Установка для получения дисперсно-упроченного алюминиевого сплава

Изобретение относится к области металлургии, а именно к получению легких сплавов на основе алюминия, и может быть использовано в ракетно-космической, авиационной и автомобильной промышленности. Способ получения дисперсно-упроченного алюминиевого сплава включает заполнение расплавом алюминия емкости, при этом ниже уровня расплава металла опускают сопловый блок, имеющий по меньшей мере одно сопло, в которое по трубопроводу через футерованную систему подачи подают кислородосодержащий газ с содержанием кислорода по объему не менее 20%, время и скорость подачи которого выбирают из условия насыщения сплава заданным количеством образующихся упрочняющих частиц оксида алюминия. Изобретение направлено на повышение прочности и износостойкости сплавов, а также снижение затрат для производства дисперсно-упроченного алюминиевого сплава. 1 ил.

 

Настоящее решение относится к области металлургии, а именно к получению легких сплавов на основе алюминия с повышенной прочностью и износостойкостью за счет введения в них упрочняющих дисперсных добавок. Дисперсно-упрочненные легкие сплавы на основе алюминия используются для изготовления отдельных деталей и изделий в целом, обладающих высокими эксплуатационными характеристиками при малом весе, в ряде отраслей промышленности (ракетно-космическая, авиационная, автомобильная и т.д.).

Из предшествующего уровня техники известен способ получения литого композиционного материала на основе алюминиевого сплава путем введения в расплав алюминия брикетов из высокопрочных керамических частиц, причем брикетирование проводят под давлением, а брикеты перед вводом в расплав нагревают [Патент РФ 2323991].

Также известен также способ получения литого композиционного материала, основанный на введении в расплавленную алюминиевую основу (1÷15) мас. % мелкодисперсных порошков оксидов металла, температура плавления которых превышает температуру плавления расплава [Патент РФ 2177047].

Недостатком указанных способов является то что мелкодисперсные порошки получаются в отдельных установках или технологических линиях, что увеличивает их стоимость и соответственно стоимость получаемого сплава.

Наиболее близким по техническому решению к заявляемой полезной модели является установка получения композита Al-TiC на основе синтеза карбида титана непосредственно в расплаве путем ввода углеводородсодержащего газа (смеси аргона и метана) в расплав Al-Ti. Процесс проводится при температуре 1200-1300 С от 20 минут до 1 часа в зависимости от состава матрицы, количества расплава и требуемой доли TiC [Е.Г. Кандалова, А.Р. Луц, А.Г. Макаренко, А.В. Орлов Технология получения композита Al-TiC из порошковых экзотермических смесей непосредственно в расплаве алюминия // Заготовительные производства в машиностроении №11, 2005 с 47-51].

Недостатком данного технического решения является то что упрочняющие частица (карбид титана) получаются путем карбидизации титана. Кроме того расплав насыщается водородом и необходима дополнительная подача аргона для дегазации сплава. Что увеличивает стоимость продукции.

Задачей на решение которой направлена данное изобретение заключается в повышение прочности и износостойкости легких сплавов, а также снижение затрат для производства дисперсно-упроченного алюминиевого сплава.

Технический результат - повышение прочности и износостойкости легких сплавов

Технический результат достигается тем, что в способе получения дисперсно-упроченного алюминиевого сплава, включающем заполнение расплавом алюминия емкости, ниже уровня расплава металла опускают сопловый блок, имеющий по меньшей мере одно сопло, в которое по трубопроводу через футерованную систему подачи подают кислородосодержащий газ с содержанием кислорода по объему не менее 20%, время и скорость подачи которого выбирают из условия насыщения сплава заданным количеством образующихся упрочняющих частиц оксида алюминия.

Для достижения указанного технического результата предложена установка получения упрочненных сплавов на основе алюминия, включающий ввод кислород содержащего газа в расплав алюминиевой основы. Предлагаемая установка приведена на фиг. 1.

Установка имеет емкость 1 заполненную расплавленным металлом 2, уровень заполнения (зеркало металла) отмечен цифрой 3. В расплавленный металл основы, ниже зеркала металла 3 по трубопроводу 4, через футерованную систему подачи 5 и сопловый блок 6 имеющий одно или несколько сопрел, подается кислород содержащий газ.

Установка работает следующим образом: в емкость, печи или ковша, заполненную расплавленным алюминиевым сплавом, через опускаемый сопловый блок, имеющий одно или несколько сопел, и находящийся ниже уровня металла, подается газ, содержащий по объему не менее 20% кислорода. В результате взаимодействия кислорода и алюминия образуется оксид алюминия (Al2O3) частицы которого являются упрочняющими частицами в получаемом дисперсно-упроченном материале.

