Свч фотоприемник лазерного излучения

Изобретение относится к полупроводниковым приборам, применяемым в электронике. СВЧ фотоприемник лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: слоя тыльного потенциального барьера 2 n-Al0.2Ga0.8As, базового слоя, выполненного из n-GaAs 3, с толщиной 50-100 нм, непроводящего слоя i-GaAs 4 толщиной 1 мкм и эмиттерного слоя p-GaAs 5 толщиной 900-1000 нм с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм. Изобретение обеспечивает возможность создания СВЧ фотоприемника лазерного излучения с высоким быстродействием и поглощением не менее 80% фотонов с длиной волны в диапазоне 800-860 нм. 2 з.п. ф-лы, 4 ил.

 

Изобретение относится к полупроводниковым приборам, применяемым в электронике. На его основе возможно создание фотоприемников (ФП) лазерного излучения (ЛИ).

В настоящее время все большее распространение получают волоконно-оптические линии связи (ВОЛС), основанные на лазерных диодах и быстродействующих ФП, которые обеспечивают гальваническую развязку между источником сигнала и приемником. При этом достигнут значительный прогресс в создании ФП, обеспечивающих прием сигнала в СВЧ системах, работающих на частотах, достигающих десятков гигагерц, и в ряде случаев достигающих терагерцового диапазона. В качестве оптоволокна в системах ВОЛС используется кварцевое волокно с окнами прозрачности: 0,85 мкм (первое окно), 1,3 мкм (второе окно) и 1,55 мкм (третье окно).

Как показывают теоретические данные, эффективность преобразования монохроматического (в частности лазерного) излучения в диапазоне длин волн 0,8-0,86 мкм для фотопреобразователей на основе GaAs может достигать 85-87% при мощности падающего излучения 100 Вт/см2. Таким образом, задача улучшения характеристик ФП лазерного излучения, таких как, квантовый выход и быстродействие являются весьма актуальной для современной электроники и фотоники.

Известен фотоприемник лазерного излучения на основе GaAs (см. Tiqiang Shan, Xinglin Qi, Design and optimization of GaAs photovoltaic converter for laser power beaming, 2015, м. 71, p. 144-150), включающий подложку из n-GaAs, слой тыльного потенциального барьера из n-AlGaAs, базовый слой из n-GaAs толщиной 3,5 мкм, эмиттерный слой из p-GaAs толщиной 0,5 мкм, слой широкозонного окна из p-GaInP, контактный подслой из p+-GaAs.

Недостатком известного фотоприемника является малое быстродействие из-за высокой барьерной емкости, а также большой постоянной времени разделения носителей заряда.

Известен фотоприемник лазерного излучения на основе GaAs (см. E. Oliva, F. Dimroth and A.W. Bett. Converters for High Power Densities of Laser Illumination. - Prog. Photovolt: Res. Appl., 2008, 16: 289-295), содержащий подложку из n-GaAs, слой тыльного потенциального барьера из n+-GaInP, базовый слой из n-GaAs, эмиттерный слой из p-GaAs, слой широкозонного окна из p+-GaInP и контактный подслой из p++-Al0,5GaInAs.

К недостатку известного фотоприемника относится усложненная технология его изготовления (использование большого количества разных газов для выращивания слоев разного элементного состава, а, следовательно, повышенные требования к очистке реактора от нежелательных примесей). Кроме того, отсутствие нелегированной области вызывает повышение барьерной емкости.

Наиболее близким к настоящему техническому решению по совокупности существенных признаков является фотоприемник лазерного излучения (см. патент RU 2547004, МПК H01L 31/18, опубликован 10.04.2015), принятый за прототип и включающий подложку из n-GaAs, базовый слой из n-GaAs толщиной 3-5 мкм, эмиттерный слой из p-GaAs толщиной 1,5-2,0 мкм, слой из p-AlGaAs толщиной 3-30 мкм.

Недостатками известного фотоприемника лазерного излучения является неполное собирание фотогенерированных носителей из базового слоя, а также низкое быстродействие.

Задачей настоящего решения является создание такого СВЧ фотоприемника лазерного излучения, который обеспечивал, высокое быстродействие и поглощал бы не менее 80% фотонов с длиной волны в диапазоне 800-860 нм при близком к полному собиранию фотогенерированных носителей.

