Способ обработки углеродных наполнителей

Изобретение относится к способу обработки углеродных наполнителей, а именно углелент или углеволокон, с целью повышения гидрофильности их поверхности и снижения плотности. Предлагаемый способ заключается в том, что процесс обработки углеродных лент и волокон проводят смесью 100 г разбавленной серной кислоты 60%-ной концентрации и оксида фосфора (V) 1,5-6,0 г при температуре 75°С в течение 0,5 часа. Обработанные вышеуказанным способом протонированные угленаполнители обладают высокой гидрофильностью поверхности и пониженной плотностью, что позволяет их применять в качестве наполнителей полярных полимеров и получать полимерные композиты с более высокой прочностью на сжатие. 1 табл.

 

Изобретение относится к области обработки углеродных наполнителей (углелент и углеволокон) с целью повышения гидрофильности для получения на их основе полимерных композитов.

Известен способ активации путем функциализации углеродных наполнителей - графита различных марок, с помощью окислительно-восстановительной реакции со смесью концентрированных серной и азотной кислот при нагревании [Беева Д.А., Микитаев А.К., Беев А.А., Абаев A.M. Синтез композиционных материалов на основе полигидроксиэфиров. - «Успехи современного естествознания». - №1, 2005 г. - с. 20-21].

В результате обработки, в структуре графита образуются карбоксильные, карбонильные, гидроксильные и другие функциональные химически активные группы. Недостатком этого технического решения является то, что приходится использовать смесь сильных минеральных кислот. При этом, реакция трудно контролируема, иногда выделяется токсичный оксид азота (IV).

Известен способ функциализации углеродных однослойных и многослойных нанотрубок при кипячении в смеси серной и азотной кислот [Нгуенг Чан Хунг. Модифицирование углеродных нанотрубок и нановолокон для получения керамических нанокомпозитов. Дисс… к.х.н., - РХТУ им. Д.И. Менделеева. М., 2009 г., - 119 с.].

Недостатком способа является то, что протекание таких реакций - взаимодействие углеродных нанотрубок со смесью концентрированных серной и азотной кислот сопровождается выделением бурых газов, что свидетельствует о частичном разрушении структуры углеродного наполнителя.

Наиболее близким к предлагаемому решению является способ обработки углеродных наполнителей [Беева Д.А., Микитаев А.К., Беев А.А. Способ обработки углеродных нанонаполнителей. Патент РФ №2474534. - 2013 г.], включающий воздействие на них разбавленной серной кислотой 20-60% концентрации при температуре 70-100°С в течение 0,5-2 часов.

Однако, данный способ применим для наночастиц, а в промышленности углепластиков часто используются углеленты и углеволокна.

Задача изобретения заключается в химической активации поверхности углеродных наполнителей: углеродных лент и углеродных волокон без разрушения их структуры с целью увеличения межмолекулярных взаимодействий на границе углеродный наполнитель-полимер, что позволяет получить композиционные материалы с более высокой прочностью на сжатие.

Предлагаемый способ заключается в том, что процесс обработки углеродных лент и волокон проводят смесью 100 г разбавленной серной кислоты 20-60%-ной концентрации и оксида фосфора (V) 1,5-6,0 г при температуре 75°С в течение 0,5 часа. При этом происходит поверхностное протонирование углеродного наполнителя и, как следствие, увеличение межмолекулярных взаимодействий между поверхностью угленаполнителя и полимером или органическим аппретом. Обработанные таким способом протонированные угленаполнители обладают наиболее высокой гидрофильностью поверхности и пониженной плотностью, т.е. более разрыхленной структурой, что позволит их применение в качестве наполнителей полярных полимеров.

Способ осуществляют следующим образом.

Пример 1. В кругло донную колбу объемом 200-300 мл, снабженную обратным холодильником, помещают 30 г углеродной ленты (или углеволокна), приливают 100 г 60%-ной серной кислоты, 1,5 г оксида фосфора (V) и нагревают при температуре 75°С в течение 0,5 часа таким образом, чтобы не допустить перегревания и выделения газов. После окончания нагревания содержимое колбы охлаждают и разбавляют 150 мл дистиллированной воды. Углеродный материал отделяют, промывают до отрицательной реакции на сульфат-ионы (1%-ный раствор BaCl2), сушат сначала в эксикаторе, затем в сушильном шкафу при 130-150°С до постоянной массы.

Обработанные углеленту и углеволокно проверяют на гидрофильность путем насыщения в дистиллированной воде в течение 24 часов, измеряют плотность титриметрическим методом с использованием насыщенного раствора KI. Свойства обработанной углеленты и углеволокна приведены в таблице 1.

