Раствор для металлизации резьбового соединения трубопроводов или труб и способ производства резьбового соединения для трубопроводов или труб

Изобретение относится к области гальванотехники и может быть использовано для металлизации резьбового соединения трубопроводов или труб. Раствор, не содержащий цианида, содержит пирофосфат меди, пирофосфат олова, пирофосфат цинка, пирофосфат в качестве комплексообразующего реагента для металла и по меньшей мере одно серосодержащее соединение в количестве 40 г/л или меньше (исключая 0), которое выбрано из группы, состоящей из меркаптосоединения, определяемого химической формулой (1), соединения сульфида, определяемого химической формулой (1), димера, формируемого посредством дисульфидной связи меркаптосоединений, и их солей: RS-(CHX1)m-(CHX2)n-CHX3X4 (1), где m и n - целые числа 1 или 0, каждый из X1, X2, X3 и X4 представляет собой любое одно из водорода, ОН, NH2, SO3H или CO2H, исключая тот случай, когда X1, X2, X3 и X4 все являются водородом, и R представляет собой любое из водорода, метиловой группы или этиловой группы. Способ включает стадию подготовки раствора для металлизации и стадию подвергания ниппеля или замка резьбового соединения электролитическому покрытию с использованием раствора для металлизации с формированием пленки металлизации из сплава Cu-Sn-Zn на ниппеле или замке. Пленки металлизации обладают превосходной стойкостью к фрикционной коррозии, к щелевой коррозии, а также к коррозии от внешнего воздействия. 2 н.п. ф-лы, 1 табл.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

[0001]

Настоящее изобретение относится к раствору для металлизации, в частности к раствору для металлизации резьбового соединения трубопроводов или труб, а также к способу производства резьбового соединения трубопроводов или труб с использованием этого раствора для металлизации.

УРОВЕНЬ ТЕХНИКИ

[0002]

Трубопроводы (так называемые нефтегазопромысловые трубы (OCTG)), используемые для месторождений нефти или природного газа, имеют длину десять или более метров. Трубопроводы соединяются друг с другом с помощью резьбовых соединений, и соединенные трубопроводы (соединенные нефтегазопромысловые трубы) имеют суммарную длину в несколько тысяч метров.

[0003]

Резьбовые соединения для трубопроводов или труб классифицируются на резьбовые соединения типа T&C (резьбовые и соединенные) и резьбовые соединения интегрального типа.

[0004]

Резьбовое соединение T&C включает в себя два ниппеля бурильного замка, сформированных на каждом конце двух труб или патрубков, и два замка, сформированные на обоих концах соединения, которое представляет собой короткий отрезок трубы и имеет наружный диаметр больше, чем у трубопроводов или труб. Каждый ниппель бурильного замка имеет наружную поверхность с наружной резьбой на ней. Каждый замок имеет внутреннюю поверхность с внутренней резьбой на ней. Каждый ниппель бурильного замка ввинчивается в каждый замок, закрепляемый на нем. Таким образом, в резьбовом соединении типа T&C трубопроводы соединяются друг с другом посредством соединения (муфты).

[0005]

В то же время резьбовое соединение интегрального типа включает в себя замок, сформированный на конце первого трубопровода, и ниппель бурильного замка, сформированный на конце второго трубопровода. Ниппель бурильного замка второй трубы ввинчивается в замок первой трубы, соединяя тем самым первый и второй трубопровод друг с другом. Это означает, что в резьбовом соединении интегрального типа первый и второй трубопровод связываются непосредственно друг с другом. При использовании резьбового соединения интегрального типа муфта оказывается ненужной. Следовательно, нет никакого внешнего выступа, создаваемого толщиной муфты, и таким образом не создается никаких повреждений внутренней поверхности трубы, расположенной снаружи. Соответственно резьбовые соединения интегрального типа используются в специальных случаях, например при горизонтальном бурении.

[0006]

В большинстве случаев резьбовые соединения обязаны иметь стойкость к растяжению в осевом направлении из-за собственного веса соединенных труб, а также стойкость к давлению внешних и внутренних жидкостей.

[0007]

Кроме того, резьбовые соединения обязаны иметь стойкость к фрикционной коррозии. В частности, предпочтительная стойкость к фрикционной коррозии требуется даже после повторного использования четыре или более раз трубопроводов (с большим диаметром), и десять или более раз трубы (с малым диаметром). Традиционно для того, чтобы улучшить стойкость к фрикционной коррозии, на контактные поверхности ниппелей или замков резьбовых соединений формируются медные пленки покрытия или выполняется поверхностная обработка, такая как фосфатирование. Контактная поверхность обозначает поверхностную часть, где ниппель бурильного замка и замок входят в контакт друг с другом, и такая контактная поверхность включает в себя резьбовую часть, которая имеет резьбу, и нерезьбовую металлическую контактную часть, которая не имеет резьбы. Часть уплотнения эквивалентна нерезьбовой металлической контактной части.

[0008]

С целью улучшения стойкости к фрикционной коррозии перед соединением труб на контактную поверхность ниппеля бурильного замка или замка наносится присадка. Эта присадка представляет собой компаундную консистентную смазку, содержащую тяжелые металлы, такие как Pb.

[0009]

Однако тяжелые металлы могут воздействовать на окружающую среду, и использование присадки, содержащей тяжелые металлы, все больше и больше ограничивается. По этой причине в последнее время была разработана присадка (называемая «зеленой присадкой»), не содержащая тяжелых металлов, таких как Pb, Zn и Cu. Однако зеленая присадка имеет более низкую стойкость к фрикционной коррозии, чем обычная присадка.

[0010]

В качестве методик для улучшения стойкости к фрикционной коррозии без использования присадки были предложены 1) способ дисперсионного примешивания фторкаучуковых частиц в пленку покрытия, 2) способ формирования смазочной защитной пленки посредством разбрызгивания и 3) способ использования твердой смазочной пленки вместо использования компаундной консистентной смазки, а также другие способы. Однако каждая из этих методик обеспечивает худшую стойкость к фрикционной коррозии по сравнению с обычной присадкой.

[0011]

Японская патентная заявка № 2003-74763 (Патентный документ 1) и японская патентная заявка № 2008-215473 (Патентный документ 2) предлагают резьбовые соединения, обладающие превосходной стойкостью к фрикционной коррозии. В Патентном документе 1 слой сплава Cu-Sn формируется на резьбовой части и нерезьбовой части металлического контакта резьбового соединения. В дополнение к этому в Патентном документе 2 слой сплава Cu-Zn-M1 (где M1 представляет собой один или более типов элементов, выбираемых из Sn, Bi и В) формируется на резьбовой части и нерезьбовой части металлического контакта.

