра, локально облучают фемтосекундными лазерными импульсами с длиной волны в ближнем инфракрасном диапазоне, с энергией лазерных импульсов в пределах 30-200 нДж, длительностью лазерных импульсов в пределах 300-1200 фс, частотой следования лазерных импульсов в пределах 1-500 кГц.

Оптический элемент содержит светопрозрачную рабочую и периферическую светопоглощающую части, изготовленные из оптического стекла, имеющего в составе соединения металлов.

Изобретение относится к электронным или ионным облучающим дегазаторам стеклопакетов. Устройство облучающего дегазатора стеклопакета содержит корпус вакуумной коробки, устройство удерживания стеклопакета, нижнюю пластину, обладающую электропроводностью, расположенную на устройстве удерживания стеклопакета, механизм транспортировки, механизм подъема и устройства облучения расположены внутри корпуса вакуумной коробки.

Изобретение относится к способу изготовления стеклянной подложки с покрытием. Технический результат – снижение дымчатости стекла с покрытием после термической обработки.

Изобретение относится к маркировке прозрачных и полупрозрачных объектов. Технический результат – снижение брака, повышение точности контроля маркировки.
Изобретение относится к ионно-лучевой обработке крупногабаритных оптических деталей. Технический результат – повышение точности обработки поверхности деталей.

Изобретение относится к изготовлению полой трехмерной структуры в объеме пластины фоточувствительного стекла. Технический результат изобретения заключается в сокращении длительности изготовления полой трехмерной структуры в объеме пластины стекла и повышении производительности.

Изобретение относится к технологии мультиферроиков. Технический результат - получение нанокомпозитов со свойствами мультиферроиков.

Изобретение относится к области лазерной обработки материалов и касается способа и устройства для изготовления масок и диафрагм лазерной установки для создания микроструктур на поверхности твердого тела.

Изобретение относится к химическим способам получения никелевых покрытий на материалах, в частности на стекле. Предлагаемый способ осуществляется путем прямого взаимодействия в водном растворе хлорида никеля NiCl2·6H2O с восстановителем следующей формулы: при температуре 90-100°C в течение 10-15 минут.

Изобретение относится к изготовлению нанопористых электродов для батарей, аккумуляторов и солнечных элементов, катализаторов и др. Способ изготовления металл-стеклянных и полупроводник-стеклянных нанокомпозитов заключается в приложении электрического поля к нанопористому силикатному стеклу, сквозные поры которого заполнены раствором соли металла, и проведении электролиза при напряжении электрического поля 1.5-5 В. При этом в порах стекла формируются наноразмерные металлические нити. После проведения электролиза нанопористое стекло помещают в жидкий или газообразный реагент, обеспечивающий химическую реакцию с переходом металла в полупроводниковое химическое соединение. После электролиза стекло термообрабатывают при температуре 900-950°C в воздушной или инертной атмосфере. Технический результат – упрощение технологии изготовления нанокомпозита. 2 з.п. ф-лы, 8 ил.

Наверх