Способ эксплуатации скважины



Способ эксплуатации скважины
Способ эксплуатации скважины
Способ эксплуатации скважины
Способ эксплуатации скважины

Владельцы патента RU 2658854:

Общество с ограниченной ответственностью "Газпром добыча Надым" (RU)

Изобретение относится к нефтегазовой промышленности и может быть использовано для повышения производительности скважин, работающих с накоплением жидкостных и песчаных пробок на забое. Способ эксплуатации скважины содержит следующие последовательные стадии. Сначала производят удаление жидкостной и песчаной пробок путем дозированной подачи пенообразователя на забой скважины. Пенообразователь закачивают в затрубное пространство на устье скважины без спуска дополнительных трубок на забой в количестве, рассчитанном по следующему математическому выражению: Мпо=mудπR2(L+(Pпл-ΔPг-Pу)/(cos(α)ρжg)), где Мпо - количество пенообразователя, необходимое для вспенивания всей жидкости, накопленной в скважине, кг; mуд - количество пенообразователя, необходимое для вспенивания 1 м3 жидких примесей в скважине, кг/м3; R - внутренний радиус эксплуатационной колонны скважины, м; L - длина скважины от нижнего края лифтовой колонны до текущего забоя, м; Pпл - пластовое давление, приведенное к нижнему краю лифтовой колонны, Па; ΔPг - перепад давления, обусловленный весом столба газа в скважине, может быть рассчитан по барометрической формуле, Па; Ру - давление на устье скважины, Па; α - угол отклонения ствола скважины от вертикали, град; ρж - плотность воды, кг/м3; g - ускорение свободного падения, м/с2. Затем запускают скважину в работу с расходом газа, обеспечивающим вынос примесей из скважины на установку утилизации ее продукции. После снижения концентрации примесей в газовом потоке до допустимых значений скважину переводят в работу на газовый промысел. Стабильный режим скважины обеспечивается путем постоянной подачи пенообразователя с расходом, рассчитываемым по следующему математическому выражению: Qпо =mуд(qв+ qк), где Qпо - расход пенообразователя, необходимый для поддержания стабильной работы скважины, кг/сут; mуд - количество пенообразователя, необходимое для вспенивания 1 м3 жидкости в скважине, кг/м3; qв - расход жидких примесей, поступающих в скважину из пласта, м3/сут; qк - расход жидких примесей, конденсирующихся из паровой фазы в газовом потоке при его движении по лифтовой колонне, м3/сут. Предлагаемый способ позволяет эффективно удалять жидкостные и песчаные пробки с забоя скважины и обеспечивает ее дальнейшую работу без накопления жидкости. 1 ил., 1пр.

 

Изобретение относится к области нефтегазовой промышленности и может быть использовано для повышения производительности скважин, работающих с накоплением жидкостных и песчаных пробок на забое, в том числе для месторождений на поздней стадии эксплуатации.

Известно, что накопление на забое скважин жидкостных пробок, частично или полностью перекрывающих интервал перфорации, снижает производительность скважин вплоть до полной их остановки, а также ускоряет процесс разрушения скелета горных пород. Наиболее актуальна данная проблема для скважин газовых месторождений на поздней стадии эксплуатации, когда низкое пластовое давление не обеспечивает необходимой скорости газа для выноса жидкости с забоя. Механические частицы в продукции приводят к эрозионному износу оборудования скважин, что требует дальнейшего ограничения производительности скважин до безопасных скоростей потока газа, при которых удельное содержание механических примесей в продукции скважин не оказывает негативного воздействия на скважинное оборудование. Для восстановления нормальной эксплуатации газовой скважины песчаную и водяную пробки следует удалить, что, например, в условиях низких пластовых давлений на поздней стадии разработки довольно сложно реализовать.

Известны способы эксплуатации газовых скважин с удалением жидкости из скважин с остановкой скважины: путем продувки скважины в атмосферу, остановкой скважины для поглощения жидкости пластом и т.д. [Муравьев В.М. Эксплуатация нефтяных и газовых скважин. М.: Недра, 1978. стр. 368].

Недостатками данных способов являются необходимость выезда к скважине обслуживающего персонала, временного отключения скважины от сети сбора газа и вызванная этим потеря добычи газа. Выпуск газа в атмосферу приводит к значительным безвозвратным потерям газа и нанесению вреда окружающей среде.

