Способ получения сотового тонкостенного энергопоглотителя с помощью лазерного спекания

Изобретение относится к технологии получения сотовых тонкостенных энергопоглотителей. Энергопоглотитель изготавливают в виде ячеистой конструкции с ячейками произвольной формы из металлического порошка дисперсностью менее 50 мкм путем его послойного 20-40 мкм лазерного сплавления по заранее спроектированной 3-D модели. В результате повышается качество изготовления сотового энергопоглотителя при сохранении высоких физико-механических свойств и отсутствии отходов. 1 з.п. ф-лы, 1 ил.

 

Изобретение относится к способу получения сотовых тонкостенных энергопоглотителей со специальными свойствами, которые могут применяться в космической технике для ограничения перегрузок при столкновениях и пр.

Сотовый энергопоглотитель обеспечивает поглощение энергии удара, например, в случае его применения в посадочной опоре спускаемого космического аппарата для осуществления мягкой посадки, за счет его деформации, с учетом обеспечения допустимых перегрузок при посадке. Для выполнения этого конструкция сотового энергопоглотителя должна быть достаточно сложной и удовлетворять комплексу механических свойств.

Получение тонкостенных сотовых энергопоглотителей методом лазерных технологий, в частности сплавлением или спеканием порошковых материалов, является перспективным направлением для получения изделий сложной формы ответственного назначения, работающих в условиях интенсивных нагрузок. Увеличивающиеся мощности и скорости работы современной техники требуют улучшения качества энергопоглотителей для эффективного гашения энергии при торможении или в случае возникновения аварийных ситуаций [1]. Применение лазерных технологий для создания высоконагруженных деталей и элементов техники позволит сократить стоимостные и временные рамки производства, а также повысить надежность и долговечность изделий, обеспечивая высокие физико-механические характеристики.

В патенте ЕР 1365169 А энергопоглощающий элемент представляется как трубчатая сотовая ячейка, используемая для поглощения энергии. Ячейка создается из плоской соты, которая формуется в трубчатое сотовое тело. Трубчатая форма сотового тела сохраняется благодаря определенной оболочке, покрывающей весь периметр тела. Полученная трубчатая сотовая ячейка может быть использована в виде вставки или кольца в автомобильных рулевых колоннах, обеспечивая поглощение энергии при нагрузке и ударе. Также в патенте US 5683782 А конструкция (элемент) представляет собой множество небольших трубок, скрепленных между собой по сторонам. Основное тело трубок состоит из термопластика, которое внутри и снаружи имеет адгезионно-активное покрытие из термопластичного материала. В дополнение можно отметить патент ЕР 1365169, в котором энергопоглотитель, метод создания которого включает в себя обеспечение деформируемой ячеистой матрицы, состоит из множества открытых трубчатых ячеек; стенки трубчатого тела покрыты эластичным материалом, позволяющим покрытию затягиваться. Стоит отметить растущий интерес в производстве микроячеистых структур на основе металлических пен, описанных в патентах US 2013303067 и US 2014272275, используемых в авиастроении. Также интересным представляется использование архитектурных материалов (с градиентной толщиной стенки), составляющих трехмерные ячеистые структуры (патент US 2014252674) наряду с функционально-градиентными трехмерными упорядоченными ячеистыми структурами.

Также известен патент RU 2541266 (B22F 3/105, опубликованный 27.11.2003 г.), в соответствии с которым предлагается изготавливать изделия из порошковых композиций самораспространяющимся высокотемпературным синтеза (СВС) с последующим добавлением эпоксидного клея. Процесс СВС реализуется в месте воздействия лазерного излучения на порошковый слой толщиной 20-40 мкм. Известно [2], что изделия, полученные СВС, обладают пористостью более 2%. Большая пористость приводит к разрушению изделий при динамических воздействиях, а применение эпоксидных материалов ограничивает рабочий диапазон температур до 300°С.

