Ультразвуковой способ определения внутренних механических напряжений

Использование: для определения внутренних напряжений в рельсах бесстыкового пути. Сущность изобретения заключается в том, что в нагруженный исследуемый объект и ненагруженный его аналог вводят импульсы ультразвуковых колебаний продольных и поперечных волн, принимают прошедшие через объект импульсы одним прямым раздельно-совмещенным преобразователем и тремя наклонными приемными преобразователями, размещенными на одной оси. Прямым раздельно-совмещенным преобразователем измеряют высоту исследуемого объекта и в зависимости от нее устанавливают три наклонных приемных преобразователя на определенном расстоянии от излучающего наклонного преобразователя, направленного встречно приемным. Измеряют времена распространения импульсов продольных и трансформированных ультразвуковых волн от излучающего преобразователя до приемных преобразователей, по которым судят о величине напряжений. Технический результат: обеспечение возможности существенного повышения точности определения механических напряжений за счет перемещения приемных преобразователей относительно излучающего преобразователя и учета высоты исследуемого объекта. 1 ил., 1 табл.

 

Изобретение относится к области контроля механических напряжений в твердых материалах и может быть использовано для определения внутренних напряжений в рельсах бесстыкового пути, испытывающих значительные нагрузки в процессе эксплуатации.

Известен акустический способ определения внутренних механических напряжений в твердых материалах, заключающийся в том, что в исследуемый объект вводят импульсы ультразвуковых колебаний продольных и поперечных волн, принимают прошедшие через объект импульсы и измеряют времена их прохождения, по которым судят о величине напряжений. Излучающим преобразователем вводят два импульса ультразвуковых колебаний продольных волн и два импульса ультразвуковых колебаний поперечных волн под разными углами α1 и α2 и принимают двумя приемными преобразователями прошедшие через объект импульсы на расстояниях и от излучающего преобразователя, а величину напряжения σ определяют по формуле:

где βT, βL - акустоупругие коэффициенты для поперечных и продольных волн в исследуемом материале;

, , , - времена прохождения ультразвуковых импульсов разных типов волн и по разным путям;

- отношение расстояний от излучающего преобразователя до второго и первого приемных преобразователей.

Кроме того, угол α1 ввода ультразвуковых колебаний продольных и поперечных волн устанавливают равным 45°, а величину напряжения σ определяют по формуле:

Приемные преобразователи устанавливают один от другого на расстоянии из условия равенства времени прохождения ультразвуковых колебаний продольных волн по дальнему пути времени прохождения ультразвуковых колебаний поперечных волн по кратчайшему пути.

В точке ввода излучающего преобразователя вводят дополнительно импульсы колебаний поверхностной волны в направлении приемных преобразователей, измеряют времена ts1 и ts2 пробега импульсов поверхностной волны до приемных преобразователей, а величину L отношения расстояний определяют из соотношения L=ts1/ts2 (патент РФ №2057330, G01N 29/00, приоритет от 25.02.1994 г., опубл. 27.03.1996 г.), принятый за аналог.

Недостатком данного способа является то, что в приемных преобразователях в случае разного акустического контакта возрастает погрешность результатов измерений. Кроме того, невозможно осуществить одним излучателем ввод двух пар ультразвуковых колебаний продольных и поперечных волн под двумя разными углами.

В патенте РФ №2057330 рассматриваются две продольных и две поперечные волны, вводимых во вторую среду. Причем продольные и поперечные волны распространяются под одним углом. Для этого также необходимы два датчика, работающих в режиме излучения.

Известен ультразвуковой способ измерения внутренних механических напряжений, заключающийся в том, что излучающим преобразователем в нагруженный исследуемый объект и ненагруженный его аналог вводят импульсы ультразвуковых продольных и поперечных волн, принимают приемным преобразователем прошедшие сигналы, измеряют времена их прохождения, по которым судят о величине внутренних механических напряжений. Кроме того, приемным преобразователем дополнительно принимают трансформированные поперечные волны от падающих на исследуемый объект продольных волн и трансформированные продольные волны от падающих на исследуемый объект поперечных волн, измеряют времена прохождения этих волн в нагруженном и ненагруженном объекте, определяют изменение времени задержки прошедших сигналов (их разность), а величину напряжения определяют по формуле

где βT - акустический коэффициент для поперечной волны в нагруженном объекте;

τT - время задержки поперечной волны в нагруженном объекте;

ΔτL - изменения времени задержки продольных волн в нагруженном и ненагруженном объекте;

ΔτLT - изменение времени задержки продольных волн, трансформированных в поперечные волны, в нагруженном и ненагруженном объекте;

αT - угол ввода поперечной волны в нагруженном объекте.

