Способ создания наноразмерных диэлектрических пленок на поверхности gaas с использованием магнетронно сформированного слоя диоксида марганца

Использование: для формирования диэлектрических пленок нанометровой толщины на поверхности полупроводников AIIIBV. Сущность изобретения заключается в том, что способ создания наноразмерных диэлектрических пленок на поверхности GaAs с использованием магнетронно сформированного слоя диоксида марганца включает предварительную обработку пластин GaAs концентрированной плавиковой кислотой, промывание их дистиллированной водой, высушивание на воздухе, формирование слоя МnO2 толщиной 30±1 нм, последующее термооксидирование при температуре от 450 до 550°С в течение 60 мин при скорости потока кислорода 30 л/ч, согласно изобретению, формирование слоя МnО2 производят методом магнетронного распыления мишени в аргоновой атмосфере рAr ~ 10-3 Торр. Технический обеспечение возможности формирования наноразмерных структурированных диэлектрических пленок на поверхности GaAs со средним перепадом высот рельефа не более 25 нм, толщиной в пределах от 75 до 200 нм, удельным сопротивлением ~1010 Ом*см и диэлектрической прочностью ~7×106 В/см. 4 ил.

 

Изобретение относится к области формирования диэлектрических пленок нанометровой толщины на поверхности полупроводников AIIIBV и может быть применено в технологии создания элементов электроники на поверхности полупроводников, а именно в высокочастотных полевых транзисторах и длинноволновых лазерах, в солнечных батареях, работающих в космосе, для создания структур металл-диэлектрик-полупроводник (МДП).

Известно, что наиболее совершенные полупроводниковые гетероструктуры регулируемого состава могут быть синтезированы такими методами, как молекулярно-лучевая эпитаксия (МЛЭ) и химическое парофазное осаждение (CVD). В работе [Beke S. A rewiew of the growth of V2O5 films from 1885 to 2010 / S. Beke // Thin solid films. - 2011. - Vol. 519. - P. 1761-1771] были синтезированы гладкие пленки, состоящие из оксидов ванадия (IV) и (V) наноразмерного диапазона толщины. В работе [n-VO2/p-GaN based nitride-oxide heterostructure with various thickness of VO2 layer grown by MBE / Minhuan Wang [et. al] // Applied Surface Science. - 2016. - V. 389. - P. 199-204] методом МЛЭ на подложке из нитрида галлия были синтезированы высококачественные пленки VO2 с прецизионно контролируемой толщиной, составом и морфологией поверхности. Данный подход имеет существенные недостатки: требуется использование дорогостоящего оборудования и высокочистых веществ и материалов, создание глубокого вакуума и т.д. Методы CVD достаточно широко применяются для нанесения оксидных пленок, например, в работе [The growth of thermochromic VO2 films on glass by atmospheric-pressure CVD: A comparative study of precursors, CVD methodology, and substrates / Dimitra Vernardou, Martyn E. Pemble, David W. Sheel // Chem. Vap. Deposition. - 2006. - Vol. 12. - P. 263-274] рассмотрены различные варианты формирования термохромных пленок диоксида ванадия с использованием различных прекурсоров. Недостатком данного метода является высокая токсичность используемых исходных соединений, а также сложность протекающих химических процессов.

Оксидирование (термическое, анодное, химическое и др.) полупроводников AIIIBV является еще одним подходом к формированию функциональных пленок на их поверхности. Согласно [Воздействие поверхностных наноразмерных слоев V2O5 на кинетику термооксидирования GaAs, состав и морфологию выращенных пленок / Е.В. Томина, Б.В. Сладкопевцев, И.Я. Mummoea, Л.С. Зеленина, А.И. Донцов, Н.Н. Третьяков, Ю.Н. Гудкова, Ю.А. Белашкова // Неорганические материалы. - 2015. - Т. 51, №11. - С. 1228-1232] пленки, выращенные в результате термического оксидирования GaAs с предварительно осажденными из аэрозоля слоями геля V2O5, имеют зеренную структуру со средней высотой рельефа, равной 57 нм. Недостаток данного метода заключается в сложности контроля конечного фазового состава сформированных пленок, что напрямую влияет на их электрофизические свойства.

