Устройство для создания компактного кластера монодисперсных пузырьков

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической емкости с газопроницаемой верхней крышкой, соединенный патрубком с источником сжатого газа. В верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям выполнены перфорации, в которых установлены трубки одинакового диаметра, высота которых одинакова для трубок, расположенных по каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности. В качестве источника газа используется баллон со сжатым газом, соединенный через редуктор низкого давления, а также через редуктор высокого давления и электропневмоклапан с патрубком коллектора. Высота трубок, величина низкого и высокого давления, длительность импульса открытия электропневмоклапана определяются по заданным алгебраическим соотношениям. Изобретение обеспечивает получение компактного пузырькового кластера монодисперсных пузырьков заданного диаметра. 4 табл., 5 ил.

 

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера.

Поведение жидкости, содержащей пузырьки, существенно отличается от поведения гомогенных жидкостей при различных физических и физико-химических воздействиях. Эти отличия активно используются в промышленности - кипячение, теплообмен в двухфазных средах, кавитация, вспенивание, флотация. В ряде задач встает вопрос о генерировании пузырькового кластера заданных размеров, в частности при исследовании зажигания электрического разряда в жидкостях с помощью специально создаваемых кавитационных пузырьков [1], при исследовании поверхностно-активных веществ и акустических волн на динамику пузырьковых кластеров [2-4].

Известно устройство для аэрации и насыщения жидкости газом [5], содержащее коллектор, на котором установлены воздухораспределительные патрубки для ввода воздуха в жидкость. Патрубки равномерно расположены по окружности коллектора, снабженного подводящим патрубком. В патрубках выполнены горизонтальные прорези, которые размещены симметрично друг против друга и перекрыты полимерной или металлической тканой сеткой. Сетка закреплена с наружной стороны на патрубке. Торцы каждого патрубка закрыты заглушками. Сжатый воздух подается по подводящему патрубку в коллектор и распределяется по патрубкам. Из патрубков воздух проходит через прорези, перекрытые тканой сеткой, поступает в аэрируемую жидкость в виде воздушных пузырьков, соразмерных с шириной прорези.

Известно устройство для введения газа в жидкую среду [6]. Основная особенность данного устройства заключается в том, что оно содержит плавучий элемент с возможностью удержания указанного аэрационного устройства на плаву в жидкости. Аэрационный элемент выполнен в виде диффузора с возможностью создания из вводимого в него газа множества пузырьков диаметром (1÷7) мм.

Известно устройство для введения газа в жидкую среду [7]. Воздух из компрессора через линию подачи заполняет нижнюю полость между диском и основанием аэрационного устройства. Группа пузырьков создается в результате прохождения газа через пористый керамический диск и диффузор. Аэратор имеет сложную систему диафрагм и специальную защиту для уменьшения и полного исключения загрязнения пористой мембраны, а также от попадания жидкости в газодинамическую систему.

Указанные устройства предназначены для создания непрерывного потока пузырьков в жидкости.

Известен способ создания сферического кластера пузырьков в жидкости [8], основанный на введении через боковую стенку сосуда с помощью иглы одиночного пузырька газа диаметром (1÷2) мм и последующего его дробления на полидисперсные микропузырьки акустическим полем с частотой 625 Гц.

Известен способ создания кластера пузырьков в колбе с водным раствором серной кислоты [9]. Способ основан в двухчастотном акустическом воздействии на водный раствор серной кислоты с растворенным в нем газообразном аргоном. На геометрический центр колбы акустически воздействуют акустическим полем с частотами ƒ0=30.35 кГц и 11ƒ0, в результате чего образуется эллипсоидальный пузырьковый кластер из микропузырьков разных размеров.

Недостатками данных способов являются невозможность получения кластера из монодисперсных пузырьков миллиметровых размеров, а также сложность реализующих эти способы установок.

Наиболее близким по технической сущности к заявляемому изобретению является аэратор для генерации пузырьков [10]. Сжатый воздух через подводящий патрубок поступает в коллектор (аэрирующий элемент) цилиндрической формы, помещенный в окружающую жидкость. Верхняя крышка коллектора выполнена из пористого газопроницаемого пластика с системой полусферических углублений на ее внешней поверхности. Сжатый воздух через проницаемую крышку поступает в углубления в виде микропузырьков, которые расширяясь, образуют крупные пузырьки и поступают в жидкость. Размер образующихся пузырьков определяется размером углублений в крышке коллектора.