В качестве прототипа выбран патент RU 2541266 (B21D 46/00, опубликованный 10.02.2015 г.), в соответствии с которым предлагается в качестве энергопоглотителя использовать металлическую фольгу. Метод изготовления представлен на рис. 1 и включает формирование сотовых элементов в виде ячеистой конструкции с шестигранными ячейками из металлической фольги, подвергающейся гофрированию, которая впоследствии объединяется в готовый элемент путем сварки двойных граней. В заявленном способе все ячейки сотового энергопоглотителя могут иметь только одинаковую форму, а также из шести сторон шестиугольника две стороны всегда будут иметь удвоенную толщину. Это накладывает ограничения при расчете рабочих характеристик поглощения. Кроме того, сварка двойных граней может привести к локальным концентрациям напряжений (сварочные напряжения), что в свою очередь может отрицательно влиять на работоспособность изделия. Следует также отметить, что таким способом возможно изготовить сотовый элемент только в виде прямоугольного параллелепипеда, а случае необходимости изготовления сотового элемента кольцевой формы, требуется дополнительная механическая обработка, приводящая к появлению значительного количества отходов. Техническим результатом заявляемого изобретения является повышение качества изготовления сотового энергопоглотителя любой формы при сохранении высоких физико-механических свойств и отсутствии отходов.

Технический результат достигается за счет того, что в способе изготовления сотового энергопоглотителя используется технология селективного лазерного сплавления металлического порошка дисперсностью менее 50 мкм, позволяющая формировать сотовые элементы в виде ячеистой конструкции с ячейками произвольной формы (многоугольные) по заранее спроектированной 3-D модели с высокой степенью точности конечного изделия.

В способе изготовления сотового энергопоглотителя из металлического порошка использование технологии селективного лазерного сплавления позволит создавать сотовые элементы на основе ячеек с любым количеством граней и любой формы. Пористость получаемых изделий составляет менее 2%, а рабочий диапазон температур превышает 500°С.

Заявляемое техническое решение, сохраняя преимущества прототипа, всей совокупностью своих существенных признаков позволит обеспечить повышение качества изготовления сотового энергопоглотителя, обусловленное полным отсутствием искажений в геометрии многогранных ячеек, благодаря использованию заранее спроектированной 3-D модели. К тому же достигается экономичность производства, поскольку энергопоглотитель не требует дополнительной обработки с целью приведения его к необходимым размерам.

Заявляемый способ изготовления сотового энергопоглотителя из металлического порошка с помощью селективного лазерного сплавления представлен на рис. 1 и реализуется следующим образом. Сначала создается компьютерная 3-D модель сотового энергопоглотителя с заданной толщиной стенки и длиной стороны ячейки. Затем, в соответствии с подготовленной моделью, проводится послойное сплавление металлического порошка фракционным составом менее 50 мкм, который специальным разравнивающим устройством наносится слоем толщиной 20-40 мкм на массивную металлическую платформу. Данный процесс повторяется до завершения построения 3-D изделия из металлического порошка. Полученное 3-D изделие не требует дополнительной обработки и полностью соответствует заданной конфигурации.

Список использованных источников

[1] Алешин В.Ф. и др. Посадочные устройства космических аппаратов (КА) на основе пенопластов и сотоблоков // журнал "Наука и образование": электронное научно-техническое издание МГТУ им. Н.Э. Баумана, №4, апрель 2010 г.

[2] Подболотов К.Б., Дятлова Е.М. Самораспространяющийся высокотемпературный синтез. Саарбрюккене (Германия): LAP Lambert Academic Publishing, 2011. - 152 c.

1. Способ изготовления сотового тонкостенного энергопоглотителя, отличающийся тем, что изготавливают ячейки сотового тонкостенного энергопоглотителя из металлического порошка с дисперсностью менее 50 мкм путем послойного лазерного сплавления слоев порошка с толщиной слоя 20-40 мкм с использованием 3-D модели заданной конфигурации.