Наиболее близкой работой является способ, взятый за прототип [Термическое окисление GaAs под воздействием композиций Sb2O3, Bi2O3, MnO, MnO2 и V2O5 с оксидами алюминия и иттрия / Т.В. Кожевникова, П.К. Пенской, В.Ф. Кострюков, И.Я. Миттова, Б.Л. Агапов, И.В. Кузнецова, С.В. Куцев // Конденсированные среды и межфазные границы. - 2010. - Т. 12, №3. - С. 212-225], согласно которому на предварительно обработанной концентрированной плавиковой кислотой (49%) и промытой дистиллированной водой поверхности GaAs (111) в процессе термического оксидирования под воздействием композиций оксидов (Al2O3+MnO2) и (Y2O3+MnO2), вводимых в систему через газовую фазу, формировали пленки с толщиной в диапазоне от 40 до 200 нм. Установлено, что добавление инертного компонента Al2O3 к MnO2 ослабляет эффективность воздействия последнего на процесс роста пленок за счет интенсификации превращений в малоактивный по отношению к оксидированию GaAs оксид Mn3O4. Еще одним недостатком предложенного способа является использование композиции оксидов, вводимых непосредственно в процессе оксидирования (постоянное расходование хемостимулятора), что технологически усложняет процесс. Введение хемостимулятора через газовую фазу в процессе оксидирования AIIIBV, как правило, приводит к формированию полупроводниковых пленок с газочувствительными свойствами.

Задача данного изобретения заключается в разработке технически просто реализуемого способа создания на поверхности GaAs диэлектрических наноструктурированных пленок с использованием наноразмерного слоя хемостимулятора MnO2.

Технический результат настоящего изобретения заключается в формировании наноразмерных структурированных диэлектрических пленок на поверхности GaAs со средним перепадом высот рельефа не более 25 нм, толщиной в пределах от 75 до 200 нм, удельным сопротивлением ~1010 Ом*см и диэлектрической прочностью ~7×106 В/см, экономичным и экспрессным способом.

Технический результат достигается тем, что в способе создания наноразмерных диэлектрических пленок на поверхности GaAs с использованием магнетронно сформированного слоя диоксида марганца, включающем предварительную обработку пластин GaAs концентрированной плавиковой кислотой, промывание их дистиллированной водой, высушивание на воздухе, формирование слоя MnO2 толщиной 30±1 нм, последующее термооксидирование при температуре от 450 до 550°С в течение 60 мин при скорости потока кислорода 30 л/ч, согласно изобретению, формирование слоя MnO2 производят методом магнетронного распыления мишени в аргоновой атмосфере pAr ~ 10-3 Торр.

На фиг. 1 приведена таблица 1 полученных значений качественных показателей синтезированных пленок в зависимости от температуры термического оксидирования.

На фиг. 2 представлено АСМ-изображение поверхности GaAs с магнетронно нанесенным MnO2 после термооксидирования при 500°С, область сканирования 5×5 мкм2.

На фиг. 3 в таблице 2 приведены параметры, описывающие шероховатость синтезированных пленок в процессе термооксидирования гетероструктур MnO2/GaAs по результатам обработки АСМ-изображения размером 5×5 мкм2.

На фиг. 4 представлено АСМ-изображение поверхности GaAs с магнетронно нанесенным MnO2 после термооксидирования при 530°С, область сканирования 5×5 мкм2

Способ реализуется следующим образом.

Пример 1.

Перед началом процесса магнетронного распыления поверхность полированных пластин GaAs обрабатывали концентрированной плавиковой кислотой (ω(HF)=49%) в течение 10 минут, после чего пластины промывались в дистиллированной воде и высушивались на воздухе. Обработка проводилась для удаления естественного оксидного слоя на поверхности и разного рода загрязнений.

Напыление слоя хемостимулятора MnO2 на поверхность GaAs толщиной равной 30±1 нм осуществляли методом магнетронного распыления мишени, спрессованной из порошка диоксида марганца (чистота 99,8%; диаметр 50 мм), в аргоновой атмосфере (рост ~ 10-6 Торр; pAr ~ 10-3 Торр; скорость вращения держателя подложки 30 об./мин.).

Термическое оксидирование гетероструктур MnO2/GaAs проводили в горизонтальном кварцевом реакторе диаметром 30 мм печи МТП-2М-50-500, предварительно разогретом до рабочей температуры равной 500°С. Постоянство температуры в реакторе обеспечивалось измерителем и регулятором ТРМ-10 (±1°С). Скорость потока кислорода составляла 30 л/ч.

На фиг. 2 представлено АСМ-изображение поверхности GaAs с магнетронно нанесенным MnO2 после термооксидирования. На фиг. 3 приведены параметры, описывающие шероховатость синтезированных пленок в процессе термооксидирования гетероструктур MnO2/GaAs по результатам обработки АСМ-изображения размером 5×5 мкм2. Электрофизические характеристики представлены на фиг. 1. Сформированные пленки характеризуются удельным сопротивлением 1×1010 Ом*см и диэлектрической прочностью 6,2×106 В/см.

Как следует из полученных результатов, сформированные пленки являются диэлектрическими с зеренной структурой и со средним перепадом высот рельефа равным 25 нм.