Данное устройство не позволяет получить компактный пузырьковый кластер контролируемой формы.

Техническим результатом настоящего изобретения является обеспечение получения компактного пузырькового кластера монодисперсных пузырьков заданного диаметра.

Технический результат изобретения достигается тем, что разработано устройство для создания компактного кластера монодисперсных пузырьков, включающее размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической емкости с газопроницаемой верхней крышкой, соединенный патрубком с источником сжатого газа. В верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям выполнены перфорации, в которых установлены трубки одинакового диаметра, высота которых одинакова для трубок, расположенных по каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности. В качестве источника газа используется баллон со сжатым газом, соединенный через редуктор низкого давления, а также через редуктор высокого давления и электропневмоклапан с патрубком коллектора. Высота трубок, величина низкого и высокого давления, длительность импульса открытия электропневмоклапана определяются соотношениями

,

pmin=pатм+0.8ρg(H-h0)

,

,

где hi - высота трубки, расположенной на радиусе ri (i=1, 2, …, к);

h0 - высота центральной трубки;

R - радиус верхней крышки коллектора;

pmin - величина низкого давления газа;

pатм - атмосферное давление;

ρ - плотность жидкости;

g - ускорение свободного падения;

Н - высота столба жидкости в резервуаре над верхней крышкой коллектора;

pmax _ величина высокого давления газа;

hк - высота трубки, расположенной на периферийной окружности радиусом rк (rк<R);

τ - длительность импульса открытия электропневмоклапана;

D - требуемый диаметр образующегося пузырька;

ϕ - коэффициент расхода;

d - внутренний диаметр трубки;

ρg - плотность газа.

Достижение положительного эффекта изобретения обеспечивается следующими факторами.

1. Выполнение перфораций в верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям позволяет обеспечить получение осесимметричного пузырькового кластера.

2. Использование трубок одинакового диаметра, установленных в перфорациях, обеспечивает образование монодисперсных пузырьков.

3. Использование трубок одинаковой высоты, расположенных по каждой из концентрических окружностей, обеспечивает одновременное образование «кольца» пузырьков для каждой из окружностей.

4. Линейное уменьшение высоты трубок, расположенных на окружностях, с увеличением радиуса окружности обеспечивает последовательное образование каждого «кольца» пузырьков с одинаковым запаздыванием по времени по мере удаления от центра крышки коллектора. Это позволяет получить компактный кластер с равномерным пространственным распределением пузырьков.

5. Использование в качестве источника газа баллона со сжатым газом позволяет обеспечить строго стационарный уровень давления при подаче газа в коллектор (в отличие, например, от компрессора, создающего неизбежные пульсации давления).

6. Использование редуктора низкого давления обеспечивает предварительный наддув коллектора, что предотвращает затекание жидкости из резервуара в коллектор.

7. Использование редуктора высокого давления и электропневмоклапана обеспечивает импульсную подачу дополнительного газа в коллектор из баллона при импульсном включении электропневмоклапана. Под действием дополнительного импульсного давления происходит однократный ввод газа в жидкость через трубки с образованием компактного кластера пузырьков.

8. Для определения высоты трубок hi, расположенных на окружности радиусом ri, рассмотрим подобные треугольники ABC и AB1C1 (Фиг. 1). Из условия подобия следует:

Из Фиг. 1 следует:

Подставляя (2) в (1), получим:

,

откуда следует соотношение:

Соотношение (3) обеспечивает линейное уменьшение высоты трубок от h0 до hк с увеличением радиуса окружности ri.

9. При давлении в коллекторе, равном величине минимального давления газа pmin, газ не должен поступать в жидкость через трубки. Это обеспечивается при условии:

где ph=ρgh - гидростатическое давление;

h - высота столба жидкости над выходным торцом трубки.

Наименьшее гидростатическое давление реализуется для центральной трубки высотой h0, для которой h=H-h0.