Поставленная задача достигается тем, что СВЧ фотоприемник лазерного излучения включает полупроводниковую подложку, выполненную из n-GaAs, и последовательно осажденные: слой тыльного потенциального барьера, выполненный из n-Al0.2Ga0.8As, базовый слой, выполненный из n-GaAs, непроводящий слой i-GaAs и эмиттерный слой p-GaAs с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм.

В СВЧ фотоприемнике лазерного излучения толщина базового слоя может находиться в диапазоне от 50 до 100 нм, толщина непроводящего слоя может составлять 1 мкм, а толщина эмиттерного слоя может находиться в диапазоне от 900 до 1000 нм.

В СВЧ фотоприемнике лазерного излучения уровень легирования эмиттерного слоя p-GaAs мелкой акцепторной примесью у границы с непроводящим слоем i-GaAs может составлять от 1⋅1016 до 1⋅1017 см-3 и увеличивается по экспоненциальному закону до величины от 1⋅1018 до 2⋅1018 см-3 у противоположной границы эмиттерного слоя.

Настоящее техническое решение поясняется чертежами, где:

на фиг. 1 представлено схематичное изображение поперечного сечения настоящего СВЧ фотоприемника лазерного излучения;

на фиг. 2 приведены доли непоглощенных фотонов лазерного излучения в ФП ЛИ на основе GaAs в зависимости от суммарной толщины базового непроводящего и эмиттерного слоев для длин волн в диапазоне 800-860 нм: кривая 6 - длина волны излучения 810 нм; кривая 7 - длина волны излучения 830 нм; кривая 8 - длина волны излучения 850 нм;

на фиг. 3 представлены вклады различных фотоактивных слоев в постоянную времени разделения фотогенерированных носителей в ФП ЛИ на основе GaAs в вентильном режиме при напряжении 1 В: кривая 9 - время диффузии неравновесных дырок из слоя n-GaAs; кривая 10 - время диффузии неравновесных электронов из слоя p-GaAs при отсутствии градиента легирования; кривая 11 - время диффузии неравновесных электронов из слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1017 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 12 - время диффузии неравновесных электронов из слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 13 - время разделения электрон-дырочных пар в i-GaAs; кривая 14 - время дрейфа неравновесных электронов через слой i-GaAs;

на фиг. 4 показаны вклады различных фотоактивных слоев в удельную диффузионную емкость структуры ФД на основе GaAs в вентильном режиме при напряжении 1 В (кривые 15-19), а также барьерная емкость такого ФП ЛИ, в зависимости от толщины нелегированного слоя (кривая 20): кривая 15 - вклад слоя i-GaAs; кривая 16 - вклад слоя p-GaAs при отсутствии градиента легирования; кривая 17 - вклад слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 18 - вклад слоя p-GaAs при градиенте легирования мелкой акцепторной примесью от 1⋅1016 см-3 у границы с непроводящим слоем до 2⋅1018 см-3 у противоположной границы с изменением концентрации примеси по экспоненциальному закону; кривая 19 - вклад слоя и-GaAs.

Настоящий СВЧ фотоприемник лазерного излучения показан на фиг. 1. Он включает полупроводниковую подложку 1, выполненную, например, из n-GaAs, и последовательно осажденные: слой тыльного потенциального барьера 2, выполненный, например, из n-Al0.2Ga0.8As, базовый слой 3, выполненный, например, из n-GaAs, с толщиной, например, 50-100 нм, непроводящий слой i-GaAs 4, толщиной, например, 1 мкм и эмиттерный слой p-GaAs 5 толщиной, например, 900-1000 нм с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм.

С увеличением частоты все большее влияние на работу СВЧ приборов оказывают паразитные емкости, образуемые конструктивными элементами самих устройств. При этом модуль реактивного сопротивления емкостей уменьшается: шунтирующие емкости закорачивают соответствующие участки схемы. Поэтому на высоких частотах и особенно в СВЧ-диапазоне паразитные емкости, в первую очередь емкости p-n переходов в полупроводниковых приборах, должны быть сведены к минимуму.