Пример 2. Способом, описанным в примере 1, получали диэлектрические пленки MnO2 на поверхности GaAs, увеличив температуру оксидирования до 530°С На фиг. 4 представлено АСМ-изображение поверхности GaAs с магнетронно нанесенным MnO2 после термооксидирования, область сканирования 5×5 мкм2. На фиг. 3 приведены параметры, описывающие шероховатость синтезированных пленок в процессе термооксидирования гетероструктур MnO2/GaAs по результатам обработки АСМ-изображения размером 5×5 мкм2. Электрофизические характеристики представлены на фиг. 1. Сформированные пленки характеризуются удельным сопротивлением 0,8×1010 Ом*см и диэлектрической прочностью 7,6×106 В/см.

Как следует из полученных результатов, сформированные пленки являются диэлектрическими с зеренной структурой и со средним перепадом высот рельефа равным 2 нм.

Способ создания наноразмерных диэлектрических пленок на поверхности GaAs с использованием магнетронно сформированного слоя диоксида марганца, включающий предварительную обработку пластин GaAs концентрированной плавиковой кислотой, промывание их дистиллированной водой, высушивание на воздухе, формирование слоя MnO2 толщиной 30±1 нм, последующее термооксидирование при температуре от 450 до 550°С в течение 60 мин при скорости потока кислорода 30 л/ч, отличающийся тем, что формирование слоя MnO2 производят методом магнетронного распыления мишени в атмосфере аргона при давлении порядка 10-3 Торр.



 

Похожие патенты:

Изобретение относится к полупроводниковой технологии и может быть использовано в процессе получения материалов с высокой газовой чувствительностью и малыми размерами для изготовления газовых сенсоров.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии формирования подзатворного диэлектрика с пониженной дефектностью и с повышенной радиационной стойкостью.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полевых транзисторов с пониженным сопротивлением затвора.

Использование: для роста наноразмерных пленок диэлектриков на поверхности монокристаллических полупроводников. Сущность изобретения заключается в том, что пленку Al2O3 наносят ионно-плазменным распылением на слой пористого кремния с размером пор менее 3 нм, полученного электрохимическим травлением исходной пластины монокристаллического кремния, при рабочем давлении в камере в диапазоне 3-5⋅10-3 мм рт.ст.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затворного оксида полевого транзистора.

Настоящее изобретение касается способа изготовления полупроводникового ламината, включающего в себя первый и второй слои оксида металла, а также слой диэлектрика, причем первый слой оксида металла располагается между вторым слоем оксида металла и слоем диэлектрика и имеет толщину равную или менее 20 нм.

Использование: для формирования стабильного и кристаллического оксидного слоя на подложке. Сущность изобретения заключается в том, что очищают поверхность подложки из In-содержащего III-As, III-Sb или III-P от аморфных естественных оксидов, нагревают очищенную подложку из In-содержащего III-As до температуры примерно 340-400°С, очищенную подложку из In-содержащего III-Sb нагревают до температуры примерно 340-450°С, или очищенную подложку из In-содержащего III-P нагревают до температуры примерно 450-500°С и окисляют подложку введением газообразного кислорода к поверхности подложки.

Изобретение относится к микроэлектронике. В способе получения слоя диоксида кремния, включающем загрузку полупроводниковой подложки в реактор, нагрев полупроводниковой подложки до необходимой температуры в диапазоне 400-750°С, введение окислителя закиси азота и моносилана и поддержание давления в реакторе в диапазоне 0,3-20 мм рт.

Изобретение относится к области изготовления наноструктур, а именно к синтезу оксидных пленок нанометровой толщины на поверхности полупроводников класса АIIIBV, и может быть применено при формировании элементов электроники на поверхности полупроводников, в высокочастотных полевых транзисторах и длинноволновых лазерах, а также в солнечных элементах.
Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления тонкого подзатворного слоя диоксида кремния с высокой диэлектрической прочностью.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта эвкалипта характеризуется тем, что сухой экстракт эвкалипта добавляют в суспензию альгината натрия в бутаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают хладон-112, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины, фармакологии. Способ получения нанокапсул диакамфа в альгинате натрия характеризуется тем, что в качестве ядра нанокапсул используется порошок диакамфа, в качестве оболочки нанокапсул - альгинат натрия, при этом диакамф порциями добавляют в суспензию альгината натрия в бутиловом спирте, содержащую препарат Е472с в качестве поверхностно-активного вещества, при массовом соотношении диакамф : альгинат натрия 1:1, или 1:3, или 1:2, смесь перемешивают, затем добавляют бутилхлорид, полученную суспензию нанокапсул отфильтровывают и сушат.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта чистотела характеризуется тем, что сухой экстракт чистотела добавляют в суспензию гуаровой камеди в бутаноле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 5 мл ацетона, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта эхинацеи характеризуется тем, что сухой экстракт эхинацеи добавляют в суспензию гуаровой камеди в петролейном эфире в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают толуол, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта лопуха, характеризующийся тем, что в качестве оболочки нанокапсул используется альгинат натрия, в качестве ядра - сухой экстракт лопуха, при этом сухой экстракт лопуха добавляют в суспензию альгината натрия в петролейном эфире в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают метиленхлорид, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Изобретение может быть использовано в космической технике, в строительной индустрии, а также в химической, пищевой, легкой отраслях промышленности для термостатирования устройств или технологических объектов.