СПИСОК ЦИТИРОВАННОЙ ЛИТЕРАТУРЫ

ПАТЕНТНАЯ ЛИТЕРАТУРА

[0012]

Патентный документ 1: Японская опубликованная патентная заявка № 2003-74763

Патентный документ 2: Японская опубликованная патентная заявка № 2008-215473

[0013]

Однако в Патентном документе 1 вероятно появление коррозии (щелевой коррозии) на границе (на контакте между той поверхностью, на которой сформирована пленка металлизации, и той поверхностью, на которой никакой пленки металлизации нет) между ниппелем и замком. В частности, в случае использования зеленой присадки или твердого смазочного материала щелевая коррозия возникает с большей вероятностью. В Патентном документе 2 щелевая коррозия подавляется. Однако в случае хранения труб в несоединенном состоянии в течение длительного времени пятна ржавчины могут образовываться вследствие дефектов (пористости) пленки покрытия в зависимости от окружающей среды. Это означает, что в некоторых случаях может быть вызвана коррозия от внешнего воздействия.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

[0014]

Задачей настоящего изобретения является предложить раствор для металлизации резьбового соединения для того, чтобы сформировать пленку металлизации, обладающую превосходной стойкостью к фрикционной коррозии, стойкостью к щелевой коррозии и стойкостью к коррозии от внешнего воздействия, а также предложить способ производства резьбового соединения с использованием этого раствора для металлизации.

[0015]

Раствор для металлизации настоящего варианта осуществления представляет собой раствор для металлизации резьбового соединения. Раствор для металлизации не содержит цианидов, но содержит пирофосфат меди, пирофосфат олова, пирофосфат цинка, пирофосфат в качестве комплексообразующего реагента и по меньшей мере одно серосодержащее соединение в концентрации 40 г/л или меньше (исключая 0). Серосодержащее соединение выбрано из группы, состоящей из: меркаптосоединения, определяемого химической формулой (1), соединения сульфида, определяемого химической формулой (1), димера, формируемого посредством дисульфидной связи меркаптосоединений, и их солей:

RS-(CHX1)m-(CHX2)n-CHX3X4 (1),

где m и n представляют собой целые числа 1 или 0; каждый блок из X1, X2, X3 и X4 представляет собой водород, О, NH2, SO3H или CO2H, исключая тот случай, когда X1, X2, X3 и X4 все являются водородом; и R представляет собой водород, метиловую группу или этиловую группу.

[0016]

Способ производства резьбового соединения в соответствии с настоящим вариантом осуществления включает в себя: стадию подготовки вышеописанного раствора для металлизации; а также стадию электролитического покрытия ниппеля или замка резьбового соединения с использованием этого раствора для металлизации для того, чтобы сформировать пленку металлизации сплава Cu-Sn-Zn на ниппеле или замке резьбового соединения.

[0017]

Резьбовое соединение, произведенное путем использования раствора для металлизации настоящего варианта осуществления, обладает превосходной стойкостью к фрикционной коррозии, стойкостью к щелевой коррозии, а также стойкостью к коррозии от внешнего воздействия.

ОПИСАНИЕ ВАРИАНТА ОСУЩЕСТВЛЕНИЯ

[0018]

Авторы настоящего изобретения исследовали механизмы образования коррозии и фрикционной коррозии в резьбовых соединениях и изучили растворы для ее предотвращения. В итоге авторы настоящего изобретения получили следующие результаты.

[0019]

В случае периодически повторяющегося затягивания и ослабления резьбового соединения создается контактное скольжение между соприкасающимися поверхностями ниппеля и замка резьбового соединения. В таком случае соприкасающиеся поверхности нагреваются благодаря сопротивлению деформации. В это время соприкасающиеся поверхности могут локально испытывать повышенную температуру, в некоторых случаях равную или больше, чем температура плавления. В поверхностных частях, имеющих температуру, равную или больше, чем температура плавления, металлы становятся расплавленными и схватываются друг с другом.

[0020]

В резьбовом соединении, если часть контактной поверхности имеет более высокую температуру плавления и более высокую твердость, ее стойкость к деформации становится меньше. В таком случае может быть достигнута превосходная стойкость к фрикционной коррозии. Если пленка металлизации, сформированная на контактной поверхности ниппеля или замка резьбового соединения, является интерметаллическим соединением, твердость и температура плавления пленки металлизации становятся больше. Соответственно в этом случае возможно достичь превосходной стойкости к фрикционной коррозии.

[0021]

В то же время в пленке металлизации из сплава Cu-Sn Патентного документа 1 щелевая коррозия, как полагают, вызывается следующими причинами. Fe является электрохимически менее благородным металлом, чем Cu. Если пленка металлизации из сплава Cu-Sn формируется на стальной поверхности резьбового соединения, гальванические микроячейки формируются между Cu в пленке металлизации и менее благородной сталью (Fe), находящейся в контакте с Cu. Следовательно, коррозия (щелевая коррозия) образуется в непокрытой части (Fe), находящейся в контакте с пленкой металлизации.

[0022]

Для того, чтобы подавить щелевую коррозию, менее благородный металл, чем Fe, содержится в сплаве Cu-Sn. В частности, в сплаве Cu-Sn содержится Zn для того, чтобы сформировать пленку металлизации из сплава Cu-Sn-Zn. В этом случае образование щелевой коррозии подавляется.

[0023]

Патентный документ 2 раскрывает пленку металлизации из сплава Cu-Sn-Zn. Однако в Патентном документе 2 при формировании пленки металлизации из сплава Cu-Sn-Zn используется раствор для металлизации в виде водного раствора, содержащего цианид (называемый в дальнейшем цианидным раствором для металлизации).

[0024]

В цианидном растворе для металлизации Cu образует комплексное соединение металла с цианидом. За счет образования комплексного соединения металла возможно сдвинуть потенциал осаждения Cu в сторону менее благородного потенциала. Следовательно, во время выполнения электролитического покрытия предотвращается чрезмерное электроосаждение одной меди, и соответствующее количество Cu электроосаждается (соосаждается) вместе с Zn, потенциал осаждения которого является менее благородным. Следовательно, формируется пленка металлизации из сплава Cu-Sn-Zn.

