Способ изготовления преобразователя солнечной энергии в электрическую на основе перовскитов

Изобретение относится к области технологий получения преобразователей солнечной энергии в электрическую. Способ включает формирование слоя прозрачного проводящего электрода, слоя перовскита и слоя неорганического материала. В качестве слоя неорганического материала используют проводящий наноструктурированный пористый оксид алюминия, поры которого заполняют прекурсором полупроводника р-типа центрифугированием при скорости вращения 3000-3500 об/мин до полного заполнения. В качестве прекурсора используют нагретый до температуры 40-50°С 30%-ный толуольный раствор стеарата никеля, взятый в количестве 0,05-0,1 мл или 10%-ный раствор ацетата никеля в моноэтаноламине, взятый в том же количестве, который сушат в течение 15-20 минут при температуре 100-110°С и в течение такого же времени отжигают при температуре 450±10°С. Изобретение обеспечивает упрощение технологического процесса и снижение энергетических затрат. 1 ил., 2 пр.

 

Изобретение относится к области технологий получения преобразователей солнечной энергии в электрическую.

Известны способы преобразования солнечной энергии в электрическую на основе перовскитов, которые наносят на гибкие тонкие структуры типа пластиков и тканей, при этом в качестве слоя для переноса дырок используют материал spiro - OMeTAD, а также органические полимеры РЗНТ и ДЕН (см. В.А. Миличко, А.С. Шалин др. Солнечная фотовольтанка: современное состояние и тенденции развития. М., УФН, т. 186, №8, 2016 г., с. 801-852.)

Недостатком данного способа очень высокая стоимость изготовления подобных HTM (hole transport material - слой для переноса дырок).

Известен способ получения преобразования солнечной энергии на перовскитах, где органические НТМ заменяют на неорганические. В качестве последних можно использовать полупроводники р-типа (иодид меди, оксид никеля и др.) (см. Zonglong Zhu, Yang Bai, Teng Zhang. High - performance hole - extraction of sol - gel processed NiO nanocrystals for inverted planar perovskite solar cells, - Angewandte Chemie, 2014 г).

Недостатком данного способа является высокий уровень отжига (300°С) на конечном этапе процесса изготовления, т.к. перовскит не выдерживает температуры выше 150°С.

Наиболее близким к заявляемому техническому решению является способ изготовления перовскитного солнечного элемента, включающий формирование слоя прозрачного проводящего электрода, слоя перовскита и слоя неорганического материала (см. W0 №2017073472 МПК H01L 51/44, опубл. 04.05.2017 г.).

Недостатком прототипа является сложность технологического процесса и большие материальные и энергетические затраты.

Технический результат предлагаемого технического решения заключается в упрощении технологического процесса, снижении энергетических затрат, т.к. не требует специального оборудования, позволяет вводить в поры наноструктурированного пористого анодного оксида алюминия различные полупроводники р-типа, изменяя функциональные свойства преобразователей солнечной энергии в электрическую.

Технический результат достигается тем, что в способе изготовления преобразователя солнечной энергии в электрическую на основе перовскитов, включающем формирование слоя прозрачного проводящего электрода, слоя перовскита и слоя неорганического материала, согласно изобретению, в качестве слоя неорганического материала используют проводящий наноструктурированный пористый оксид алюминия, поры которого заполняют прекурсором полупроводника р-типа центрифугированием при скорости вращения 3000-3500 об/мин до полного заполнения, причем в качестве прекурсора используют нагретый до температуры 40-50°С 30%-ный толуольный раствор стеарата никеля, взятый в количестве 0,05-0,1 мл или 10%-ный раствор ацетата никеля в моноэтаноламине, взятый в том же количестве, который сушат в течение 15-20 минут при температуре 100-110°С и отжигают в течение такого же времени при температуре 450±10°С.

Данный способ позволяет упростить технологию изготовления преобразователей солнечной энергии в электрическую и сократить энергетические затраты.

Использование проводящего пористого оксида алюминия позволяет решить двойную задачу: исключить необходимость в дополнительном формировании электрода и обеспечить простую технологию введения в поры полупроводника р-типа, используя растворы прекурсоров.