Известен способ промывки песчаной пробки в газовой скважине в условиях низких пластовых давлений, включающий монтаж колтюбинговой установки, установку противовыбросового и насосного оборудования, эжектора, спуск в скважину гибкой трубы, приготовление промывочной пенообразующей жидкости и промывку скважины в зоне образования песчаной пробки [RU 2188304 МПК Е21В 37/00, Е21В 19/22, опубл. 27.08.2002].

Недостатком этого способа является то, что он не позволяет промыть песчаную пробку в газовой скважине с аномально низким пластовым давлением (ниже 0,3 от начального) из-за значительного поглощения промывочной жидкости пластом, а также высокая стоимость работы и невозможность применения в условиях заболоченной местности при отсутствии подъездных путей. Кроме того, жидкость снова может скапливаться на забое скважины, и полученный положительный эффект может быть достаточно краткосрочным.

Известен способ промывки песчаной пробки в газовой скважине в условиях низких пластовых давлений, включающий монтаж колтюбинговой установки, установку противовыбросового и насосного оборудования, эжектора, спуск в скважину гибкой трубы, приготовление промывочной пенообразующей жидкости, бустерной установки и газового сепаратора [RU 2341644 С1, МПК Е21В 37/00, опубл. 20.12.2008].

Недостатком указанного способа является необходимость подключения оборудования к соседней скважине или трубопроводу, что невозможно при одиночном расположении скважин, не сгруппированных в кустовые площадки, а также его высокая стоимость для постоянной эксплуатации скважин, работающих с постоянным накоплением жидкости на забое.

Известен способ эксплуатации газовых скважин, включающий дозированный ввод пенообразующего вещества в газожидкостный поток путем продавливания его частью потока газа, для чего пенообразующим веществом заполняют лифтовые трубы, которые опускают ниже интервала перфорации, причем давление перепускаемого газа регулируют в зависимости от величины давления газожидкостного потока на устье скважины [а.с. SU №1062376, МПК Е21В 43/00. опубл. 23.12.1983].

Недостатком способа является необходимость спуска лифтовой колонны ниже интервала перфорации. Но в подавляющем количестве газовых скважин нижний конец лифтовых колонн расположен в интервале перфорации или выше него. Поэтому для реализации способа потребуются значительные капитальные затраты.

Задачей предлагаемого изобретения является разработка способа эффективного удалении жидкостной и песчаной пробки с забоя скважины и обеспечение дальнейшей ее работы без накопления жидкости.

Технический результат заявляемого изобретения заключается в улучшении условий эксплуатации газовых скважин, обеспечении их стабильной и безопасной работы, в том числе и в условиях аномально низких пластовых давлений, увеличении дебита газа и повышении надежности процесса эксплуатации скважины.

Поставленная задача и технический результат достигаются тем, что в способе эксплуатации газовой скважины, включающем удаление жидкостной и песчаной пробок путем дозированной подачи пенообразователя на забой скважины, согласно изобретению пенообразователь закачивают в затрубное пространство на устье скважины без спуска дополнительных трубок на забой и его необходимое количество рассчитывают по формуле:

где - количество пенообразователя, необходимое для вспенивания всей жидкости, накопленной в скважине, кг;

- количество пенообразователя, необходимое для вспенивания 1 м3 жидких примесей в скважине, кг/м3;

R - внутренний радиус эксплуатационной колонны скважины, м;

L - длина скважины от нижнего края лифтовой колонны до текущего забоя, м;

- пластовое давление, приведенное к нижнему краю лифтовой колонны, Па;

- перепад давления, обусловленный весом столба газа в скважине, может быть рассчитан по барометрической формуле, Па;

Ру - давление на устье скважины, Па;

α - угол отклонения ствола скважины от вертикали, град;

ρж - плотность воды, кг/м3;

g - ускорение свободного падения, м/с2,

после чего запускают скважину в работу с расходом газа, обеспечивающим вынос примесей из скважины сначала на установку утилизации ее продукции, после снижения концентрации примесей в газовом потоке до допустимых значений переводят скважину в работу на газовый промысел, обеспечивая стабильный режим ее работы путем постоянной подачи пенообразователя с расходом, рассчитываемым по формуле:

где Qпо - расход пенообразователя, необходимый для поддержания стабильной работы скважины, кг/сут;

- количество пенообразователя, необходимое для вспенивания 1 м3 жидкости в скважине, кг/м3;

qв - расход жидких примесей, поступающих в скважину из пласта, м3/сут;

qк - расход жидких примесей, конденсирующихся из паровой фазы в газовом потоке при его движении по лифтовой колонне, м3/сут.