2. Способ по п. 1, отличающийся тем, что используют порошок нержавеющих сталей.



 

Похожие патенты:

Изобретение относится к способу подготовки листов, способу изготовления сварной заготовки, способу изготовления закаленной под прессом детали из сварной заготовки, сварной заготовке, устройству для изготовления сварной заготовки и применению сварной заготовки в автомобильной промышленности.

Изобретение относится к области металлургии. Для исключения образования дефектов в стеклянной покровной пленке устройство для лазерной обработки листа содержит лазерный осциллятор, испускающий лазерный луч, причем лазерный луч, фокусируемый на лист электротехнической стали с ориентированной зеренной структурой, представляет собой линейно-поляризованный свет и сканируется в направлении сканирования, и угол между направлением линейной поляризации и направлением сканирования составляет более 45° и равен или не более 90°.

Изобретение относится к области металлургической обработки металлических полос. Устройство для перемещения узла резания и сварки выполнено с возможностью отрезания и последующей сварки конца первой металлической полосы (В1) с началом второй металлической полосы (В2).

Изобретение относится к области оптического приборостроения, а именно к лазерной микрообработке и может быть использовано для формирования микроканалов на поверхности подложек из стекла, кристаллов и полупроводниковых материалов при изготовлении оптических шкал, сеток, решеток и других устройств.

Изобретение относится к способу лазерно-дуговой сварки стыка заготовок из углеродистой стали с толщиной стенок 10-45мм. На свариваемую поверхность воздействуют расфокусированным первым лазерным лучом.

Изобретение относится к способу лазерно-дуговой сварки стыка сформованной трубной заготовки из углеродистой стали большого диаметра от 530 до 1420 мм с толщиной стенок от 8 до 45 мм и зазором до 1 мм.

Изобретение может быть использовано для сварки сформованных трубных заготовок из углеродистой стали диаметром от 530 до 1420 мм с толщиной стенок от 8 до 45 мм. Околошовную зону свариваемого участка трубы нагревают индуктором до и после выполнения сварки до температуры 200-350°С.

Изобретение может быть использовано при изготовлении ответственных конструкций из сталей и сплавов сваркой плавлением. С поверхности сварочной проволоки удаляют смазку, проводят промывку, просушку и оплавление поверхности проволоки при ее прямолинейном перемещении.

Изобретение относится к устройству для лазерно-дуговой сварки стыка сформованной трубной заготовки. Первая электродуговая горелка закреплена на опорной конструкции перед лазерной головкой на расстоянии, при котором в процессе сварки расстояние между центром сфокусированного пятна лазерного луча и точкой дугового контакта упомянутой первой горелки составляет 10-15 мм.

Изобретение относится к способу газопорошковой наплавки и может быть использовано при изготовлении деталей машин и инструмента. На наплавляемую поверхность металлического изделия воздействуют лазерным лучом.

Изобретение относится к получению металлического изделия послойным лазерным синтезом из порошка. Способ включает послойную укладку порошка на предметном столе принтера и послойное проплавление порошка с обеспечением синтеза металломатричного композиционного материала под воздействием теплового источника по твердотельной модели изделия.
Изобретение относится к порошковым сплавам для изготовления объемных изделий селективным спеканием. Сплав содержит 0,4-0,6 мас.% углерода, 11,0-13,2 мас.% хрома; 0,1-0,4 мас.% кремния; 0,4-0,9 мас.% марганца, 0,08-0,12 мас.% алюминия, 0,4-0,8 мас.% азота; 0,03-0,1 мас.% молибдена и остальное железо.