[0025]

Однако в случае формирования пленки металлизации из сплава Cu-Sn-Zn с использованием раствора для металлизации, включающего в себя цианид, пятна ржавчины могут образовываться на пленке металлизации из сплава Cu-Sn-Zn в зависимости от окружающей среды при хранении, продолжительности хранения и т.п. В частности, такая пленка металлизации из сплава Cu-Sn-Zn не обладает высокой стойкостью к коррозии при внешнем воздействии. Механизмы образования пятен ржавчины могут быть следующими. В случае использования цианида эффективность тока во время электролитического покрытия ухудшается. В процессе электролитического покрытия при реакции осаждения металлов образуется водород. Во время электролитической металлизации с использованием цианида большое количество электричества используется для образования водорода. Следовательно, дефекты в виде мелких пустот (пористость) формируются в пленке металлизации благодаря образованию водорода. Если эти мелкие поры объединяются, кислород проникает в пленку металлизации с ее наружной поверхности через эти поры и достигает стального материала (Fe) под пленкой металлизации. В таком случае образуются пятна ржавчины.

[0026]

Раствор для металлизации, включающий в себя цианид, при смешивании с раствором кислоты образует токсичную газообразную цианистоводородную кислоту. Как правило, при электролитическом покрытии перед формированием пленки металлизации формируется чрезвычайно тонкая пленка (такая как пленка металлизации из Ni). Эту обработку называют ударной металлизацией. Формирование тонкой пленки металлизации посредством ударной металлизации улучшает адгезию к стальному материалу пленки металлизации, формируемой посредством последующего электролитического покрытия. Раствор для металлизации является раствором кислоты.

[0027]

В случае резьбового соединения типа T&C соответственно предусматриваются ударный резервуар, в котором хранится раствор для ударной металлизации, резервуар для водной очистки и резервуар металлизации, в котором хранится раствор для металлизации. Соединение с замком погружается в ударный резервуар для того, чтобы оно подверглось ударной металлизации. После этого замок, подвергнутый ударной металлизации, погружается в резервуар с водой для промывки. Кислый ударный раствор почти полностью удаляется из соединения посредством этой водной очистки. Следовательно, никакой газообразной цианистоводородной кислоты не образуется, даже если цианид содержится в резервуаре металлизации, используемом в последующем процессе электролитического покрытия.

[0028]

Поскольку резьбовое соединение типа T&C представляет собой короткий отрезок трубы, это соединение может быть погружено в каждый резервуар. В противоположность этому в случае резьбового соединения интегрального типа трудно погрузить его ниппель или замок в каждый резервуар. Причина этого заключается в том, что общая длина резьбового соединения интегрального типа обычно составляет десятки метров. Следовательно, в случае формирования пленки металлизации на ниппеле или замке резьбового соединения интегрального типа электролитическое покрытие выполняется другим образом.

[0029]

Например, электролитическое покрытие для резьбового соединения интегрального типа выполняется следующим образом. Герметичная капсула крепится к ниппелю или замку резьбового соединения интегрального типа. Ударный раствор подается в капсулу так, чтобы выполнить ударную металлизацию. После этого ударный раствор удаляется из капсулы. После удаления ударного раствора раствор для металлизации подается в капсулу, и выполняется электролитическое покрытие.

[0030]

В случае выполнения электролитического покрытия в вышеупомянутой процедуре остающийся ударный раствор и раствор для металлизации в некоторых случаях могут быть смешаны в капсуле. В таком случае вероятно образование газообразной цианистоводородной кислоты. Соответственно использование такого раствора для металлизации, который содержит цианид, не является предпочтительным.

[0031]

Авторы настоящего изобретения изучили раствор для металлизации, не содержащий цианида, с помощью которого может быть сформирована пленка металлизации из сплава Cu-Sn-Zn, обладающая превосходной стойкостью к коррозии от внешнего воздействия. В итоге авторы настоящего изобретения получили следующие результаты.

[0032]

Возможно сформировать пленку металлизации из сплава Cu-Sn-Zn без использования цианида, если использовать раствор для металлизации, содержащий щелочной водный раствор на основе пирофосфата и серосодержащего соединения, имеющего высокую восстановительную способность.

[0033]

В случае выполнения электролитического покрытия с вышеупомянутым раствором для металлизации возможно подавить образование водорода. В частности, в случае выполнения электролитического покрытия с раствором для металлизации, содержащим цианид, эффективность использования тока составляет приблизительно 30%. В этом случае приблизительно 70% тока металлизации используется для образования водорода. В то же время в случае выполнения электролитического покрытия с вышеупомянутым раствором для металлизации, содержащим пирофосфат и серосодержащее соединение, имеющее высокую восстановительную способность, эффективность использования тока составляет приблизительно 80%. Соответственно при использовании этого раствора для металлизации образуется меньшая пористость в пленке металлизации из сплава Cu-Sn-Zn. В результате возможно достичь превосходной стойкости к коррозии от внешнего воздействия и подавления образования пятен ржавчины. В дополнение к этому благодаря меньшей пористости в пленке металлизации из сплава Cu-Sn-Zn достигается более высокая твердость. Следовательно, стойкость к фрикционной коррозии улучшается.

[0034]

Раствор для металлизации для резьбового соединения, полученный на основе вышеупомянутых находок, не содержит цианида, но содержит пирофосфат меди, пирофосфат олова, пирофосфат цинка, пирофосфат в качестве комплексообразующего реагента и по меньшей мере одно серосодержащее соединение в концентрации 40 г/л или меньше (исключая 0). Серосодержащее соединение выбрано из группы, состоящей из: меркаптосоединения, определяемого химической формулой (1), соединения сульфида, определяемого химической формулой (1), димера, формируемого посредством дисульфидной связи меркаптосоединений, и их солей:

RS-(CHX1)m-(CHX2)n-CHX3X4 (1),

где m и n представляют собой целые числа 1 или 0; каждый блок из X1, X2, X3 и X4 представляет собой водород, ОH, NH2, SO3H или CO2H, исключая тот случай, когда X1, X2, X3 и X4 все являются водородом; и R представляет собой водород, метиловую группу или этиловую группу.