Предлагаемый способ эксплуатации скважины осуществляется следующим образом.

По результатам газодинамических и геофизических исследований выбирают скважину, производительность которой снизилась вследствие накопления жидкости и песка на забоях (высокий уровень жидкости в остановленной скважине, повышенный вынос жидкости и песка при больших расходах газа на исследованиях и т.п.). В данную скважину в затрубное пространство на устье скважины без спуска дополнительных трубок на забой закачивают пенообразователь, необходимое количество которого рассчитывают по формуле (1). Данная формула предусматривает необходимость вспенивания всей жидкости на забое, причем ее максимального количества, которое может накопиться уже в практически остановившейся по этой причине скважине, когда величиной депрессии на пласт и потерями на трение при движении газожидкостного потока в лифтовой колонне можно пренебречь.

После поступления пенообразователя на забой запускают скважину в работу с расходом газа, обеспечивающим вынос примесей из скважины на установку утилизации, и осуществляют контроль концентрации примесей в газовом потоке. Как показал промысловый опыт применения пенообразователей, вспенивание жидкости на забое обеспечивает интенсивный вынос из скважины как жидких, так и твердых примесей. После очистки скважины от основного объема примесей и снижения их концентрации до допустимых значений, при которых обеспечивается нормальное функционирование оборудования, скважину переводят в работу на газовый промысел.

После пуска скважины в работу в газовый поток начинают постоянно поступать жидкие примеси из пласта, а также жидкие примеси, конденсирующиеся в процессе движения газа по лифтовой колонне из содержащейся в газовом потоке паровой фазы. Для исключения их накопления и поддержания стабильной работы скважины обеспечивается вынос примесей сначала на установку утилизации, а потом - на газовый промысел, в нее постоянно подают пенообразователь с расходом, обеспечивающим удаление этих примесей, а расход пенообразователя рассчитывают по формуле (2).

В процессе работы скважины на газовый промысел сохраняют контроль концентрации примесей в газовом потоке и по мере ее снижения ниже допустимого уровня увеличивают расход газа.

Практически способ применяется следующим образом (на примере скважины №602 Медвежьего месторождения).

По результатам газодинамических и геофизических исследований на скважине №602 Медвежьего месторождения было определено, что ее производительность снизилась вследствие накопления жидкости и песка на забое (измерен высокий уровень жидкости в остановленной и работающей скважине, песчано-глинистая пробка перекрывает часть перфорации, отмечен повышенный вынос жидкости и песка при больших расходах газа на исследованиях). При этом месторождение находится на поздней стадии разработки, и низкое пластовое давление уже не обеспечивает дебит скважины, достаточный для удаления жидкостных и песчаных пробок с забоя без проведения дополнительных геолого-технических мероприятий. На основании данной информации было решено эксплуатировать скважину с подачей в нее пенообразователя.

По формуле (1) было рассчитано количество пенообразователя для начальной загрузки с целью вспенивания всей жидкости, накопленной на забое скважины при следующих исходных данных:

- количество пенообразователя, необходимое для вспенивания 1 м3 жидких примесей в скважине;

R=0,1 м - внутренний радиус эксплуатационной колонны скважины;

L=58 м - длина скважины от нижнего края лифтовой колонны до текущего забоя;

- пластовое давление, приведенное к нижнему краю лифтовой колонны;

- перепад давления, обусловленный весом столба газа в скважине;

Ру=0,79 МПа - давление на устье скважины;

α=0 - угол отклонения ствола скважины от вертикали, град;

ρж=1000 кг/м3 - плотность скважинной жидкости;

g=9,81 м/с2 - ускорение свободного падения.

В результате расчета получено количество пенообразователя , которое необходимо для вспенивания накопленной в скважине жидкости.