Изобретение относится к послойному изготовлению деталей. Способ включает этапы: (а) обеспечение материала в виде порошка, (b) нагрев первого количества порошка до температуры, превышающей температуру плавления TF порошка, и формирование на поверхности основы первой ванны, содержащей расплавленный порошок и часть основы, (с) нагрев второго количества порошка и формирование на поверхности основы второй ванны на выходе первой ванны, (d) повторение этапа (с) до получения первого слоя детали на основе, (е) нагрев n-го количества порошка и формирование n-ой ванны над частью первого слоя, (f) нагрев [n+1]-го количества порошка до температуры, превышающей температуру плавления ТF порошка, и формирование [n+1]-ой ванны, частично содержащей расплавленный порошок, на выходе n-ой ванны, (g) повторение этапа (f) до получения второго слоя детали, (h) повторение этапов (е)-(g) до получения окончательной формы детали.

Изобретение относится истираемому покрытию для газотурбинного двигателя. Газотурбинный двигатель, имеющий истираемое покрытие на внутренней поверхности статора, содержит по меньшей мере одну деталь статора, внутри или напротив которой расположена деталь ротора, выполненная с возможностью вращения, причем указанное покрытие из истираемого материала образует элемент уплотняющего соединения между деталями статора и ротора.

Изобретение относится к аддитивному изготовлению детали. Предоставляют цифровую модель подлежащей изготовлению детали, ориентируют модель относительно направления построения, изменяют модель путем добавления расходуемой уравновешивающей части, выполненной с возможностью уравновешивания остаточных напряжений, которые появляются в детали во время ее изготовления, с получением измененной модели, изготавливают заготовку слой за слоем посредством технологии аддитивного производства с использованием модели, при этом укладывают слои в стопку в направлении построения, после чего удаляют расходуемую часть с заготовки, полученную из расходуемой уравновешивающей части модели, с получением подлежащей изготовлению детали.

Изобретение относится к аддитивному изготовлению детали. Предоставляют цифровую модель подлежащей изготовлению детали, ориентируют модель относительно направления построения, изменяют модель путем добавления расходуемой уравновешивающей части, выполненной с возможностью уравновешивания остаточных напряжений, которые появляются в детали во время ее изготовления, с получением измененной модели, изготавливают заготовку слой за слоем посредством технологии аддитивного производства с использованием модели, при этом укладывают слои в стопку в направлении построения, после чего удаляют расходуемую часть с заготовки, полученную из расходуемой уравновешивающей части модели, с получением подлежащей изготовлению детали.

Изобретение относится к нанесению антифрикционных покрытий из порошковых материалов посредством их лазерного спекания на металлической поверхности. Способ формирования антифрикционного покрытия на поверхности стального изделия включает нанесение слоя порошковой композиции на поверхность стального изделия, содержащей следующие компоненты, мас.

Изобретение относится к послойному получению объемного полиметаллического изделия с градиентом свойств из порошка. Устройство содержит рабочую камеру, лазер, оптически связанный с системой сканирования и фокусировки луча, область построения изделия с поршнем, выполненным с возможностью вертикального перемещения, емкости для подачи и для сбора порошка и устройство для очистки слоя незакрепленного порошка.

Изобретение относится к способу для послойного изготовления изделия. Способ осуществляется с помощью устройства, состоящего из кругового вращающегося контейнера, расположенного в нижней его части (B).

Изобретение относится к способу для послойного изготовления изделия. Способ осуществляется с помощью устройства, состоящего из кругового вращающегося контейнера, расположенного в нижней его части (B).

Изобретение относится к способу аддитивного изготовления компонента из композиционного материала с металлической матрицей. Способ включает расплавление электронным пучком порошкообразной смеси, которая содержит порошкообразный карбид вольфрама в количестве от 45 до 72 мас.% от массы порошкообразной смеси и порошкообразное связующее в количестве от 28 до 55 мас.% от массы порошкообразной смеси. Указанное порошкообразное связующее содержит никель в количестве по меньшей мере 70 мас.% от массы порошкообразного связующего. Обеспечивается повышение стойкости к износу, эрозии, коррозии и ударопрочности. 18 з.п. ф-лы, 8 ил., 2 табл., 11 пр.
Наверх