Общая емкость p-n перехода измеряется между выводами кристалла при заданных постоянном напряжении (смещении) и частоте гармонического напряжения, прикладываемых к переходу. Она складывается из барьерной и диффузионной емкостей.

При прямом напряжении на переходе и работе ФП в «вентильном» режиме общая емкость определяется в основном диффузионной емкостью, а при обратном напряжении и работе ФП в режиме «ключа». - барьерной.

Барьерная (или зарядная) емкость обусловлена нескомпенсированным зарядом ионизированных атомов примеси, сосредоточенными по обе стороны от границы перехода. Эти объемные заряды неподвижны и не участвуют в процессе протекания тока. Они и создают электрическое поле перехода. При увеличении обратного напряжения область пространственного заряда и сам заряд увеличиваются, причем это увеличение происходит непропорционально тем меньше, чем больше расстояние между атомами донорной и акцепторной примесей.

Использование непроводящего i-слоя большей толщины позволяет расширить обедненную область между сильнолегированными эмиттерным и базовым слоями ФП, что позволяет уменьшить барьерную емкость структуры, которую можно оценить по формуле:

где ε - диэлектрическая проницаемость i-слоя; ε0 - электрическая постоянная; S - площадь ФП, d - ширина запрещенной зоны p-n перехода.

Увеличение толщины непроводящего i-слоя приводит к возрастанию d, что понижает барьерную емкость.

При положительных смещениях существенной оказывается диффузионная емкость. Диффузионная емкость связана с нескомпенсированным зарядом в фотоактивных слоях: и обратно пропорциональна толщине i-слоя p-эмиттере, n-базе и нелегированном i-слое. Диффузионная емкость обусловлена изменением величины объемного заряда, вызванного изменением прямого напряжения и вследствие инжекции неосновных носителей в рассматриваемый слой. В результате, например, в n-базе возникает объемный заряд дырок, который практически мгновенно компенсируется зарядом собственных подошедших к дыркам электронов. Диффузионную емкость часто выражают как линейную функцию тока, учитывая экспоненциальный характер вольтамперной характеристики.

Для обеспечения высокого быстродействия ФП необходим компромисс в выборе толщины непроводящей области. При малой ее толщине поле в области ОПЗ будет достаточно для быстрого разделения носителей, однако, барьерная емкость структуры окажется большей, чем для толстого i-слоя.

Быстродействие p-i-n структур определяется постоянной времени, связанной со скоростью разделения электрон-дырочных пар в области пространственного заряда (ОПЗ), постоянной времени, определяемой скоростью диффузии неравновесных носителей заряда из эмиттера по направлению к ОПЗ, и постоянной времени, определяемой скоростью диффузии неравновесных носителей заряда из базы по направлению к ОПЗ и постоянной времени перезаряда емкостей, определяемой сопротивлением нагрузки ФП RH и емкостью p-i-n структуры.

Скорость разделения электрон-дырочных пар в ОПЗ зависит от подвижности носителей заряда градиента поля в ОПЗ, определяемого контактной разницей потенциалов, напряжением на ФП и толщиной i-слоя d. Скорости диффузии в эмиттере и базе определяются толщинами этих слоев и коэффициентами диффузии неосновных носителей заряда.

Суммарная толщина базового, эмиттерного и непроводящего слоев определяет коэффициент поглощения лазерного излучения в ФП. Для получения требуемого коэффициента поглощения необходимо обеспечение суммарной толщины базового, эмиттерного и непроводящего слоев порядка 2 мкм (фиг. 2, кривые 6-8). Толщины должны быть распределены таким образом, чтобы обеспечить близкое к полному собирание фотогенерированных носителей и, одновременно, приемлемые параметры быстродействия.

Результаты расчетов показывают, что для ФП, в целом, при выбранных толщинах и профилях легирования слоев обеспечивается время разделения фотогенерированных носителей на уровне 15-20 пс (фиг. 3).

Толщина слоя n-GaAs выбиралась равной 50-100 нм для минимизации вклада базы в постоянную времени ФП (фиг. 3, кривая 9). Выбранная толщина позволила удержать постоянную на уровне менее 10 пс, при больших толщинах время собирания фотогенерированных носителей в p-i-n переход существенно возрастает. В то же самое время, такой толщины достаточно для создания необходимой контактной разности потенциалов на p-i-n переходе и сильного равномерного электрического поля в слое i-GaAs. Для обеспечения требуемых временных параметров диффузию неравновесных дырок в направлении подложки ограничивает слой тыльного потенциального барьера, выполненный из n-Al0.2Ga0.8As.