По формуле (2) был рассчитан расход пенообразователя Qпо, необходимый для удаления жидких примесей, постоянно поступающих в скважину из пласта и конденсирующихся в процессе движения газа по лифтовой колонне из содержащейся в газовом потоке паровой фазы, при следующих исходных данных:

- количество пенообразователя, необходимое для вспенивания 1 м3 жидких примесей в скважине;

qв=0 м3/сут - расход жидких примесей, поступающих в скважину из пласта;

qк=0,3 м3/сут - расход жидких примесей, конденсирующихся из паровой фазы в газовом потоке при его движении по лифтовой колонне, м3/сут.

В результате расчета был получен расход пенообразователя Qпо=3,45 кг/сут для поддержания стабильной работы скважины в процессе ее эксплуатации.

После подачи количества пенообразователя и поступления его на забой запустили скважину в работу с расходом газа 110-120 тыс. м3/сут, обеспечивающим вынос примесей из скважины на установку утилизации с периодическим контролем концентрации примесей в газовом потоке. Также с помощью пневмонасоса обеспечили подачу в скважину пенообразователя с расходом Qпо=3,45 кг/сут для вспенивания постоянно поступающей в нее жидкости.

Параметры работы скважины приведены на чертеже.

Как видно из графика, в процессе отработки скважины с 16.10.2015 по 21.10.2015 наблюдался значительный вынос твердых примесей, которые представляют серьезную опасность с точки зрения абразивного износа оборудования. На месторождении проектом разработки определен критерий максимально допустимого удельного содержания твердых примесей, равный 2 мм33 (объем механических примесей в одном кубическом метре природного газа). Такая величина удельного содержания твердых примесей была достигнута 21.10.2015 при снижении дебита скважины до уровня 50 тыс. м3/сут, при котором еще обеспечивается вынос на поверхность жидких и твердых примесей. С таким дебитом скважина была запущена в работу на газовый промысел с контролем концентрации примесей в газовом потоке. Как видно из графика, дальнейшая очистка скважины в процессе ее работы позволила повысить дебит до 80 тыс. м3/сут без превышения допустимого уровня содержания твердых примесей в продукции скважины.

Таким образом, использование предлагаемого способа позволяет эффективно удалять жидкостные и песчаные пробки с забоя скважины и обеспечивает ее дальнейшую работу без накопления жидкости. В результате обеспечивается стабильная и безопасная эксплуатация скважин, в том числе и в условиях аномально низких пластовых давлений.

Способ эксплуатации скважины, включающий удаление жидкостной и песчаной пробок путем дозированной подачи пенообразователя на забой скважины, отличающийся тем, что пенообразователь закачивают в затрубное пространство на устье скважины без спуска дополнительных трубок на забой и его необходимое количество рассчитывают по формуле:

где - количество пенообразователя, необходимое для вспенивания всей жидкости, накопленной в скважине, кг;

- количество пенообразователя, необходимое для вспенивания 1 м3 жидких примесей в скважине, кг/м3;

R - внутренний радиус эксплуатационной колонны скважины, м;

L - длина скважины от нижнего края лифтовой колонны до текущего забоя, м;

- пластовое давление, приведенное к нижнему краю лифтовой колонны, Па;

- перепад давления, обусловленный весом столба газа в скважине, может быть рассчитан по барометрической формуле, Па;

Ру - давление на устье скважины, Па;

α - угол отклонения ствола скважины от вертикали, град;

ρж - плотность воды, кг/м3;

g - ускорение свободного падения, м/с2,

после чего запускают скважину в работу с расходом газа, обеспечивающим вынос примесей из скважины сначала на установку утилизации ее продукции, после снижения концентрации примесей в газовом потоке до допустимых значений переводят скважину в работу на газовый промысел, обеспечивая стабильный режим ее работы путем постоянной подачи пенообразователя с расходом, рассчитываемым по формуле:

где Qпо - расход пенообразователя, необходимый для поддержания стабильной работы скважины, кг/сут;

- количество пенообразователя, необходимое для вспенивания 1 м3 жидкости в скважине, кг/м3;

qв - расход жидких примесей, поступающих в скважину из пласта, м3/сут;

qк - расход жидких примесей, конденсирующихся из паровой фазы в газовом потоке при его движении по лифтовой колонне, м3/сут.