Из (4) следует:

При отработке устройства было экспериментально получено уточнение условия (5):

При выполнении соотношения (6) газ не поступает в жидкость через центральную трубку, а также через трубки, расположенные по концентрическим окружностям, поскольку для них гидростатическое давление больше, чем для центральной трубки.

10. При давлении в коллекторе, равном величине максимального давления газа pmax, газ должен поступать через трубки в жидкость. Это обеспечивается при условии:

Наибольшее гидростатическое давление реализуется для периферийных трубок высотой hк, для которых h=H-hк.

Из (7) следует:

При отработке устройства было экспериментально получено уточнение условия (8):

При выполнении соотношения (9) пузырьки газа поступают в жидкость через трубки, расположенные на периферийной окружности радиусом rк, а также через остальные трубки, поскольку для них гидростатическое давление меньше, чем для периферийных трубок.

11. Для определения длительность импульса τ открытия электропневмоклапана рассмотрим уравнение расхода газа через трубку [11]:

где Q - объемный расход газа;

S=πd2/4 - площадь поперечного сечения трубки;

Δp=0.2ρg(H-hк) - перепад давления на трубке.

Объем газа, поступающего в жидкость за период времени τ, определяется формулой:

При вводе порции газа объемом Vg образуется пузырек, объем которого равен объему введенного газа:

Из (11), (12) следует соотношение для определения τ:

Пример реализации

Сущность изобретения поясняется схемой (Фиг. 2, 3), на которой приведено устройство для создания компактного кластера монодисперсных пузырьков. Устройство включает размещенный в нижней части резервуара 1 с жидкостью 2 коллектор 3 с газопроницаемой верхней крышкой 4, соединенный патрубком 5 с источником сжатого газа. Резервуар 1 выполнен в виде кюветы с плоскопараллельными стенками из оптического стекла размером 0.3×0.3×0.6 м для обеспечения возможности визуализации процесса всплытия кластера пузырьков.

В верхней крышке 4 коллектора 3 выполнены в ее центре и по равноотстоящим концентрическим окружностям перфорации, в которых установлены центральная 6 и периферийные 7 трубки одинакового диаметра, высота которых одинакова для трубок, расположенных на каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности. В качестве трубок используются инъекционные медицинские иглы. Общий вид коллектора 3 с установленной центральной трубкой 6 приведен на фотографии (Фиг. 4).

В качестве источника газа используется баллон 8 со сжатым газом, соединенный через редуктор низкого давления 9, а также через редуктор высокого давления 11 и электропневмоклапан 13 с патрубком 5 коллектора 3.

Работа устройства осуществляется следующим образом. С помощью редуктора 9 устанавливается постоянное давление pmin, контролируемое манометром 10, препятствующее затеканию жидкости 2 через трубки 6, 7 в коллектор 3. С помощью редуктора высокого давления 11 и электропневмоклапана 13 импульсно подается сжатый газ под давлением pmax через патрубок 5 в коллектор 3. Газ из коллектора 3 через трубки 6, 7 в виде пузырьков поступает в окружающую жидкость 2. После отрыва пузырьков от трубок 6, 7 в жидкости 2 образуется компактный кластер пузырьков сферической формы, всплывающий вверх.

В качестве примера реализации рассмотрим результаты получения компактного кластера монодисперсных пузырьков воздуха в глицерине при комнатной температуре. Необходимые для расчетов параметры устройства приведены в таблице 1.

Параметры воздуха приведены в таблице 2.

Основные физические характеристики глицерина при температуре 20°С приведены в таблице 3 [12].

1. Рассчитывается высота трубок, расположенных на окружности радиусом ri по формуле (3):

.

Результаты расчетов приведены в таблице 4.

2. Определяется величина низкого давления газа по формуле (6):

pmin=pатм+0.8ρg(H-h0)=101308+0.8⋅1260⋅9.80665⋅(0.5-0.03)=105954 Па.

3. Определяется величина высокого давления газа по формуле (9):

pmax=pатм+1.2ρg(H-hк)=101308+1.2⋅1260⋅9.80665⋅(0.5-0.0075)=108611 Па.

4. Определяется длительность импульса τ открытия электропневмоклапана по формуле (13):

При расчете τ значение коэффициента расхода ϕ=0.5 определяется в соответствии с [13].