Кроме того, используют приемный и излучающий преобразователи с углом ввода продольных ультразвуковых колебаний, равным 18° (патент РФ №2601388, G01N 29/04, приоритет от 09.12.2014 г., опубл. 27.06.2016 г. Бюл. №18), принят за прототип.

Недостатком данного способа является то, что при изменении высоты исследуемого объекта (рельса) место приема сигнала максимальной амплитуды принимаемым преобразователем изменяется, так как смещается акустическая ось отраженных сигналов, что вносит погрешность при определении времени распространения сигнала в исследуемом объекте, а следовательно, и погрешность в определение внутренних механических напряжений.

При разработке заявляемого способа была поставлена задача повышения точности определения механического напряжения за счет уменьшения влияния высоты объекта.

Поставленная задача решается за счет того, что в ультразвуковом способе определения внутренних механических напряжений, заключающемся в том, что в нагруженный исследуемый объект и ненагруженный его аналог вводят импульсы ультразвуковых колебаний продольных и поперечных волн, принимают прошедшие через объект импульсы и измеряют времена их прохождения, по которым судят о величине напряжений, при этом прошедшие через объект импульсы принимают одним прямым раздельно-совмещенным преобразователем и тремя наклонными приемными преобразователями, размещенными на одной оси на расстояниях S1, S2 и S3 от излучающего преобразователя, определяемых по формулам:

где Н - высота объекта контроля, м; αL, αT - углы ввода продольных и поперечных волн излучающего наклонного преобразователя соответственно. Причем время прохождения этих волн измеряют в нагруженном и ненагруженном объектах, а величину напряжения σ определяют по формуле:

где τT01, τT1 - времена распространения сигнала поперечной волны от излучающего преобразователя до первого приемного преобразователя ненагруженного аналога и нагруженного исследуемого объекта соответственно, нс;

τT03, τT3 - времена распространения сигнала поперечной волны от излучающего преобразователя до третьего приемного преобразователя ненагруженного аналога и нагруженного исследуемого объекта соответственно, нс;

τLT02, τLT2 - времена распространения сигнала трансформированных волн от излучающего преобразователя до второго приемного преобразователя ненагруженного аналога и нагруженного исследуемого объекта соответственно, нс;

kLT2 - акустоупругий коэффициент трансформированных волн от излучающего преобразователя до второго приемного преобразователя, МПа-1.

Высота объекта контроля (Н) определяется по формуле:

где CLпр - скорость продольной ультразвуковой волны в объекте контроля под прямым раздельно-совмещенным преобразователем, м/с; τLпр - время распространения продольной ультразвуковой волны в объекте контроля под прямым раздельно-совмещенным преобразователем, нс.

На чертеже приведена схема прозвучивания при ультразвуковом способе определения внутренних механических напряжений в твердых материалах, которая содержит: ИП - излучающий и принимающий продольную (Lпр) ультразвуковую волну прямой раздельно-совмещенный преобразователь; И - излучающий продольную (Lнак) и поперечную (T) ультразвуковые волны наклонный преобразователь с углом ввода продольной ультразвуковой волны 18°; П1, П2, П3 - принимающие ультразвуковые волны наклонные преобразователи с углами ввода продольной ультразвуковой волны 18°.

Способ реализуется следующим образом.

Преобразователи П1, П2, П3 устанавливают в точки А, В, С на расстоянии S1, S2, S3 от излучающего преобразователя И при условии, что угол ввода продольной волны преобразователя И αL известен, а угол ввода поперечной волны в нагруженном объекте постоянный и находится по формуле:

Расстояния S1, S2, S3 определяют по формулам (1), (2), (3) для нахождения места наилучшего приема сигналов поперечной (Т), трансформированной (LT) и продольной (Lнак) волн соответственно как на исследуемом, так и на ненагруженном объектах, находящихся в одном температурном режиме.

В точке А измеряются времена прихода продольной (L), поперечной (T) и трансформированной (LT) волн (τL1, τT1, τLT1). Такие же измерения проводят в точках В и С, при этом получают значения τL2, τT2, τLT2, τL3, τT3, τLT3.

При изменении высоты объекта Н преобразователем ИП регистрируется изменение времени распространения продольной волны τLпр и меняются расстояния между излучающим преобразователем И и принимающими преобразователями П1, П2, П3 на соответствующие величины ΔS1, ΔS2, ΔS3.

Высоту объекта Н определяют через измерение времени распространения продольной волны τLпр прямого раздельно-совмещенного преобразователя ИП при заданной скорости продольной ультразвуковой волны (Lпр).