При отсутствии тянущего поля время собирания неравновесных электронов из эмиттера (фиг. 3, кривая 10) превышает время разделения носителей в ОПЗ, начиная с толщины эмиттера в 400 нм. При толщине эмиттера в 900-1000 нм время разделения носителей составит 50 пс. Это существенно больше времени разделения электрон-дырочных пар в ОПЗ, составляющего 12 пс для толщины слоя i-GaAs в 1000 нм (фиг. 3, кривая 13). Внедрение тянущего поля при толщине эмиттера 900-1000 нм позволит сохранить постоянную времени в пределах от 15 до 20 пс в зависимости от величины градиента легирования (фиг. 3, кривые 11 и 12). Также тянущее поле обеспечивает близкое к полному собирание фотогенерированных носителей заряда. Экспоненциальный закон изменения концентрации мелкой акцепторной примеси позволяет получить постоянную напряженность тянущего поля по всей толщине эмиттера.

Время дрейфа электронов через слой i-GaAs при этом пренебрежимо мало, порядка 1 пс для толщины 1000 нм (фиг. 3, кривая 14). Время дрейфа дырок через слой i-GaAs несколько больше ввиду их меньшей подвижности, однако, ввиду малой толщины слоя n-GaAs (50-100 нм), из которого они инжектируются, а также расположения слоя с тыльной стороны, суммарный вклад этих носителей заряда в фототок в предложенной структуре не превышает 1%, что позволяет пренебрегать ими.

Выбранные толщины эмиттерного, базового и непроводяшего слоев ФП помимо приемлемой постоянной времени разделения фотогенерированных носителей также отвечают условию баланса между барьерной и диффузионной емкостями в рабочих режимах (фиг. 4).

Основной вклад в диффузионную емкость обеспечивает слой i-GaAs (фиг. 4, кривая 15). Вклады эмиттерного и базового слоев, если нет градиента легирования, на несколько порядков меньше (фиг. 4, кривые 16 и 19). При рассмотрении временных параметров ФП необходимо учитывать, что наличие градиента легирования и области с более низким легированием приводит к росту вклада эмиттера в диффузионную емкость структуры. Однако, область, за счет которой будет расти диффузионная емкость, ограничена градиентом тянущего поля на участке ~kT. По этой причине, хотя внедрение поля будет сопровождаться увеличением вклада эмиттера в диффузионную емкость (фиг. 4, кривые 17 и 18), этот вклад будет незначителен и останется, как минимум, на 2 порядка ниже, чем вклад слоя i-GaAs (фиг. 4, кривая 15). Для выбранной толщины слоя i-GaAs диффузионная и барьерная емкость (фиг. 4, кривая 20) приблизительно равны.

1. СВЧ фотоприемник лазерного излучения, включающий полупроводниковую подложку, выполненную из n-GaAs, и последовательно осажденные: слой тыльного потенциального барьера, выполненный из n-Al0.2Ga0.8As, базовый слой, выполненный из n-GaAs, непроводящий слой i-GaAs и эмиттерный слой p-GaAs с увеличением уровня легирования мелкой акцепторной примесью от границы с непроводящим слоем до противоположной границы, при этом сумма толщин базового, непроводящего и эмиттерного слоев составляет от 1,95 до 2,1 мкм.

2. СВЧ фотоприемник лазерного излучения по п. 1, отличающийся тем, что толщина базового слоя находится в диапазоне от 50 до 100 нм, толщина непроводящего слоя составляет 1 мкм, а толщина эмиттерного слоя находится в диапазоне от 900 до 1000 нм.

3. СВЧ фотоприемник лазерного излучения по п. 2, отличающийся тем, что уровень легирования эмиттерного слоя p-GaAs мелкой акцепторной примесью у границы с непроводящим слоем i-GaAs составляет от 1⋅1016 до 1⋅1017 см-3 и увеличивается по экспоненциальному закону до величины от 1⋅1018 до 2⋅1018 см-3 у противоположной границы эмиттерного слоя.