[0035]

В случае выполнения электролитического покрытия с использованием раствора для металлизации настоящего варианта осуществления образование водорода подавляется. Следовательно, возможно уменьшить пористость пленки металлизации из сплава Cu-Sn-Zn, сформированной посредством электролитического покрытия. Соответственно образование пятен ржавчины подавляется, что приводит к превосходной стойкости к коррозии от внешнего воздействия. Пленка металлизации из сплава Cu-Sn-Zn также обладает превосходной стойкостью к щелевой коррозии. Из-за меньшей пористости пленки металлизации из сплава Cu-Sn-Zn пленка металлизации из сплава Cu-Sn-Zn имеет более высокую твердость и обладает превосходной стойкостью к фрикционной коррозии. В дополнение к этому, хотя раствор для металлизации настоящего варианта осуществления не содержит цианида, при его использовании возможно сформировать пленку металлизации из сплава Cu-Sn-Zn. Соответственно при выполнении процесса металлизации нет никакой возможности образования газообразной цианистоводородной кислоты.

[0036]

Способ производства резьбового соединения в соответствии с настоящим вариантом осуществления включает в себя стадию подготовки вышеупомянутого раствора для металлизации, а также стадию подвергания ниппеля или замка резьбового соединения электрическому покрытию с использованием этого раствора для металлизации, формируя тем самым пленку металлизации из сплава Cu-Sn-Zn на ниппеле или замке резьбового соединения.

[0037]

Далее будут более подробно описаны раствор для металлизации резьбового соединения и способ производства резьбового соединения с использованием этого раствора для металлизации в соответствии с настоящим вариантом осуществления.

[0038]

[Раствор для металлизации]

Раствор для металлизации настоящего варианта осуществления используется для создания гальванического покрытия на ниппеле или замке резьбового соединения. Раствор для металлизации не содержит цианида, но содержит пирофосфат меди, пирофосфат олова, пирофосфат цинка, комплексообразующий реагент, буферную добавку и растворитель. В настоящем варианте осуществления растворителем в растворе для металлизации является вода.

[0039]

[Пирофосфат меди, пирофосфат олова и пирофосфат цинка]

Пирофосфат меди, пирофосфат олова и пирофосфат цинка являются существенными соединениями для формирования пленки металлизации из сплава Cu-Sn-Zn. Предпочтительный нижний предел содержания пирофосфата меди в растворе для металлизации составляет 1 г/л и более предпочтительно 3 г/л по массе меди. Предпочтительный верхний предел содержания пирофосфата меди составляет 50 г/л и более предпочтительно 15 г/л по массе меди.

[0040]

Предпочтительный нижний предел содержания пирофосфата олова в растворе для металлизации составляет 0,5 г/л и более предпочтительно 2 г/л по массе олова. Предпочтительный верхний предел содержания пирофосфата олова в гальванической ванне составляет 50 г/л по массе олова и более предпочтительно 14 г/л.

[0041]

Предпочтительный нижний предел содержания пирофосфата цинка в растворе для металлизации составляет 0,5 г/л и более предпочтительно 1 г/л по массе цинка. Предпочтительный верхний предел содержания пирофосфата цинка в растворе для металлизации составляет 50 г/л по массе цинка и более предпочтительно 20 г/л.

[0042]

[Комплексообразующий реагент]

Для того, чтобы улучшить операционную выгоду буферной добавки, раствор для металлизации дополнительно содержит пирофосфат в качестве комплексообразующего реагента для металла. Пирофосфат в качестве комплексообразующего реагента для металла может представлять собой, например, пирофосфат натрия, пирофосфат калия, пирофосфат аммония или их смесь.

[0043]

Предпочтительное содержание пирофосфата в качестве комплексообразующего реагента для металла в растворе для металлизации составляет от 6 до 15 в терминах доли P. Более предпочтительный верхний предел доли P составляет 10, и еще более предпочтительный ее верхний предел составляет 9. Доля P определяется следующей Формулой (A).

Доля P=масса P2O7 в пирофосфате в качестве комплексообразующего реагента для металла и солей таких металлов, как медь, олово и цинк в растворе для металлизации/масса металлов меди, олова и цинка в растворе для металлизации; (A)

[0044]

[Серосодержащее соединение]

Раствор для металлизации дополнительно содержит серосодержащее соединение с высокой восстанавливающей способностью в качестве буферной добавки. Это серосодержащее соединение выбрано из группы, состоящей из: меркаптосоединения, определямого химической формулой (1), соединения сульфида, определяемого химической формулой (1), димера, формируемого посредством дисульфидной связи меркаптосоединений, и их солей:

RS-(CHX1)m-(CHX2)n-CHX3X4 (1),

где m и n представляют собой целые числа 1 или 0; каждый блок из X1, X2, X3 и X4 представляет собой водород, ОH, NH2, SO3H или CO2H, исключая тот случай, когда X1, X2, X3 и X4 все являются водородом; и R представляет собой водород, метиловую группу или этиловую группу.

[0045]

Серосодержащее соединение может быть, например, меркаптоуксусной кислотой, 2-меркаптопропионовой кислотой, 2-аминоэтантиолом, 2-меркаптоэтанолом, 1-тиоглицерином, меркаптопропансульфокислотой, бис(3-сульфопропил)дисульфидом, меркаптосукциновой кислотой, цистеином, цистином или метионином. Серосодержащее соединение может быть комбинацией этих соединений.

[0046]

Серосодержащее соединение с высокой восстанавливающей способностью обеспечивает соосаждение с цинком, который является менее благородным металлом, подавляет образование водорода во время электрического покрытия, а также уменьшает пористость в пленке металлизации. Если содержание серосодержащего соединения с высокой восстанавливающей способностью в растворе для металлизации является чрезмерно высоким, образование пленки металлизации из сплава Cu-Sn-Zn становится затруднительным, что может вызвать отсутствие покрытия. Соответственно предпочтительный верхний предел содержания серосодержащего соединения в растворе для металлизации составляет 40 г/л. Предпочтительный нижний предел содержания серосодержащего соединения в гальванической ванне составляет 0,01 г/л.

[0047]

[Поверхностно-активное вещество]

Раствор для металлизации может дополнительно содержать поверхностно-активное вещество. Поверхностно-активное вещество помогает газообразному водороду, образующемуся во время электрического покрытия, выходить наружу из поверхности стального материала и пленки металлизации. Предпочтительное содержание поверхностно-активного вещества в гальванической ванне составляет от 0,0001 г/л до 10 г/л.