В каждой точке приема А, В и С измеряются времена прихода поперечных и трансформированных волн τT1, τLT2 и τT3 соответственно для исследуемого нагруженного объекта и τT01, τLT02 и τT03 для ненагруженного объекта. Внутренние механические напряжения σ в исследуемом объекте определяют по формуле (4). Предварительно экспериментально определяется kLT2.

Пример 1.

Осуществляли определение внутренних механических напряжений σ в термоупрочненном рельсе Р65 высотой 180 мм, созданных нагружающим гидравлическим стендом (патент РФ №154503, МПК Е01В 29/20, 29/46. Устройство для создания растягивающего или сжимающего напряжения в рельсе / Глухов Б.В., Курбатов А.Н., Тенитилов Е.С., Степанова Л.Н. - Опубл. 27.08.2015, Бюл. №24). Одновременно измерялись напряжения σтензо сертифицированной микропроцессорной многоканальной тензометрической системой ММТС-64.01 (свидетельство RU.C.34.007.A №44412) класса точности 0,2. Для измерения напряжений в исследуемом рельсе наклеивались тензодатчики типа ПКС (свидетельство RU.C.28.007.A №30935) с сопротивлением R=200 Ом, базой L=12 мм, коэффициентом тензочувствительности К=2,12. Тензодатчики наклеивались вдоль приложенной нагрузки посередине шейки рельса с двух сторон.

На поверхность катания головки нагружаемого исследуемого рельса и ненагруженного его аналога устанавливались по одному прямому раздельно-совмещенному преобразователю ИП (П112-2,5-12) и по четыре наклонных преобразователя (П121-2,5-18-002) один из которых был излучающим преобразователем И, а три других принимающими преобразователями П1, П2, П3 (см. чертеж). Предварительно на все преобразователи наносили контактную смазку. Угол ввода продольной ультразвуковой волны наклонных преобразователей равен 18°. Излучающий преобразователь И устанавливали так, чтобы его акустическая ось была направлена встречно акустическим осям принимающих преобразователей П1, П2, П3, а сами наклонные преобразователи находились на одной оси на расстояниях S1, S2 и S3 от излучающего преобразователя И соответственно. Эти расстояния рассчитывали по формулам (1), (2), (3). Для этого задавали скорость продольной ультразвуковой волны (CLпр) прямого раздельно-совмещенного преобразователя ИП равной 5910 м/с, а осциллографом TDS-2014 измеряли время распространения продольной волны (τLпр). Рассчитывали расстояния S1, S2 и S3 от излучающего преобразователя И до принимающих преобразователей П1, П2, П3, которые составили соответственно 61 мм, 89 мм, 117 мм. Осциллографом TDS-2014 в каждой точке приема А, В и С принимающих преобразователей измеряли времена прихода сигналов от поперечных (τT1, τT3) и трансформированных (τLT2) волн, соответственно для нагруженного исследуемого рельса и τT01, τT03, τLT02 для ненагруженного его аналога. Экспериментально определили kLT2 - акустоупругий коэффициент трансформированных волн от излучающего преобразователя до второго приемного преобразователя П2, находящегося в точке В, который равен -0,0000114 МПа-1. Результаты измерения временных параметров ультразвуковых волн на различных ступенях нагружения подставлялись в формулу (4) и рассчитывали значения напряжений σакуст.

Определялась относительная погрешность между напряжениями σтензо, измеренными тензометрической системой ММТС-64.01, и напряжениями σакуст. Результаты расчетов приведены в таблице.

Расчетные значения напряжений в рельсе, полученные с использованием предложенного способа определения внутренних механических напряжений, подтверждаются данными, полученными экспериментально с использованием сертифицированной тензометрической системы ММТС-64.01. Относительная погрешность не превышает 2%, что допустимо при проведении промышленных испытаний на железной дороге.

Ультразвуковой способ определения внутренних механических напряжений, заключающийся в том, что в нагруженный исследуемый объект и ненагруженный его аналог вводят импульсы ультразвуковых колебаний продольных и поперечных волн, принимают прошедшие через объект импульсы и измеряют времена их прохождения, по которым судят о величине напряжений, отличающийся тем, что принимают прошедшие через объект импульсы одним прямым раздельно-совмещенным преобразователем и тремя наклонными приемными преобразователями, размещенными на одной оси на расстояниях S1, S2 и S3 от излучающего преобразователя, определяемых по формулам:

где Н - высота объекта контроля, м;

αL, αТ - углы ввода продольных и поперечных волн излучающего наклонного преобразователя;

а величину напряжения а определяют по формуле:

где τT01, τT1 - времена распространения сигнала поперечной волны от излучающего преобразователя до первого приемного преобразователя ненагруженного аналога и нагруженного исследуемого объекта соответственно, нс;

τТ03, τТ3 - времена распространения сигнала поперечной волны от излучающего преобразователя до третьего приемного преобразователя ненагруженного аналога и нагруженного исследуемого объекта соответственно, нс;

τLT02, τLT2 - времена распространения сигнала трансформированных волн от излучающего преобразователя до второго приемного преобразователя ненагруженного аналога и нагруженного исследуемого объекта соответственно, нс;

kLT2 - акустоупругий коэффициент трансформированных волн от излучающего преобразователя до второго приемного преобразователя, МПа-1.