Для рассчитанных параметров устройства (pmin=105954 Па, рmах=108611 Па, τ=0.055 с) была проведена серия экспериментов. Видеокадры всплытия компактного кластера монодисперсных пузырьков, полученные в двух перпендикулярных плоскостях, приведены на Фиг. 5. Полученный экспериментально диаметр пузырьков D≈5⋅10-3 м.

Таким образом, из приведенного примера следует, что при реализации заявленного изобретения достигается положительный результат - получение компактного пузырькового кластера монодисперсных пузырьков заданного диаметра.

ЛИТЕРАТУРА

1. Дрожжин А.П., Коробейников С.М., Тесленко B.C. Инициирование пробоя в жидкости с помощью кавитационных пузырьков // Научный вестник НГТУ. - 2003. - №2. - С. 1-11.

2. Левич В.Г. Физико-химическая гидродинамика. - М.: Физматгиз, 1959. - 699 с.

3. Гуськов О.Б. О движении кластера сферических частиц в идеальной жидкость // Прикладная математика и механика. - 2014. - Т. 78, №2. - С. 186-193.

4. Архипов В.А., Васенин И.М., Усанина А.С.Динамика всплытия пузырька в присутствии поверхносто-активных веществ // Известие РАН. Механика жидкости и газа. - 2016. - №2. - С. 142-151.

5. Патент РФ №2153925, МПК B01F 3/04, C02F 3/20. Аэратор / М.М. Борисенко, А.В. Серов, В.А. Смыслов, А.Г. Чуринов - Опубл. 10.08.2000.

6. Патент РФ №2491116, МПК B01F 3/04, B01F 13/00, C02F 3/20. Аэрационное устройство для введения пузырьков газа в жидкую среду / МАГЕН Ханок (IL) - Опубл. 27.08.2013.

7. Patent WO №2016003926, IPC B01F 3/04262, C02F 1/74, C02F 3/20, B01F 2003/04177, B01F 2003/04326, C02F 2103/42, Y02W 10/15. Aeration device for aquatic environments / Sheaffer II John R. - Publication date 07. 01.2016.

8. Naohiro Sugita, Keita Ando, Toshihiko Sugiura. Experiment and modeling of translational dynamics of an oscillating bubble cluster in a stationary sound field // Ultrasonics. 2017, Vol. 77. - P. 160-167.

9. J.M., Dellavale D., Bonetto F.J. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL) // Ultrasonics Sonochemistry. 2015, Vol. 22. - P. 59-69.

10. Patent US №3970731, IPC B01F 3/04, C02F 3/20. Bubble-generating aerator / Erkki Olavi Oksman. - Publication date 20.07.1976.

11. Цейтлин В.Г. Расходоизмерительная техника. - М.: Изд-во стандартов, 1977.- 240 с.

12. Неволин Ф.В. Химия и технология производства глицерина. - М.: Химия, 1954. - 401 с.

13. Кремлевский П.П. Расходомеры и счетчики количества. Справочник. - 4-е изд., перераб. и доп.. - Л.: Машиностроение, 1989. - 701 с.

Устройство для создания компактного кластера монодисперсных пузырьков, включающее размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической емкости с газопроницаемой верхней крышкой, соединенный патрубком с источником сжатого газа, отличающееся тем, что в верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям выполнены перфорации, в которых установлены трубки одинакового диаметра, высота которых одинакова для трубок, расположенных по каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности, в качестве источника газа используется баллон со сжатым газом, соединенный через редуктор низкого давления, а также через редуктор высокого давления и электропневмоклапан с патрубком коллектора, а высота трубок, величина низкого и высокого давления, длительность импульса открытия электропневмоклапана определяются соотношениями

,

,

,

,

где hi - высота трубки, расположенной на радиусе ri (i=1, 2, …, к);

h0 - высота центральной трубки;

R - радиус верхней крышки коллектора;

pmin - величина низкого давления газа;

ратм - атмосферное давление;

ρ - плотность жидкости;

g - ускорение свободного падения;

Н - высота столба жидкости в резервуаре над верхней крышкой коллектора;

Pmax - величина высокого давления газа;

hк - высота трубки, расположенной на периферийной окружности радиусом rк (rк<R);

τ - длительность импульса открытия электропневмоклапана;

D - требуемый диаметр образующегося пузырька;

ϕ - коэффициент расхода;

d - внутренний диаметр трубки;

ρg - плотность газа.