[0048]

Раствор для металлизации настоящего варианта осуществления не содержит цианида. Хотя он и не содержит цианида, вышеупомянутый раствор для металлизации позволяет формировать пленку металлизации из сплава Cu-Sn-Zn посредством электролитического покрытия.

[0049]

[Способ производства резьбового соединения]

Способ производства резьбового соединения с использованием вышеупомянутого раствора для металлизации является следующим. Сначала готовится вышеописанный раствор для металлизации. После этого на контактной поверхности ниппеля или замка резьбового соединения выполняется электролитическое покрытие с использованием вышеупомянутого раствора для металлизации. Способ электрического покрытия не ограничивается одним конкретным способом. Если резьбовое соединение является резьбовым соединением типа T&C, электрическое покрытие может быть выполнено с использованием вышеупомянутого резервуара для металлизации. Если резьбовое соединение является резьбовым соединением интегрального типа, электролитическое покрытие может быть выполнено с использованием вышеупомянутой капсулы, либо с использованием других способов. Перед электролитическим покрытием может быть выполнена ударная металлизация. Резьбовое соединение производится посредством вышеупомянутой процедуры производства. Условия электролитического покрытия (температура ванны, значение pH раствора для металлизации, плотность тока и т.д.) не ограничиваются какими-либо конкретными условиями, если эти условия подходящим образом определяются известным способом. Предварительная обработка, такая как обезжиривание и травление, может быть выполнена перед электролитической металлизацией.

[0050]

[Пленка металлизации, сформированная на резьбовом соединении]

Резьбовое соединение, произведенное вышеупомянутым способом, включает в себя пленку металлизации из сплава Cu-Sn-Zn, сформированную на ниппеле или замке. Пленка металлизации из сплава Cu-Sn-Zn содержит Cu, Sn и Zn, и остаток составляют примеси. Предпочтительное содержание Cu в пленке металлизации из сплава Cu-Sn-Zn составляет от 40 мас.% до 70 мас.%, предпочтительное содержание Sn составляет от 20 мас.% до 50 мас.%, и предпочтительное содержание Zn составляет от 2 мас.% до 20 мас.%.

[0051]

Предпочтительная толщина пленки металлизации из сплава Cu-Sn-Zn составляет от 30 до 40 мкм. Как было упомянуто выше, пленка никелевого покрытия может быть сформирована под пленкой металлизации из сплава Cu-Sn-Zn, или пленка медного покрытия может быть сформирована вместо пленки никелевого покрытия.

[0052]

По сравнению с пленкой металлизации из сплава Cu-Sn-Zn, произведенной с использованием обычного раствора для металлизации, содержащего цианид, пленка металлизации из сплава Cu-Sn-Zn, произведенная вышеописанным способом, имеет меньшую пористость. Следовательно, в резьбовом соединении, включающем в себя пленку металлизации из сплава Cu-Sn-Zn, произведенную с помощью вышеописанного способа производства, образование пятен ржавчины маловероятно, и может быть достигнута превосходная стойкость к коррозии от внешнего воздействия. Вследствие меньшей пористости пленка металлизации из сплава Cu-Sn-Zn имеет более высокую твердость и обладает превосходной стойкостью к фрикционной коррозии. В дополнение к этому пленка металлизации из сплава Cu-Sn-Zn обладает более превосходной стойкостью к щелевой коррозии по сравнению с пленкой металлизации из сплава Cu-Sn.

[0053]

В случае закрепления резьбовых соединений, каждый элемент которых имеет на себе пленку металлизации из сплава Cu-Sn-Zn, хорошо известная смазочная пленка формируется на контактной поверхности ниппеля или замка резьбового соединения. Эта смазочная пленка может быть вязкой жидкостью или полутвердой смазочной пленкой или может быть твердой смазочной пленкой. Эта смазочная пленка может быть смазочной пленкой, имеющей двухслойную структуру, включающую в себя твердую смазочную пленку нижнего слоя и вязкую жидкую или полутвердую смазочную пленку верхнего слоя, или может быть смазочной пленкой, содержащей твердый порошок. Твердый порошок не ограничивается конкретным порошком, если твердый порошок является известным веществом, проявляющим смазочный эффект. Твердый порошок может быть графитом, MoS2 (дисульфидом молибдена), WS2 (дисульфидом вольфрама), BN (нитридом бора), PTFE (политетрафторэтиленом), CF (фторуглеродом) или CaCO3 (карбонатом кальция) и т.д.

[0054]

Резьбовое соединение, произведенное с помощью способа производства по настоящему варианту осуществления, показывает превосходную стойкость к фрикционной коррозии даже в том случае, если использовать вышеупомянутую смазочную пленку вместо обычной присадки, содержащей тяжелые металлы.

ПРИМЕР

[0055]

Металлические пленки были сформированы на резьбовых соединениях путем использования соответствующих растворов для металлизации Тестов №№ 1-8, как показано в Таблице 1. Проверка полученных пленок металлизации выполнялась на однородность, стойкость к фрикционной коррозии, щелевую коррозию и коррозию от внешнего воздействия для каждой пленки металлизации.

[0056]

[Таблица 1]

Тест № Раствор для металлизации Время металлизации (мин) Слой металлизации Оценка отсутствия металлизации Оценка фрикционной коррозии (цикл M&B) Щелевая коррозия Коррозия от внешнего воздействия
Основной состав Буферная добавка Концентрация
(г/л)
Поверхностно-активное вещество Концентрация
(мл/л)
Химический состав Толщина
(мкм)
1 Раствор пирофосфата (A-1) 2-аминоэтантиол 5 Амфотерное поверхностно-активное вещество 5 3 Cu-Sn-Zn 2 E 10 E E
2 Раствор пирофосфата (A-1) 2-аминоэтантиол 5 Амфотерное поверхностно-активное вещество 5 12 Cu-Sn-Zn 8 E 10 E E
3 Раствор пирофосфата (A-1) Меркаптоэтанол 15 Амфотерное поверхностно-активное вещество 5 3 Cu-Sn-Zn 2 E 10 E E
4 Раствор пирофосфата (A-1) нет - Амфотерное поверхностно-активное вещество 5 12 Cu-Sn-Zn 8 неприемлемо 3 A A
5 Раствор пирофосфата (A-1) 2-аминоэтантиол 45 Амфотерное поверхностно-активное вещество 5 12 Cu-Sn-Zn 8 неприемлемо 3 A A
6 Раствор сульфата (C-1) Аллилтиомочевина 0,2 Неионогенное поверхностно-активное вещество 3 12 Cu-Sn 10 E 8 неприемлемо неприемлемо
7 Раствор сульфата (E-1) нет - нет - 15 Cu 15 E 3 A A
8 Раствор цианата (F-1) нет - нет - 40 Cu-Sn-Zn 8 E 8 G неприемлемо

[0057]

Сначала было произведено множество бесшовных труб. Каждый химический состав бесшовных труб содержал 13 мас.% хрома. Каждая бесшовная труба имела наружный диаметр 244,5 мм, толщину 13,84 мм и длину 1200 мм. В Тестах №№ 1-7 замок был сформирован путем нарезания внутренней резьбы на внутренней поверхности одного конца каждой трубы, и ниппель был сформирован путем нарезания внешней резьбы на наружной поверхности другого конца каждой трубы, формируя тем самым резьбовое соединение интегрального типа.