Растворы прекурсоров полупроводника р-типа на основе солей никеля, хорошо смачиваются и равномерно внедряются в поры наноструктурированного оксида алюминия.

Доза растворов прекурсоров 0,05-0,1 мл обеспечивает полное смачивание поверхности пор образца пористого оксида алюминия диаметром 25 мм, а скорость вращения центрифуги 3000-3500 об/мин - равномерное заполнение пор без большого разбрызгивания раствора. Выбранная концентрация растворов позволяет достичь оптимальной регулировки вязкости раствора прекурсора полупроводникового материала. Повышение концентрации приводит к получению пересыщенных растворов, выкристаллизации солей на поверхности, быстрой агрегации их в порах, получению неравномерного заполнения пор. Снижение концентрации требует более многослойного нанесения для полного заполнения пор. Выбранные интервалы являются оптимальными и обеспечивают полное заполнение пор полупроводником р-типа без применения дополнительных химических реагентов, высоких температур, инертных газов и давления.

Практическая значимость предложенного способа изготовления преобразователей солнечной энергии в электрическую на основе перовскитов заключается в стабильности получаемых структур, уменьшении их толщины, улучшении параметров, снижении стоимости изготавливаемых изделий.

Сущность изобретения поясняется чертежом, на котором изображена схема солнечного преобразователя.

Способ изготовления преобразователя солнечной энергии в электрическую на основе перовскитов иллюстрируется следующими примерами.

Пример 1.

Образец наноструктурированного пористого оксида алюминия с высокой проводимостью диаметром 25 мм, полученный двухступенчатым анодированием алюминиевой фольги толщиной 100 мкм в 5%-ном растворе ортофосфорной кислоты при плотности тока 5 мА/см2, температуре 5-6°С, в течение 5 минут, помещают в центрифугу и наносят на его поверхность 0,05 мл нагретого до 40-50°С 30% толуольного раствора стеарата никеля при скорости вращения центрифуги 3000 об/мин в течение 15 сек. Образец сушат в термостате при 100°С 20 минут и затем отжигают в муфельной печи при температуре 450±10°С в течение 20 минут. Процесс повторяют до полного заполнения пор оксидом никеля. Далее на его поверхности формируют слой металлорганического перовскита, на который наносят прозрачный проводящий электрод из оксида индия олова (ITO) (см. фиг.).

Пример 2.

Образец наноструктурированного пористого оксида алюминия, изготовленный, как описано в примере 1, помещают в центрифугу и наносят на его поверхность 0,1 мл 10% раствора ацетата никеля в моноэтаноламине при скорости вращения центрифуги 3500 об/мин в течение 15 с. Образец сушат в термостате при температуре 110°С 15 минут, далее отжигают в муфельной печи при 450±10°С в течение 15 мин. Процесс повторяют до полного заполнения пор оксидом никеля. Далее на его поверхности формируют слой металлорганического перовскита, на который наносят прозрачный проводящий электрод из оксида индия олова (ITO) (см. фиг.).

Использование предлагаемого способа изготовления преобразователя солнечной энергии в электрическую на основе перовскитов позволит, по сравнению с прототипом, упростить технологию изготовления преобразователя, исключить необходимость формирования второго электрода за счет использования анодированного пористого оксида алюминия в качестве электрода и в качестве пористого слоя с введенным в поры оксидом никеля, увеличить прочность сцепления оксида никеля с алюминием.

Способ изготовления преобразователя солнечной энергии в электрическую на основе перовскитов, включающий формирование слоя прозрачного проводящего электрода, слоя перовскита и слоя неорганического материала, отличающийся тем, что в качестве слоя неорганического материала используют проводящий наноструктурированный пористый оксид алюминия, поры которого заполняют прекурсором полупроводника р-типа центрифугированием при скорости вращения 3000-3500 об/мин до полного заполнения, причем в качестве прекурсора используют нагретый до температуры 40-50°С 30%-ный толуольный раствор стеарата никеля, взятый в количестве 0,05-0,1 мл или 10%-ный раствор ацетата никеля в моноэтаноламине, взятый в том же количестве, который сушат в течение 15-20 минут при температуре 100-110°С и отжигают в течение такого же времени при температуре 450±10°С.