Технический результат достигается благодаря тому, что в расплав металла (алюминиевой основы), находящийся в печи или ковше, при температуре выше температуры плавления, с помощью опускаемого соплового блока подается газ, содержащий по объему не менее 20% кислорода, время и скорость подачи газа выбираются из условия насыщения металла заданным количеством оксидных частиц (Al2O3). Подача газа приводит к циркуляции металла и равномерному распределению частиц. При этом сопла или сопло располагается ниже уровня металла, как вертикально так и под углом к зеркалу металла. В ходе продувки происходит частичное окисление расплава алюминия с образованием частиц Al2O3, являющихся упрочняющими частицами. При этом за счет перемешивания расплава подаваемым газом происходит распределение упрочняющих частиц по всему объему расплава.

Способ получения дисперсно-упроченного алюминиевого сплава, включающий заполнение расплавом алюминия емкости, отличающийся тем, что ниже уровня расплава металла опускают сопловый блок, имеющий по меньшей мере одно сопло, в которое по трубопроводу через футерованную систему подачи подают кислородосодержащий газ с содержанием кислорода по объему не менее 20%, время и скорость подачи которого выбирают из условия насыщения сплава заданным количеством образующихся упрочняющих частиц оксида алюминия.



 

Похожие патенты:
Изобретение относится к области металлургии и может быть использовано для производства алюминиевых лигатур, применяемых для модифицирования сплавов. Способ включает приготовление и расплавление смеси, содержащей фторид натрия, фторид калия, соединение редкого металла и алюминий, алюмотермическое восстановление соответствующего металла из его соединения с последующим отделением осадка.

Изобретение относится к сплавам латуни и может быть использовано для изготовления изделий в электротехнической, машиностроительной и автомобильной промышленности.

Изобретение относится к получению спеченного твердосплавного материала на основе карбида вольфрама. Способ получения спеченного твердосплавного материала на основе карбида вольфрама, включающий приготовление шихты, содержащей порошки карбида вольфрама, кобальта и нанопорошковую добавку, ее прессование и спекание.

Изобретение относится к получению материалов с металлической матрицей из алюминия или его сплавов, содержащих гадолиний, и может быть использовано в атомной энергетике для изготовления нейтронно-поглощающих экранов и перегородок, транспортно-упаковочных контейнеров.

Изобретение относится к области металлургии, в частности к изготовлению разветвленных нанонитей из тугоплавких металлов, которые могут использоваться в высокотемпературных приборах, в электронных устройствах и датчиках, в магнитных записывающих устройствах, в наномеханике, магнитоэлектронике, вакуумной электронике и материаловедении.

Изобретение относится к получению порошка на основе тугоплавких соединений. Способ включает приготовление экзотермической смеси переходного металла и неметалла, размещение приготовленной смеси в цилиндрическом реакторе, инициирование реакции горения в приготовленной смеси в режиме самораспространяющегося высокотемпературного синтеза (СВС) тугоплавких соединений, сдвиговое деформирование продуктов горения с получением порошка.

Изобретение относится к изготовлению распыляемой композитной мишени, содержащей фазу сплава Гейслера Co2MnSi, которая может быть использована при производстве микроэлектроники.

Изобретение относится к изготовлению распыляемых композитных мишеней сплава Гейслера Co2MnSi, которые могут найти применение при производстве микроэлектроники. Способ включает механическое смешивание порошков компонентов сплава с получением однородной порошковой смеси и ее спекание.

Изобретение относится к получению алюминиевых сплавов, содержащих медь и углерод. Способ получения алюминиевого сплава, содержащего Cu и C, включает приготовление расплава Al, содержащего Cu, добавление к расплаву частиц графита и частиц ускорителя науглероживания, содержащего бор или соединение бора, при температуре в от 800°C до 1000°C в атмосфере с низкой концентрацией кислорода или атмосфере защитного газа, удаление шлакового ускорителя науглероживания, который образуется из частиц ускорителя науглероживания и всплывает на поверхности расплава после диспергирования графита в расплаве и литье полученного расплава в литейную форму.

Группа изобретений относится к изготовлению спеченных изделий из порошка вентильных металлов. Порошок вентильного металла содержит кислород в количестве более 4100 ч.н.м.⋅г/м2, азот в количестве менее 300 ч.н.м., бор в количестве менее 10 ч.н.м., серу в количестве менее 20 ч.н.м., кремний в количестве менее 20 ч.н.м., мышьяк в количестве менее 10 ч.н.м.
Наверх