[0058]

В Тесте № 8 было подготовлено резьбовое соединение типа T&C. На внутренней поверхности каждого конца этого соединения была нарезана внутренняя резьба. Это соединение имело наружный диаметр 267,2 мм, толщину 24,0 мм и длину 335 мм.

[0059]

[Подготовка раствора для металлизации]

Были подготовлены следующие четыре типа растворов для металлизации.

Раствор (A-1):

- Пирофосфат олова: 10 г/л в пересчете на олово

- Пирофосфат меди: 10 г/л в пересчете на медь

- Пирофосфат цинка: 10 г/л в пересчете на цинк

- Пирофосфат натрия: 300 г/л

- доля P=7,7

Раствор (C-1):

- Метансульфонат олова: 15 г/л в пересчете на олово

- Метансульфонат меди: 15 г/л в пересчете на медь

- Серная кислота: 180 г/л

Раствор (E-1):

- Сульфат меди: 250 г/л

- Серная кислота: 110 г/л

Раствор (F-1) (производства компании Nihon Kagaku Sangyo Co., Ltd.):

- Sn: 8,5 г/л

- Cu: 23,0 г/л

- Zn: 0,7 г/л

- цианид натрия: 19,0 г/л

- каустическая сода: 13,0 г/л

[0060]

Раствор (A-1) имел состав внутри диапазона состава раствора для металлизации в соответствии с настоящим вариантом осуществления. Раствор (C-1) и раствор (E-1) представляли собой сульфатные ванны, состоящие главным образом из сульфата. Раствор (F-1) представлял собой ванну цианида, содержащую цианид.

[0061]

Буферная добавка и поверхностно-активное вещество были добавлены к каждому раствору, как показано в Таблице 1. В качестве амфотерного поверхностно-активного вещества в Тесте № 1 и в Тесте № 2, а также в Тесте № 4 и Тесте № 5 использовался «Amphitol 24B» производства компании Kao Corporation. В Тесте № 3 в качестве амфотерного поверхностно-активного вещества использовался Softazoline LPB производства компании Kawaken Fine Chemicals Co., Ltd. В тесте № 6 в качестве неионогенного поверхностно-активного вещества использовался полиоксиэтилендинонилфениловый эфир. В каждом из Тестов №№ 1-5 (раствор (A-1)) раствор для металлизации был получен путем дополнительного доведения значения pH до 8. Для регулирования значения pH полифосфорная кислота использовалась в Тесте № 1 и в Тестах №№ 3-5, и ортофосфорная кислота использовалась в Тесте № 2.

[0062]

[Электрическое покрытие]

В Тестах №№ 1-7 замки соответствующих резьбовых соединений интегрального типа были подвергнуты электрическому покрытию с использованием соответствующих растворов для металлизации, как показано в Таблице 1. В частности, замок каждого резьбового соединения был покрыт герметичной капсулой. Внутренняя часть капсулы была заполнена соответствующим раствором для металлизации, после чего было выполнено электролитическое покрытие. Температура ванны была установлена равной 35°C в каждом из Тестов №№ 1-7. Соответствующие интервалы времени металлизации показаны в Таблице 1.

[0063]

В Тесте № 8 муфта резьбового соединения типа T&C была подвергнута электролитическому покрытию с использованием раствора для металлизации, показанного в Таблице 1. Конкретно, муфта была погружена в гальваническую ванну, после чего было выполнено электролитическое покрытие. Температура ванны составляла 45°C. Интервал времени металлизации показан в Таблице 1.

[0064]

Каждый химический состав полученных пленок металлизации был измерен с помощью EDX (энергодисперсионного рентгеновского анализа). Каждый химический состав соответствующей пленки металлизации из сплава Cu-Sn-Zn в Тестах №№ 1-5 и в Тесте № 8 был следующим: содержание Cu: 55 мас.%, содержание Sn: 35 мас.% и содержание Zn: 10 мас.%. Химический состав пленки металлизации из сплава Cu-Sn в Тесте № 6 был следующим: содержание Cu: 55 мас.% и содержание Sn: 45 мас.%. Химический состав медной пленки металлизации в Тесте № 7 был следующим: содержание Cu: 100 мас.%.

[0065]

[Тест определения отсутствия металлизации]

На каждой пленке металлизации, сформированной при условиях каждого номера теста, визуально определялось, имеются ли неметаллизированные части в пленке металлизации (в которых пленка металлизации не была локально сформирована, так что поверхность стального материала является открытой). В частности, пленка металлизации в каждом номере теста наблюдалась визуально для того, чтобы подтвердить, имеются ли на ней какой-либо «нагар». Результаты этого определения показаны в Таблице 1. «E» (превосходно) обозначает, что нагар отсутствует, и интересующая пленка металлизации была сформирована равномерно. «NA» (неприемлемо) обозначает, что нагар наблюдался в интересующей пленке металлизации.

[0066]

[Тест оценки фрикционной коррозии]

Смазочное покрытие было сформировано на контактной поверхности каждого замка, на которой пленка металлизации была сформирована при условиях каждого номера теста, следующим способом. В качестве смазочного агента использовалась зеленая присадка, конкретно Bestolife «3010» NM SPECIAL производства компании Bestolife Corporation. Толщина каждого смазочного покрытия была равна 100 мкм.