 

Похожие патенты:

Использование: для обнаружения дефектов изоляционного покрытия технологических или магистральных трубопроводов или иных изделий, расположенных в труднодоступных местах.

Использование: для неразрушающего контроля целостности резервуаров нефти и других изделий методом направленных акустических волн. Сущность изобретения заключается в том, что одновременно или последовательно в днище и боковые стенки резервуара направляют поперечные и продольные ультразвуковые волны, которые несут информацию о наличии дефектов в исследуемом изделии.

Использование: для обнаружения различных дефектов в трубопроводах и других объектах методом направленных акустических волн. Сущность изобретения заключается в том, что при дефектоскопии последовательно используется два типа зондирующих акустических волн: продольные, распространяющиеся вдоль окружности трубопровода, и поперечные, распространяющиеся вдоль образующих трубопровода, при этом акустический прибор обеспечивает сухой точечный акустический контакт с поверхностью трубопровода высокого качества и генерацию двух видов ультразвуковых волн, распространяющихся вдоль образующей и окружности трубопровода.

Использование: для неразрушающего контроля технического состояния трубопроводов акустическим способом. Сущность изобретения заключается в том, что аппаратура для обнаружения дефектов трубопроводов содержит кольцевую приемо-передающую акустическую систему, выполненную в виде антенных решеток пьезоэлектрических преобразователей, прикрепляемую к открытому участку трубопровода с помощью прижимного устройства, и программно-аппаратный комплекс для коммутации и интерпретации данных, при этом аппаратура дополнительно содержит устройство позиционирования, выполненное в виде пояса с пазами, направленными вдоль образующих трубопровода, а антенные решетки выполнены в виде съемных модулей пьезоэлектрических приемо-передающих преобразователей, устанавливаемых в пазы устройства позиционирования, причем прижимное устройство выполнено в виде магнитопроводов, установленных в съемных модулях антенных решеток.

Использование: для ультразвукового контроля круглого проката и труб. Сущность изобретения заключается в том, что устройство для ультразвукового контроля круглого проката и труб содержит статор, ротор и ультразвуковые преобразователи, при этом оно дополнительно содержит по крайней мере одно акустическое зеркало, размещенное на роторе, причем как минимум один ультразвуковой преобразователь закреплен на статоре, по крайней мере один ультразвуковой преобразователь, размещенный на статоре, направлен таким образом, что направление его излучения/приема почти параллельно оси объекта контроля, зеркало выполнено в виде по крайней мере одного отражающего элемента, геометрическая форма которого соответствует конкретной измерительной или дефектоскопической задаче, ультразвуковые преобразователи образуют по крайней мере одно кольцо, ось излучения/приема которого почти параллельна оси объекта контроля.

Использование: для автоматизированного неразрушающего контроля качества изделий. Сущность изобретения заключается в том, что сканируют поверхность контролируемого объекта по крайней мере одним информационным датчиком физического поля, измеряют величины сигналов излучения физического поля с каждой точки поверхности контролируемого объекта, разбивают весь диапазон величин сигналов излучения физического поля по их значениям на I интервалов, регистрируют измеренные сигналы по принадлежности к соответствующим интервалам, определяют количество измеренных сигналов в каждом интервале КI, рассчитывают разность количества измеренных сигналов в последующем и предыдущем интервалах ΔКI=КI+1-КI по всему диапазону значений величин измеренных сигналов, а в качестве порогового значения величины сигнала излучения физического поля выбирают значение из интервала, для которого разность количества измеренных сигналов в данном и предыдущем интервалах меньше нуля, а разность количества измеренных сигналов в данном и последующем интервалах больше нуля, при этом измеряют величину сигнала в начале сканирования изделия на эталонном дефекте Un, измеряют значение сигнала на качественном участке изделия вблизи эталонного дефекта U0 в точке i=1, где i - целочисленная координата траектории сканирования на поверхности контролируемого изделия, измеряют изменение сигнала на эталонном дефекте ΔUn=|Un-U0|, измеряют шаг дискретности измерения сигналов по траектории сканирования: Δxi=xi+1-xi, измеряют значение сигнала в текущей точке «i» сканирования изделия (Ui), измеряют разность сигналов между соседними точками: ΔUi=Ui+1-Ui, регистрируют начало j-го дефекта по градиентному признаку, регистрируют координату (xнj) начала j-го дефекта по градиентному признаку, измеряют величину наибольшего сигнала в области j-го дефекта: Ujmax=Uji, если Ui+1>Ui и Ui+2>Ui+1, измеряют величину наибольшего изменения сигнала (ΔUmax∂j) на j-м дефекте, регистрируют окончание j-го дефекта по градиентному признаку, регистрируют координату (xкj) окончания j-го дефекта по градиентному признаку: xкj=Δxixр, где p - целочисленная координата окончания j-го дефекта, измеряют протяженность j-го дефекта по градиентному признаку: Δхдj=хкj-хнj, регистрируют наличие j-го дефекта на изделии заданным образом.