 

Похожие патенты:

Изобретение относится к области механизированной добычи нефти, осложненной повышенным газосодержанием. Технический результат – повышение надежности работы насоса разгазирования нефти, поступающей на прием насоса.

Изобретение относится к области газовой промышленности, к способам добычи, сбора, подготовки и транспортировки низконапорной газожидкостной смеси и может быть использовано при разработке газоконденсатного месторождения путем эксплуатации добывающих скважин с низкими устьевыми давлениями фонтанным способом и дальнейшей транспортировки низконапорной продукции на перерабатывающий завод без применения компрессоров и эжекторов.

Изобретение относится к стимулирующим текучим средам для гидроразрыва углеводородсодержащего пласта и системному оборудованию для них. Технический результат – повышение экономичности, эффективности и безопасности обработки.

Изобретение относится к области добычи природного газа и, в частности, к обеспечению регулирования производительности газодобывающих предприятий - ГДП, расположенных в районах Крайнего Севера.

Изобретение относится к технологическим процессам перекачки, добычи и транспортировки нефти и других вязких продуктов. Способ понижения вязкости нефти, согласно которому на структуру нефти оказывают ультразвуковое воздействие на первой несущей частотной гармоники продольной волной, излучаемой возбужденным монокристаллом ниобата лития, погруженным в нефтяную среду, равной 450.0 кГц, и на 100 % амплитудно промодулированной синусоидальной волной в диапазоне частоты модуляции от 0 до 100 кГц, которые обеспечивают оптимальные энергетические условия по понижению вязкости у различных видов нефти начиная с температуры от 16°С, при которой нефть течет ламинарно, то есть без разрыва текущей струи.

Группа изобретений относится к системе для транспортировки жидких сред из скважины и способу монтажа в скважине одновинтового насоса. Система содержит нагнетательный трубопровод, который простирается в продольном направлении скважины, размещенное в трубопроводе насосное устройство со статором, ротором и с соединенной с ротором силовой передачей для эксцентрического перемещения ротора, а также адаптерный узел (5), который соединен со статором и посредством зажимного контакта с трубопроводом неподвижно удерживает статор в трубопроводе.

Изобретение относится к области мелиоративного, транспортного, жилищно-коммунального, гидротехнического строительства для оборудования горизонтальных дренажей. Устройство включает водоприемный каркас из базальтопластиковых или стеклопластиковых стержней, установленных по образующей вдоль оси фильтра и соединенных наборными фигурными кольцами жесткости, перекрытыми по наружной поверхности геотекстилем на основе базальтового волокна.

Изобретение относится к технике добычи нефти и, в частности, к скважинным штанговым насосным установкам. Технический результат - снижение металлоемкости пневмокомпенсатора и повышение эффективности его работы в холодных погодных условиях.
Изобретение относится к газовой отрасли и может быть использовано при эксплуатации подземных хранилищ газа (ПХГ) в водоносных пластах, представленных двумя или более пропластками.

Турбобур // 2655130
Изобретение относится к техническим средствам для бурения и ремонта нефтяных и газовых скважин, а именно к турбобурам для привода породоразрушающего инструмента. Турбобур содержит вертикальный ряд турбинных секций, в корпусах которых размещены турбины статора и установленные на профильном полом валу турбины ротора, шпиндельную секцию, в корпусе которой размещен кинематически соединенный с валом турбинных секций полый вал, на котором закреплено долото.

Изобретение относится к нефтяной промышленности и может быть применено для промывки приема и полости электроцентробежных насосов от твердых взвешенных частиц песка, асфальтосмолистых веществ и солей.

Изобретение относится к области капитального и текущего ремонта эксплутационных скважин и может быть использовано в эксплуатации скважин для поддержания в них теплового режима предотвращения образования и ликвидации в них гидратных, гидратопарафиновых и ледяных пробок.

Изобретение относится к клапанным устройствам для скважин, оборудованных глубинными насосами, и может быть применено для пропуска промывочной жидкости из колонны насосно-компрессорных труб (НКТ) в затрубное пространство для размыва гидратных пробок.