[0067]

Затягивание и ослабление циклически выполнялись с использованием каждого замка, на котором пленка металлизации была сформирована при условиях каждого номера теста, и каждого ниппеля, который не был подвергнут обработке металлизации. Этот тест выполнялся при обычной температуре (25°C). Вращающий момент, использованный для затягивания и ослабления, составлял 49351,8 Н×м (36400 фут×фунт). Каждый раз, когда один цикл затягивания и ослабления завершался, каждый замок подвергался очистке растворителем для того, чтобы удалить с него смазочное покрытие. Контактная поверхность каждого замка с удаленным смазочным покрытием визуально наблюдалась для того, чтобы определить наличие или отсутствие фрикционной коррозии. Затягивание и ослабление циклически выполнялись вплоть до десяти раз максимум, и количество циклов, полученное путем вычитания единицы из номера цикла N, когда фрикционная коррозия наблюдалась впервые (то есть N-1 циклов; это количество циклов упоминается в дальнейшем как цикл M&B), использовалось в качестве оценочного индекса стойкости к фрикционной коррозии. Если цикл M&B равен «10», то этот случай означает, что никакой фрикционной коррозии не наблюдалась даже после 10 циклов затягивания и ослабления. Результаты этого теста показаны в Таблице 1.

[0068]

[Тест щелевой коррозии]

Был подготовлен листовой материал углеродистой стали (эквивалентный сорту SPCC, определенному в японском промышленном стандарте JIS G3141 (2011)). Множество тестовых образцов было взято из этого листового материала. Каждый тестовый образец был подвергнут электролитическому покрытию при вышеописанных условиях с использованием раствора для металлизации каждого номера теста, в результате чего были получены металлизированные тестовые образцы, на поверхности которых была сформирована соответствующая пленка металлизации, как показано в Таблице 1.

[0069]

Закрепленные тестовые образцы были подготовлены таким образом, что из тестовых образцов, взятых из листового материала, каждый из тестовых образцов, не подвергавшихся электролитическому покрытию (упоминаемый в дальнейшем как непокрытый тестовый образец), и каждый покрытый тестовый образец в каждом номере теста были закреплены в контакте друг с другом с помощью болта. Контактная поверхность между каждым покрытым тестовым образцом и каждым непокрытым тестовым образцом, которые были прикреплены друг к другу, имела размер 50 мм × 50 мм.

[0070]

Тест щелевой коррозии проводился с использованием закрепленных тестовых образцов. Каждый закрепленный тестовый образец был погружен в кипяченую воду, содержащую 20 мас.% NaCl, на один месяц (31 день). Каждый из закрепленных тестовых образцов был вынут через месяц, и была измерена максимальная глубина коррозии на контактной поверхности каждого непокрытого тестового образца, контактирующего с соответствующим покрытым тестовым образцом.

[0071]

Результаты измерений показаны в Таблице 1. «E» (превосходно) означает, что максимальная глубина коррозии была меньше чем 1 мкм. «G» (хорошо) означает, что максимальная глубина коррозии была от 1 мкм до менее чем 5 мкм. «А» (приемлемо) означает, что максимальная глубина коррозии была от 5 мкм до менее чем 10 мкм. «NA» (неприемлемо) означает, что максимальная глубина коррозии была 10 мкм или больше.

[0072]

[Тест на коррозию от внешнего воздействия]

Были подготовлены покрытые тестовые образцы, которые были теми же самыми, что и использованные в вышеупомянутом тесте на щелевую коррозию. Поверхность каждого тестового образца, на которой была сформирована пленка металлизации, (называемая поверхностью наблюдения), имела размер 50 мм × 50 мм. Каждый покрытый тестовый образец был подвергнут определению стойкости к воздействию солевого тумана в соответствии с японским промышленным стандартом JIS Z2371 (2000) в течение 24 час. На каждой поверхности наблюдения после теста была измерена площадь, на которой образовалась ржавчина (пятна ржавчины). Результаты этого теста показаны в Таблице 1. «E» в Таблице 1 означает, что никакой ржавчины не было на всей поверхности наблюдения. «G» означает, что доля покрытой ржавчиной поверхности на поверхности наблюдения составила менее 5%. «A» означает, что доля покрытой ржавчиной поверхности на поверхности наблюдения составила от 5% до менее чем 20%. «NA» означает, что доля покрытой ржавчиной поверхности на поверхности наблюдения составила 20% или больше.

[0073]

[Результаты теста]

В Таблице 1 в каждом из Тестов №№ 1-3 основной состав раствора для металлизации и буферная добавка находились внутри диапазона настоящего варианта осуществления. Соответственно полученная пленка металлизации из сплава Cu-Sn-Zn не имела нагара и была произведена равномерно. Для каждого из этих Тестов цикл M&B составил десять циклов, что означает превосходную стойкость к фрикционной коррозии. В каждой пленке металлизации этих Тестов были получены превосходная стойкость к щелевой коррозии и превосходная стойкость к коррозии от внешнего воздействия.

[0074]

В то же время раствор для металлизации Теста № 4 имел соответствующий основной состав, но не содержал серосодержащего соединения в качестве буферной добавки. Следовательно, на пленке металлизации наблюдался нагар. Это считалось доказательством образования неметаллизированных частей. Следовательно, цикл M&B был малым и составлял менее 4 циклов, так что стойкость к фрикционной коррозии была недостаточной.

[0075]

Раствор для металлизации Теста №5 имел соответствующий основной состав, но имел чрезмерно высокое содержание серосодержащего соединения в качестве буферной добавки. Следовательно, на пленке металлизации наблюдался нагар. Это считалось доказательством образования неметаллизированных частей. Следовательно, цикл M&B был малым и составлял менее 4 циклов, так что стойкость к фрикционной коррозии была недостаточной.

[0076]

Пленка, сформированная с использованием раствора для металлизации Теста № 6, представляла собой пленку металлизации из сплава Cu-Sn. Следовательно, стойкость к щелевой коррозии и стойкость к коррозии от внешнего воздействия были недостаточными.

[0077]

Пленка, сформированная с использованием раствора для металлизации Теста № 7, представляла собой пленку металлизации из меди. Следовательно, цикл M&B был малым и составлял менее 4 циклов, так что стойкость к фрикционной коррозии была недостаточной.

[0078]

В растворе для металлизации Теста № 8 использовался раствор для металлизации, содержащий цианид. В этом случае была сформирована однородная пленка металлизации из сплава Cu-Sn-Zn. Однако пленка металлизации из сплава Cu-Sn-Zn, сформированная с использованием этого раствора для металлизации, показала недостаточную стойкость к коррозии от внешнего воздействия. Это можно объяснить тем, что раствор для металлизации содержал цианистый калий, и таким образом много водорода образовалось во время электрического покрытия, что привело к сильной пористости в пленке металлизации.