Использование: для изготовления газовых сенсоров хеморезистивного типа. Сущность изобретения заключается в том, что способ изготовления хеморезистора на основе наноструктур оксида марганца в рамках электрохимического метода включает емкость, оборудованную электродом сравнения и вспомогательным электродом, заполненную электролитом, содержащим нитрат-анионы и катионы марганца, наноструктуры оксида марганца осаждают на диэлектрическую подложку, оборудованную полосковыми электродами, выполняющими роль рабочего электрода, путем приложения к рабочему электроду постоянного электрического потенциала от -0,5 В до -1,1 В относительно электрода сравнения в течение 5-20 минут и при температуре электролита в диапазоне 20-40°С, после чего подложку с осажденным слоем наноструктур оксида марганца промывают дистиллированной водой и высушивают при комнатной температуре.
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности. Способ получения нанокапсул сухого экстракта хвоща характеризуется тем, что сухой экстракт хвоща добавляют в суспензию альгината натрия в бензоле в присутствии 0,01 г сложного эфира глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают 1,2-дихлорэтан, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, 1:2 или 1:3.

Изобретение относится к химико-фармацевтической промышленности и представляет собой суспензию магнитно-полимерных долговременно стабильных микро- и субмикрочастиц для мечения клеток системы мононуклеарных фагоцитов, состоящую из ядер оксигидроксидов железа, полимера на основе декстрана и кремний содержащей оболочки, такой как диоксид кремния, в которой: полимер одновременно соединяет несколько магнитных ядер в составе частицы и выходит на поверхность частицы, а сплошная кремнийсодержащая оболочка формируется вокруг магнитных ядер и закрепляет в своей структуре полимер.
Изобретение относится к области нанотехнологии и пищевой промышленности. Способ получения нанокапсул спирулина в каппа-каррагинане характеризуется тем, что в качестве оболочки нанокапсул используют каппа-каррагинан, а в качестве ядра - спирулину, при этом порошок спирулины медленно добавляют в суспензию каппа-каррагинана в изопропаноле в присутствии 0,01 г Е472 с в качестве поверхностно-активного вещества, затем перемешивают при 1000 об/мин, после приливают диэтиловый эфир, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро:оболочка составляет 1:1, или 1:3, или 1:2.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления затвора полевого транзистора с пониженными токами утечек. Изобретение обеспечивает снижение значений токов утечек, улучшение параметров структур, повышение технологичности, качества и увеличение процента выхода годных. В способе изготовления полупроводникового прибора на кремниевых пластинах р-типа проводимости с удельным сопротивлением 10 Ом*см, ориентацией (111), после создания тонкого затворного оксида по стандартной технологии поверх него над канальной областью формируют слой окиси алюминия толщиной 50-80 нм из паровой фазы в результате реакции взаимодействия AlCl3+CO2+Н2 на поверхности кремния покрытого слоем оксида кремния. Пленки окиси алюминия осаждались при температуре 850°С со скоростью 12 нм/мин с последующим проведением термообработки в атмосфере водорода при температуре 500°С в течение 5 часов. Затем были изготовлены полупроводниковые приборы по стандартной технологии.

Использование: для формирования диэлектрических пленок нанометровой толщины на поверхности полупроводников AIIIBV. Сущность изобретения заключается в том, что способ создания наноразмерных диэлектрических пленок на поверхности GaAs с использованием магнетронно сформированного слоя диоксида марганца включает предварительную обработку пластин GaAs концентрированной плавиковой кислотой, промывание их дистиллированной водой, высушивание на воздухе, формирование слоя МnO2 толщиной 30±1 нм, последующее термооксидирование при температуре от 450 до 550°С в течение 60 мин при скорости потока кислорода 30 лч, согласно изобретению, формирование слоя МnО2 производят методом магнетронного распыления мишени в аргоновой атмосфере рAr ~ 10-3 Торр. Технический обеспечение возможности формирования наноразмерных структурированных диэлектрических пленок на поверхности GaAs со средним перепадом высот рельефа не более 25 нм, толщиной в пределах от 75 до 200 нм, удельным сопротивлением ~1010 Ом*см и диэлектрической прочностью ~7×106 Всм. 4 ил.

Наверх