Изобретение относится к области неразрушающего контроля при реализации ультразвуковых бесконтактных методов дефектоскопии для обнаружения дефектов в рельсах на значительных скоростях сканирования.

Использование: для неразрушающего контроля материалов ультразвуковыми методами. Сущность изобретения заключается в том, что выполняют генерацию серии оптических импульсов, преобразование их в акустические сигналы, излучение полученных сигналов в исследуемый материал, возбуждение продольных и сдвиговых волн в приповерхностном слое исследуемого материала, прием отраженных сигналов приемником, выполненным в виде решетки, собранной из локальных пьезоэлементов, обработку принятых сигналов в реальном масштабе времени в цифровой форме с сохранением их фаз, при этом генерацию серии оптических импульсов осуществляют в диапазоне от 10 Гц до 100 кГц, а сканирование производят через решетку из оптически прозрачных пьезоэлементов, акустический импеданс которых согласован с акустическим импедансом оптико-акустического генератора.

Изобретение относится к области ультразвукового контроля изделий, имеющих плоскую или цилиндрическую поверхность. Для расширения области применения на нижней поверхности корпуса устройства имеется продольный паз, стенки которого являются опорами и боковыми стенками локальной ванны, торцевыми стенками которой являются сменные планки.

Изобретение относится к области ультразвукового неразрушающего контроля железнодорожных рельсов. Способ заключается в том, что на поверхности катания рельса устанавливают три наклонных электроакустических преобразователя, смещенных от продольной оси рельса в сторону, противоположную от рабочей грани головки рельса.

Изобретение относится к методам определения механических и физических свойств титановых сплавов и определение по полученным величинам пригодности данных сплавов в качестве ультразвуковых волноводов. Способ выбора титанового сплава для ультразвукового волновода содержит этапы на которых определяют механические и физические свойства и структуру сплавов, при этом определяют предел прочности на разрыв σВ, предел текучести σ0,2, скорость звука в двух взаимно перпендикулярных направлениях и выбирают сплав с: пределом прочности на разрыв не менее 1200 МПа, отношением σ0,2/σВ в пределах 0,9-0,95, скоростью звука не менее 6150 м/с в обоих направлениях и различием скоростей не более чем на 50 м/с, мелкодисперсной микроструктурой с размером зерна (0,5-5,0) мкм, содержащей равноосную α-фазу в количестве (40-80)% в трансформированной β-матрице без наличия непрерывной сети α-фазы на границах β зерен. Технический результат – повышение работоспособности ультразвуковых волноводов для ультразвуковой сварки. 1 з.п. ф-лы, 2 табл.

Использование: для определения внутренних напряжений в рельсах бесстыкового пути. Сущность изобретения заключается в том, что в нагруженный исследуемый объект и ненагруженный его аналог вводят импульсы ультразвуковых колебаний продольных и поперечных волн, принимают прошедшие через объект импульсы одним прямым раздельно-совмещенным преобразователем и тремя наклонными приемными преобразователями, размещенными на одной оси. Прямым раздельно-совмещенным преобразователем измеряют высоту исследуемого объекта и в зависимости от нее устанавливают три наклонных приемных преобразователя на определенном расстоянии от излучающего наклонного преобразователя, направленного встречно приемным. Измеряют времена распространения импульсов продольных и трансформированных ультразвуковых волн от излучающего преобразователя до приемных преобразователей, по которым судят о величине напряжений. Технический результат: обеспечение возможности существенного повышения точности определения механических напряжений за счет перемещения приемных преобразователей относительно излучающего преобразователя и учета высоты исследуемого объекта. 1 ил., 1 табл.

Наверх