Пример 2. По примеру 1 обработку углеленты (углеволокна) проводят смесью 100 г 60%-ной серной кислоты и 3,0 г оксида фосфора (V). Свойства обработанной углеленты и углеволокна приведены в таблице 1

Пример 3. По примеру 1 обработку углеленты проводят смесью 100 г 60%-ной серной кислоты и 4,5 г оксида фосфора (V). Свойства обработанной углеленты и углеволокна приведены в таблице 1

Пример 4. По примеру 1 обработку углеленты проводят смесью 100 г 60%-ной серной кислоты и 6,0 г оксида фосфора (V). Свойства обработанной углеленты и углеволокна приведены в таблице 1

Технический результат предлагаемого изобретения заключается в значительном повышении гидрофильности, уменьшении плотности углеленты или углеволокна - увеличении смачиваемости растворами полимеров, что позволяет получать углепластики совмещением их с полимерными материалами.

Способ обработки углеродных наполнителей, включающий воздействие на них серной кислоты, отличающийся тем, что обработку проводят разбавленной серной кислотой 60%-ной концентрации и оксидом фосфора (V) при соотношениях:

углеродная лента или углеродное волокно - 30 г;

разбавленная серная кислота 60%-ной концентрации - 100 г;

оксид фосфора (V) - 1,5-6,0 г,

при температуре 75°С в течение 0,5 часов.



 

Похожие патенты:

Изобретение относится к химической технологии, а именно к получению углеродных волокнистых материалов в виде нитей, жгутов, лент, тканей и т.п. путем термохимической обработки гидратцеллюлозных (ГЦ) волокон.

Изобретение относится к оборудованию для производства химических волокон. Печь окисления полиакрилонитрильных волокон содержит корпус 1 с теплоизолированной термокамерой 2 с температурными зонами 3, включающими каналы 4 для прохождения волокон 7.

Изобретение относится к химической технологии волокнистых материалов, а именно к способам и методам получения углеродных волокнистых материалов путем термохимической обработки волокнистых гидратцеллюлозных (ГЦ-)материалов и к способам выбора ГЦ-волокон в качестве исходного сырья для производства углеродных волокнистых материалов.

Изобретение относится к оборудованию для производства химических волокон и касается устройства для окисления полиакрилонитрильных волокон при производстве углеродных волокон.

Изобретение относится к герметизирующим затворам проходных печей. Герметизирующий затвор содержит корпус 1 с фланцем 2 для крепления к рабочей камере 3 печи и продольным прямоугольным проходным каналом 4.

Изобретение относится к упрочнению углеродных волокон (УВ), используемых для получения композиционных материалов. Способ упрочнения углеродных волокон включает термообработку с протягиванием волокон через зону нагрева.

Изобретение относится к нанотехнологии. Сначала смешивают полимер с катализатором и растворителем до получения однородного раствора.

Изобретение относится к получению углеродных нанотрубчатых волокон, имеющих низкое удельное сопротивление. Волокна получают способом мокрого прядения, содержащим стадии подачи прядильного раствора, содержащего углеродные нанотрубки к фильере, экструдирования прядильного раствора через по меньшей мере одно прядильное отверстие в фильере с формованием спряденных углеродных нанотрубчатых волокон, коагулирования спряденных углеродных нанотрубчатых волокон в коагуляционной среде с формованием коагулированных углеродных нанотрубчатых волокон, в котором углеродные нанотрубчатые волокна вытягивают со степенью вытяжки выше 1,0 и в котором углеродные нанотрубки имеют длину по меньшей мере 0,5 мкм.
Изобретение относится к химической технологии волокнистых материалов и касается способа получения волокон из углеродных нанотрубок, которые могут быть использованы для получения высокопрочных, высокомодульных, электропроводящих композиционных материалов специального назначения.

Изобретение относится к химической промышленности и нанотехнологии и может быть использовано при изготовлении композитов и волокон для дисплеев, противообледенительных контуров, газонепроницаемых композитов и экранов.

Изобретение относится к получению углеродных нанотрубчатых волокон, имеющих низкое удельное сопротивление. Волокна получают способом мокрого прядения, содержащим стадии подачи прядильного раствора, содержащего углеродные нанотрубки к фильере, экструдирования прядильного раствора через по меньшей мере одно прядильное отверстие в фильере с формованием спряденных углеродных нанотрубчатых волокон, коагулирования спряденных углеродных нанотрубчатых волокон в коагуляционной среде с формованием коагулированных углеродных нанотрубчатых волокон, в котором углеродные нанотрубчатые волокна вытягивают со степенью вытяжки выше 1,0 и в котором углеродные нанотрубки имеют длину по меньшей мере 0,5 мкм.