Изобретение предназначено для проведения работ по очистке и промывке ствола скважины. Устройство для декольматации скважин состоит из корпуса с цилиндрическим осевым каналом, переходника для связи с гибкой трубой, стакана, дренажной трубки с радиальными отверстиями, насадкой и кольцевым выступом, пружины, стопорной гайки, механизма привода с тангенциальными каналами.

Изобретение относится к нефтегазовой промышленности и применяется для нормализации забоя при капитальном и текущем ремонте скважины, в частности при спущенном забойном двигателе.

Изобретение относится к нефтегазодобывающей промышленности, в частности к составам для глушения и промывки скважин. Состав полисахаридной жидкости для промывки скважин или промысловых трубопроводов или глушения скважин, полученный растворением биоцида «Биолан» в пресной или минерализованной воде, представленной преимущественно раствором одновалентных катионов, растворением и гидратацией в полученном растворе гуарового загустителя, последующим введением комплексного реагента Нефтенол УСП с перемешиванием до получения мицеллярной дисперсии, с последующим добавлением борного сшивающего агента СП-РД и перемешиванием до полного сшивания, при следующем соотношении компонентов, мас.%: гуаровый загуститель 0,2-1,0, указанный сшивающий агент 0,2-1,0, реагент Нефтенол УСП 6,0-10,0, биоцид «Биолан» 0,004-0,01, указанная вода - остальное.

Изобретение относится к нефтегазодобывающей промышленности и предназначено для борьбы с солеотложением в призабойной зоне пласта и стволах скважин с целью сохранения дебита скважин в условиях высокой минерализации попутно добываемых вод.

Группа изобретений относится к области бурения и эксплуатации скважин и может быть использована при строительстве и ремонте скважин различного назначения, в том числе скважин, предназначенных для добычи нефти и газа.

Изобретение относится к области бурения и эксплуатации скважин и может быть использовано при строительстве и ремонте скважин различного назначения, в том числе скважин, предназначенных для добычи нефти и газа.

Группа изобретений относится к нефтегазодобывающей области, в частности к ингибированию коррозии и образования отложений на скважинном оборудовании при добыче углеводородного сырья.

Изобретение относится к нефтегазовой промышленности и может быть использовано для повышения производительности скважин, работающих с накоплением жидкостных и песчаных пробок на забое. Способ эксплуатации скважины содержит следующие последовательные стадии. Сначала производят удаление жидкостной и песчаной пробок путем дозированной подачи пенообразователя на забой скважины. Пенообразователь закачивают в затрубное пространство на устье скважины без спуска дополнительных трубок на забой в количестве, рассчитанном по следующему математическому выражению: МпоmудπR2ρжg)), где Мпо - количество пенообразователя, необходимое для вспенивания всей жидкости, накопленной в скважине, кг; mуд - количество пенообразователя, необходимое для вспенивания 1 м3 жидких примесей в скважине, кгм3; R - внутренний радиус эксплуатационной колонны скважины, м; L - длина скважины от нижнего края лифтовой колонны до текущего забоя, м; Pпл - пластовое давление, приведенное к нижнему краю лифтовой колонны, Па; ΔPг - перепад давления, обусловленный весом столба газа в скважине, может быть рассчитан по барометрической формуле, Па; Ру - давление на устье скважины, Па; α - угол отклонения ствола скважины от вертикали, град; ρж - плотность воды, кгм3; g - ускорение свободного падения, мс2. Затем запускают скважину в работу с расходом газа, обеспечивающим вынос примесей из скважины на установку утилизации ее продукции. После снижения концентрации примесей в газовом потоке до допустимых значений скважину переводят в работу на газовый промысел. Стабильный режим скважины обеспечивается путем постоянной подачи пенообразователя с расходом, рассчитываемым по следующему математическому выражению: Qпо mуд, где Qпо - расход пенообразователя, необходимый для поддержания стабильной работы скважины, кгсут; mуд - количество пенообразователя, необходимое для вспенивания 1 м3 жидкости в скважине, кгм3; qв - расход жидких примесей, поступающих в скважину из пласта, м3сут; qк - расход жидких примесей, конденсирующихся из паровой фазы в газовом потоке при его движении по лифтовой колонне, м3сут. Предлагаемый способ позволяет эффективно удалять жидкостные и песчаные пробки с забоя скважины и обеспечивает ее дальнейшую работу без накопления жидкости. 1 ил., 1пр.

Наверх