 

Похожие патенты:

Изобретение относится к полупроводниковой электронике и может быть использовано для создания фотодетекторов (ФД) лазерного излучения (ЛИ). СВЧ фотодетектор лазерного излучения состоит из подложки 1, выполненной из n-GaAs, и последовательно осажденных: Брегговского отражателя 2, настроенного на длину волны лазерного излучения в диапазоне 800-860 нм, включающего чередующиеся пары слоев n-AlAs 3 / n-Al0,2Ga0,8As 4, базового слоя, выполненного из n-GaAs 5, с толщиной 50-100 нм, нелегированного слоя i-GaAs 6 толщиной 0,9-1,1 мкм, эмиттерного слоя p-GaAs 7 толщиной 450-400 нм, фронтальный слой р-Al0,2Ga0,8As, при этом сумма толщин базового, нелегированного и эмиттерного слоев не превышает 1,5 мкм.

Инфракрасный сенсор с переключаемым чувствительным элементом относится к устройствам для бесконтактного измерения температуры в различных системах управления и контроля.

Изобретение относится к микроэлектронике, а именно к интегральным фотоэлектрическим преобразователям. Ячейка фотоэлектрического преобразователя приемника изображения содержит фотодиод, транзистор считывания заряда, накопленного фотодиодом, транзистор предустановки, обеспечивающий восстановление исходного потенциала на фотодиоде, входной транзистор истокового повторителя, транзистор выборки строки и малошумящий делитель заряда, обеспечивающий выделение малой части заряда, накопленного фотодиодом за время релаксации, и ее передачу на затвор входного транзистора истокового повторителя с многократным повторением данной процедуры в течение времени кадра.

Изобретение относится к матричным фотоприемным устройствам (ФПУ) на основе фотодиодов (ФД), изготовленных по мезатехнологии в гетероэпитаксиальных полупроводниковых структурах III-V групп InGaAs/AlInAs/InP, преобразующих излучение в коротковолновой инфракрасной области спектра (0,9-1,7 мкм).

Изобретение относится к области микроэлектроники и касается пассивного беспроводного датчика ультрафиолетового излучения. Датчик включает в себя пьезоэлектрическую подложку, на рабочей поверхности которой в одном акустическом канале находятся приемо-передающий однонаправленный встречно-штыревой преобразователь (ВШП) и два отражательных ВШП.

Изобретение относится к полупроводниковым приборам, предназначенным для детектирования и испускания инфракрасного (ИК) излучения при комнатной температуре и может быть использовано, например, в устройствах, измеряющих характеристики сред, содержащих газообразные углеводороды, и в волоконно-оптических датчиках, измеряющих состав жидкости по методу исчезающей волны, для которых указанная полоса совпадает с максимумом фундаментального поглощения измеряемого компонента, например спирта или нефтепродуктов.

Изобретение относится к инфракрасной технике и технологии изготовления устройств инфракрасной техники, конкретно к фотоприемным устройствам ИК-диапазона длин волн и к технологии их изготовления.

Группа изобретений относится к нанооптоэлектронике. В фоточувствительной структуре, представляющей собой чувствительную к терагерцовому излучению при температуре эффективного фототока многослойную полупроводниковую гетероструктуру с квантовой ямой, выполненной в виде слоя узкозонного твердого раствора, содержащего Hg и Te и заключенного между барьерными слоями широкозонного трехкомпонентного твердого раствора CdyHg1-yTe, где у составляет величину в предпочтительном интервале от 65% до 72%, узкозонный слой квантовой ямы сформирован из трехкомпонентного твердого раствора Hg1-xCdxTe с содержанием Cd, определяемым величиной x в интервале от 4% до 12%, причем ширина квантовой ямы выбрана для заданного терагерцового поддиапазона частот принимаемого излучения при температуре 4,2K или 77K в зависимости от содержания Cd в соответствии с таблицей 1, представленной в описании изобретения.

Изобретения могут быть использованы в устройствах для формирования изображения, определения координат исследуемых объектов, оптической пеленгации, автоматического управления, контроля и измерения параметров излучения, экологического мониторинга, медицинской диагностики и неразрушающего контроля.
Наверх