Изобретение может быть использовано при изготовлении эрозионно-стойких деталей соплового блока ракетных двигателей твердого топлива (РДТТ). Поверхностно-активный волокнистый углеродный материал получают обработкой углеродной ткани, изготовленной из вискозных волокон, 5% раствором роданида железа в дистиллированной воде.

Представлены изделия, включающие чистые ориентированные углеродные нанотрубки, и способы получения таковых. Изделия и способы включают экструзию раствора углеродных нанотрубок в суперкислоте с последующим удалением суперкислотного растворителя.

Изобретение относится к технологии получения объемно-армированных углерод-углеродных композиционных материалов, в частности к приготовлению композиций для пропитки углеродных волокон, и может быть использовано при производстве эррозионно-стойких теплозащитных деталей в авиационной, ракетно-космической и химической отраслях промышленности.

Изобретение относится к химической технологии волокнистых материалов и касается филаментов и содержащих их волокнистых структур. Филамент содержит один или более филаментообразующих материалов, содержащих один или более сополимеров винилацетата и винилового спирта с низкой степенью гидролиза, и один или более активных агентов, присутствующих в филаменте, причем один или более филаментообразующих материалов и один или более активных агентов присутствуют в филаменте в массовом отношении филаментобразующего материала к активным агентам 1,85 или менее.
Изобретение относится к химической технологии волокнистых материалов и касается волокон и нитей с окклюдирующей функцией. Нить содержит формованное изделие, содержащее полимерную композицию, включающую полимер и по меньшей мере одно активное вещество, выбранное из группы, состоящей из активного вещества, создающего окклюзию, в частности из активного вещества, создающего внутреннюю окклюзию, или из активного вещества, создающего внешнюю окклюзию, увлажняющего активного вещества, активного вещества, снижающего боль или зуд, и их смесей.
Изобретение относится к химической технологии волокнистых материалов и касается многофиламентных сложнополиэфирных волокон. Волокно содержит по меньшей мере один полимер, содержащий сложный полиэфир и по меньшей мере один наполнитель, содержащий поверхностно обработанный карбонат кальция, содержащий на по меньшей мере доступной площади поверхности обработанный слой, содержащий гидрофобизирующий агент, выбранный из группы, состоящей из алифатической карбоновой кислоты, имеющей общее количество углеродных атомов от С4 до С28, и/или ее продуктов реакции, монозамещенного янтарного ангидрида, состоящего из янтарного ангидрида, монозамещенного группой, выбранной из линейной, разветвленной, алифатической и циклической группы, имеющей общее количество углеродных атомов от по меньшей мере С2 до С30 в заместителе, и/или ее продуктов реакции, смеси эфиров фосфорной кислоты из одного или более моноэфиров фосфорной кислоты и/или их продуктов реакции и одного или более диэфиров фосфорной кислоты и/или их продуктов реакции, и их смесей.

Изобретение относится к композициям для синергетического висбрекинга полипропиленов. Предложена композиция для синергетического висбрекинга из перекиси и сложного эфира гидроксиламина для увеличения эффективности висбрекинга полипропиленовых полимеров при температуре экструзии расплава ниже 250°C, а также ее применение при висбрекинге полипропилена.

Изобретение относится к химической технологии волокнистых материалов и касается перфорированных волокнистых структур и способов их изготовления. Перфорированные волокнистые структуры содержат один или более волокнистых элементов - филаментов, содержащих один или более формирующих волокнистый элемент материалов и один или более активных агентов, которые способны высвобождаться из волокнистого элемента при воздействии условий целевого использования.

Изобретение относится к химической технологии волокнистых материалов и касается растворимых волокнистых структур и способов их изготовления. Волокнистые структуры содержат один или более волокнистых элементов, таких как филаменты, содержащие один или более формирующих волокнистый элемент материалов, и один или более активных агентов, присутствующих в волокнистых элементах, при этом волокнистая структура характеризуется улучшенными свойствами растворения по сравнению с известными растворимыми волокнистыми структурами.

Изобретение относится к способу обработки углеродных наполнителей, а именно углелент или углеволокон, с целью повышения гидрофильности их поверхности и снижения плотности. Предлагаемый способ заключается в том, что процесс обработки углеродных лент и волокон проводят смесью 100 г разбавленной серной кислоты 60-ной концентрации и оксида фосфора 1,5-6,0 г при температуре 75°С в течение 0,5 часа. Обработанные вышеуказанным способом протонированные угленаполнители обладают высокой гидрофильностью поверхности и пониженной плотностью, что позволяет их применять в качестве наполнителей полярных полимеров и получать полимерные композиты с более высокой прочностью на сжатие. 1 табл.

Наверх