[0079]

Выше был описан вариант осуществления настоящего изобретения; однако вышеупомянутый вариант осуществления является просто примером выполнения настоящего изобретения. Соответственно настоящее изобретение не ограничивается вышеупомянутым вариантом осуществления, и вышеупомянутый вариант осуществления может быть подходящим образом модифицирован без отступлений от области охвата настоящего изобретения.

1. Раствор для металлизации резьбового соединения трубопроводов или труб, не содержащий цианида и

содержащий:

пирофосфат меди,

пирофосфат олова,

пирофосфат цинка,

пирофосфат в качестве комплексообразующего реагента для металла и

по меньшей мере одно серосодержащее соединение в количестве 40 г/л или меньше (исключая 0), причем:

по меньшей мере одно серосодержащее соединение выбрано из группы, состоящей из меркаптосоединения, определяемого химической формулой (1), соединения сульфида, определяемого химической формулой (1), димера, формируемого посредством дисульфидной связи меркаптосоединений, и их солей:

RS-(CHX1)m-(CHX2)n-CHX3X4 (1),

где m и n представляют собой целые числа 1 или 0, каждый из X1, X2, X3 и X4 представляет собой любое одно из водорода, ОН, NH2, SO3H или CO2H, исключая тот случай, когда X1, X2, X3 и X4 все являются водородом, и R представляет собой любое из водорода, метиловой группы или этиловой группы.

2. Способ металлизации резьбового соединения для трубопроводов или труб, включающий:

стадию подготовки раствора для металлизации по п. 1; и

стадию подвергания ниппеля или замка резьбового соединения электролитическому покрытию с использованием раствора для металлизации с формированием пленки металлизации из сплава Cu-Sn-Zn на ниппеле или замке.



 

Похожие патенты:

Изобретение относится к нанесению покрытия из олова на нержавеющий лист стали, который подходит для использования в электрических контактных соединениях, которые применяются в электронном оборудовании.

Изобретение относится к стальному трубопроводу, содержащему термостойкое и коррозионно-устойчивое многослойное плакирующее покрытие, имеющее улучшенную обрабатываемость.

Изобретение относится к области металлургии, а именно к получению горячештампованного изделия, используемого в автомобилестроении. Изделие получают горячей штамповкой электролитически гальванизированного стального листа, включающего, мас.%: С от 0,10 до 0,35, Si от 0,01 до 3,00, Al от 0,01 до 3,00, Mn от 1,0 до 3,5, Р от 0,001 до 0,100, S от 0,001 до 0,010, N от 0,0005 до 0,0100, Ti от 0,000 до 0,200, Nb от 0,000 до 0,200, Mo от 0,00 до 1,00, Cr от 0,00 до 1,00, V от 0,000 до 1,000, Ni от 0,00 до 3,00, В от 0,0000 до 0,0050, Са от 0,0000 до 0,0050, Mg от 0,0000 до 0,0050, железо и примеси – остальное.

Изобретение относится к изготовлению деталей горячей штамповкой из стального листа с гальваническим покрытием. Стальной лист для горячей штамповки включает основной стальной лист, слой гальванического покрытия, сформированный на поверхности основного стального листа с массой покрытия 10-90 г/м2 и содержащий 10-25 мас.% Ni и остальное Zn с неизбежными примесями, причем содержание η фазы в слое гальванического покрытия составляет 5 мас.% или менее.
Изобретение относится к области металлургии, а именно к получению листовой стали для горячего штампования, используемой для изготовления горячештампованных деталей, обладающих высокой стойкостью к коррозии.

Изобретение относится к области машиностроения, а именно к способам получения покрытий для защиты от коррозии стальных деталей. .

Изобретение относится к области гальваностегии, в частности к способам электролитического осаждения покрытий из сплава на основе меди, и может быть использовано в машиностроении, автомобилестроении, морском транспорте и других отраслях промышленности.

Изобретение относится к области гальванотехники и может быть использовано для нанесения защитно-декоративных покрытий. Электролит содержит, моль/л: сульфат меди пятиводный (8-10)10-2, сульфат олова (1-5)10-2, аммоний щавелевокислый (3-4)10-1, ацетат натрия (1,81-2,00)10-1, желатин (1-5)10-6, ванилин (1-5)10-3 в присутствии (5-100)10-5 экологически безопасного комплексона этилендиаминдиянтарной кислоты.
Изобретение относится к области гальванотехники. Электролит содержит соль меди и соль никеля, вещество, образующее комплексы с металлами, множество обеспечивающих проводимость солей, отличающихся друг от друга, соединение, выбранное из группы, состоящей из дисульфидных соединений, серосодержащих аминокислот и их солей, соединение, выбранное из группы, состоящей из сульфоновых кислот, сульфимидных соединений, соединений сульфаминовых кислот, сульфонамидов и их солей, и продукт реакции простого глицидилового эфира и многоатомного спирта.

Изобретение относится к композиции для электролитического осаждения металла, применению полиалканоламина или его производных, а также к способу осаждения слоя металла.
Изобретение относится к области гальванотехники и может быть использовано для нанесения защитно-декоративных покрытий. .
Изобретение относится к области гальванотехники и может быть использовано в машиностроении для получения равномерных твердых покрытий с высокой коррозионной стойкостью.
Изобретение относится к области гальваностегии и может быть использовано в машиностроении для получения покрытий с высокой коррозионной стойкостью. .
Изобретение относится к области гальваностегии, в частности к электроосаждению сплавов, и может быть использовано в автомобиле-, машино-, судостроении и др. .
Изобретение относится к области гальванотехники и может быть использовано для электроосаждения защитно-декоративных покрытий сплавом медь-никель. .

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF3 с добавками NaF и/или KF и анод в виде расплава алюминия на дне контейнера, и получение покрытия, содержащего алюминий, на изделии в качестве катода при температуре 700-980°C, при этом покрытие получают электроосаждением в короткозамкнутом гальваническом элементе, образованном алитируемым изделием, фторидным расплавом и анодом, замыканием экранированных алундовыми трубками токоподводов к катоду и аноду металлическим проводником. Технический результат заключается в получении градиентного покрытия на основе алюминидов железа, обладающего повышенной термостойкостью. 1 табл., 6 ил.
Наверх