 

Похожие патенты:

Изобретение может быть использовано для очистки сточных вод. Флотокомбайн для очистки сточных вод включает корпус 1 с расположенными на его внешней стороне патрубками подачи сточной воды с реагентами 3, рабочей жидкости в виде очищенной воды с растворенным в ней воздухом 22, пенным желобом 5 с выходным патрубком 7 и патрубками отвода очищенной воды 10 и осадка 17, узлом сгущения осадка.

Изобретение относится к химической, металлургической, энергетической и другим сферам промышленности и связано с тепломассообменом и химическим обменом, и взаимодействием между двумя текучими средами, такими как газ и жидкость, например, для удаления пыли и химических загрязнителей газа.

Изобретение относится к области энергетики, а именно к теплотехнике. Раскрыт способ образования кавитационных зон в потоке негорючей жидкости и управления их разрушением, включающий движущийся поток жидкости, средства для образования кавитационных зон в потоке жидкости.

Изобретение относится к газодиффузионной системе и способу введения потока газа, в частности потока пассивирующего газа в аппарат для разложения в установке по производству мочевины.

Изобретение относится к форсунке для создания пузырьков с круговым потоком, которая создает пузырьки (воздушные пузырьки), включающие мелкие пузырьки (нанопузырьки и микропузырьки).

Изобретение относится к устройствам распыления жидкостей для мокрой очистки газовых выбросов и может быть использовано в химической и нефтяной промышленности. Форсунка содержит цилиндрическую камеру 1 для подвода газа, осевой ороситель 3 с дроссельными отверстиями 6 для подвода жидкости и завихритель 8 газожидкостного потока.

Изобретение относится к обработке природных и сточных вод воздухом. Керамический аэратор содержит цельнокерамический пустотелый корпус 1 со стенками из монофракций керамических порошков с центральным отверстием 2 и винтовой нарезкой 3 в корпусе 1, входной штуцер 4 и подводящий трубопровод 5 воздуха.

Изобретение относится к обработке воды и может быть использовано для аэрации воды и ее очистки от растворенных газов, преимущественно в резервуарах. Устройство для аэрации воды в верхних слоях при постоянном уровне воды в резервуаре содержит каркас, крепление, по меньшей мере, один компрессор, по меньшей мере, один воздухоподводящий трубопровод и, по меньшей мере, один аэратор.

Изобретение относится к обработке воды и может быть использовано для аэрации воды и ее очистки от растворенных газов, преимущественно в резервуарах. Устройство для аэрации воды в верхних слоях при постоянном уровне воды в резервуаре содержит каркас, крепление, по меньшей мере, один компрессор, по меньшей мере, один воздухоподводящий трубопровод и, по меньшей мере, один аэратор.

Изобретение относится к подготовке жидкого топлива к сжиганию и может быть использовано для утилизации жидких горючих отходов. Устройство содержит бак-ресивер (8), выполненный единым элементом.

Изобретение относится к аэрационным устройствам, предназначенным для введения газа в жидкую среду, в частности к устройствам для получения компактного кластера пузырьков одинакового размера. Устройство включает размещенный в нижней части резервуара с жидкостью коллектор в виде цилиндрической емкости с газопроницаемой верхней крышкой, соединенный патрубком с источником сжатого газа. В верхней крышке коллектора в ее центре и по равноотстоящим концентрическим окружностям выполнены перфорации, в которых установлены трубки одинакового диаметра, высота которых одинакова для трубок, расположенных по каждой из окружностей, и линейно уменьшается с увеличением радиуса окружности. В качестве источника газа используется баллон со сжатым газом, соединенный через редуктор низкого давления, а также через редуктор высокого давления и электропневмоклапан с патрубком коллектора. Высота трубок, величина низкого и высокого давления, длительность импульса открытия электропневмоклапана определяются по заданным алгебраическим соотношениям. Изобретение обеспечивает получение компактного пузырькового кластера монодисперсных пузырьков заданного диаметра. 4 табл., 5 ил.

Наверх