 

Похожие патенты:

Изобретение относится к фотоэлектрическим преобразователям, в частности к технологии сборки солнечных модулей и коммутации ячеек фотоэлектрических преобразователей.

Изобретение относится к области изготовления полупроводниковых структур с p-n-переходом и может быть использовано для изготовления фотоэлектрических преобразователей (ФЭП) солнечной энергии.

Изобретение относится к области изготовления полупроводниковых структур с p-n-переходом и может быть использовано для изготовления фотоэлектрических преобразователей (ФЭП) солнечной энергии.
Способ изготовления гетероструктуры InGaAsP/InP фотопреобразователя включает последовательное выращивание методом газофазной эпитаксии из металлоорганических соединений на подложке InP в потоке очищенного водорода при пониженном давлении при температуре эпитаксии буферного слоя InP из триметилиндия и фосфина и слоя InxGa1-xAsyP1-y, где 0,59<х<0,80 и 0,55<у<0,92, из триметилиндия, триэтилгаллия, арсина и фосфина путем последовательного выращивания субслоев InxGa1-xAsyP1-y толщиной не более 100 нм.

Изобретение относится к области преобразователей энергии ионизирующих излучений изотопных источников в электрическую энергию Э.Д.С. Такие источники отличаются от конденсаторов и аккумуляторов много большей энергией, приходящейся на единицу объема, но малой выделяемой мощностью в единицу времени.

Согласно изобретению предложен способ изготовления солнечного элемента с тонким слоем из кремния. Способ включает нанесение ТСО-слоя (3) на стеклянную подложку (1), нанесение на ТСО-слой (3) по меньшей мере одного слоя (4; 5) кремния, причем перед нанесением ТСО-слоя (3) стеклянную подложку (1) подвергают облучению электронным излучением, при этом образуется рассеивающий свет слой (2) стеклянной подложки (1), на которую наносится ТСО-слой (3).

Согласно изобретению предложен способ изготовления солнечного элемента с тонким слоем из кремния. Способ включает нанесение ТСО-слоя (3) на стеклянную подложку (1), нанесение на ТСО-слой (3) по меньшей мере одного слоя (4; 5) кремния, причем перед нанесением ТСО-слоя (3) стеклянную подложку (1) подвергают облучению электронным излучением, при этом образуется рассеивающий свет слой (2) стеклянной подложки (1), на которую наносится ТСО-слой (3).

Предложен монолитный фотовольтаический элемент. Упомянутый элемент содержит по меньшей мере один переход.

Изобретение относится к области технологии дискретных полупроводниковых приборов и может быть использовано при изготовлении бескорпусных диодов для солнечных батарей космических аппаратов.

Изобретение относится к технологии сборки полупроводниковых приборов и может быть использовано для гибридизации кристаллов БИС считывания и матрицы фоточувствительных элементов (МФЧЭ) методом перевернутого монтажа.

Изобретение относится к области технологий получения преобразователей солнечной энергии в электрическую. Способ включает формирование слоя прозрачного проводящего электрода, слоя перовскита и слоя неорганического материала. В качестве слоя неорганического материала используют проводящий наноструктурированный пористый оксид алюминия, поры которого заполняют прекурсором полупроводника р-типа центрифугированием при скорости вращения 3000-3500 обмин до полного заполнения. В качестве прекурсора используют нагретый до температуры 40-50°С 30-ный толуольный раствор стеарата никеля, взятый в количестве 0,05-0,1 мл или 10-ный раствор ацетата никеля в моноэтаноламине, взятый в том же количестве, который сушат в течение 15-20 минут при температуре 100-110°С и в течение такого же времени отжигают при температуре 450±10°С. Изобретение обеспечивает упрощение технологического процесса и снижение энергетических затрат. 1 ил., 2 пр.

Наверх