Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем

Использование: для изготовления воздушных мостиков. Сущность изобретения заключается в том, что способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем содержит стадии нанесения и формирования фоторезиста для формирования поддерживающего слоя, нанесения и формирования второго слоя фоторезиста для формирования области перемычки воздушного мостика, нанесения слоя металла мостика, удаления обоих слоев фоторезиста, далее методом фотолитографии из пленки металла (TiAuPd, Cu и др.) на подложке формируют контактные площадки и соединительные проводники, методом фотолитографии из фоторезиста формируется поддерживающий слой полимера в области будущего просвета мостика, нагревом полоски поддерживающего резиста выше температуры растекания достигают формирования профиля поддерживающего слоя куполообразной формы, наносят следующий слой фоторезиста и формируют открытые области для металлизации будущего мостика, напыляют пленку мостика из подходящего материала, совместимого с материалом разводки, например TiAuPd, который отличается хорошей адгезией, высокой электропроводностью и достаточной жесткостью, помещают подложку в ремувер для быстрого удаления металла поверх резиста методом взрыва (lift-off), а также медленного растворения поддерживающего слоя под мостиком. Технический результат: обеспечение возможности повышения воспроизводимости, снижения трудоемкости и времени изготовления перемычек в виде воздушных мостиков, уменьшения сопротивления, индуктивности и емкости таких перемычек, уменьшения количества технологических операций. 2 н. и 4 з.п. ф-лы, 2 ил.

 

Изобретение относится к области тонкопленочной СВЧ микроэлектроники. Тонкопленочные соединения в виде воздушных мостов находят широкое применение в технологии создания интегральных СВЧ схем, поскольку позволяют выполнять соединения проводящих линий без внесения значительных дополнительных паразитных емкостей и паразитных резонансов с пересекаемыми проводниками. Использование нитридных или оксидных изоляторов неприемлемо по причине большой емкости и потерь в таких тонкопленочных изоляторах. К числу областей применения таких мостов относятся копланарные линии передачи, в которых необходимо выравнивать потенциалы внешних широких проводников с двух сторон от центральной линии, планарные спиральные трансформаторы, межслойные соединения в многослойных гибридных интегральных схемах.

Известен альтернативный способ-аналог: изготовление воздушного мостика методом ультразвуковой сварки тонкой золотой или алюминиевой проволокой. В результате получается сильно выступающая перемычка из тонкой (30-70 мкм) золотой или алюминиевой проволоки длиной до 1 мм, которая имеет индуктивность в единицы нано Генри и импеданс до 40 Ом на частоте 6 ГГц, что делает такое шунтирование не эффективным. Для уменьшения сопротивления и индуктивности перемычки выполняют несколько таких мостиков. Недостатки способа: операция делается в ручном режиме и отличается трудоемкостью и невысокой надежностью.

Известен способ-прототип предлагаемого метода, изложенный в патенте US 4857481 от 1989 года [1]. Метод предназначен для создания межэлектродных соединений в арсенид-галлиевых устройствах и заключается в использовании двух слоев фоторезиста с различными скоростями растворения, что позволяет удалить один слой без удаления второго, за счет чего нижележащая структура оказывается защищенной от травления металлической пленки земляного электрода в агрессивных и ядовитых растворах типа плавиковой кислоты и цианида калия. Согласно формуле этого изобретения:

на полупроводниковой подложке формируется рабочая структура,

наносят первый слой фоторезиста,

экспонируют, проявляют,

наносят пленку земляной шины,

наносят второй слой фоторезиста, отличающийся от первого скоростью растворения,

экспонируют и проявляют, электролизом наносят слой перемычек,

в стандартном проявителе удаляют второй слой фоторезиста без растворения первого,

металлический слой земляного электрода удаляют химическим травлением без травления ниже лежащей полупроводниковой структуры, которая защищена первым фоторезистом,

удаляют слой первого фоторезиста. Недостатком метода является необходимость применения нестандартных фоторезистов с разными скоростями растворения, применение дополнительной операции гальванического покрытия, применение агрессивных растворов типа плавиковой кислоты и цианида.

Известен способ-аналог [2] изготовления металлических тонкопленочных перемычек в виде воздушных мостов, описанный в патенте US 4920639 от 1990 года, в котором верхний слой перемычек опирается на металлические тонкопленочные столбики, сформированные на первом этапе фотолитографии. Столбики формируются гальванопластикой. Поверх наностися слой тонкопленочной перемычки, после чего поддерживающий слой резиста удаляется. Недостатком способа является необходимость применения дополнительной операции гальванопластики.

Известен способ-аналог [3] изготовления металлических тонкопленочных перемычек в виде воздушных мостов, описанный в патенте US 5148260 от 1992 года, отличающийся тем, что для придания мостику большей механической прочности он выполняется двуслойным, первый слой из вольфрама или молибдена обеспечивает прочность, а второй из золота, алюминия или меди обеспечивает высокую электропроводность. Недостатком метода является необходимость напыления разнородных пленок металлов, один из которых имеет низкую электропроводность.

Известен способ-аналог [4] изготовления металлических тонкопленочных перемычек в виде воздушных мостов, описанный в патенте US 5171713 от 1992 года, отличающийся тем, что для планаризации многослойной структуры применяется нанесение пленки полиимида толщиной приблизительно 2.5 микрона в качестве прослойки мостика, которая затем может быть удалена. Недостатком метода является необходимость дополнительной операции нанесения толстого слоя полиимида, что не всегда технологически совместимо с процессом изготовления всего устройства.

Известен способ-аналог [5] изготовления металлических тонкопленочных перемычек в виде воздушных мостов, описанный в патенте US 5891797 от 1999 года, отличающийся тем, что позволяет формировать мостики размером до 1 см за счет наличия промежуточных поддерживающих стоек. Недостатком метода является дополнительная сложная операция формирования промежуточных поддерживающих стоек.

Известен способ-аналог [6] изготовления металлических тонкопленочных перемычек в виде воздушных мостов, описанный в патенте US 6218911 И1 от 2001 года, отличающийся тем, что переключающий висячий мостик выполняется в одном слое металлизации, высота мостика 0.3-2 мкм определяется толщиной фоторезиста, который скругляется путем нагрева до 200 С. Толщина алюминиевого мостика может достигать 2 мкм. Поддерживающий слой удаляется в плазме кислорода. Недостатком метода является необходимость нанесения толстого 2 мкм слоя алюминия, что плохо совместимо со стандартными методами нанесения тонких пленок и потребует времени напыления несколько часов.

Известен способ-аналог [7] изготовления металлических тонкопленочных перемычек в виде воздушных мостов, описанный в патенте US 6476704 И2 от 2002 года, отличающийся тем, что мостики использованы для формирования планарного многовиткового многослойного спирального трансформатора с использованием в качестве изолятора воздуха, а также нитрида кремния или полиимида для формирования пьедестала и поддерживающих элементов. Нижний проводник выполняется толщиной около микрона, верхний толщиной 3 мкм, они поддерживаются пьедесталами между витками высотой около микрона. Недостатком метода опять является необходимость напыления двух очень толстых пленок более микрона.

Известен способ-аналог [8] изготовления металлических тонкопленочных перемычек в виде воздушных мостов, описанный в патенте US7037744 И2 от 2006 года, отличающийся тем, что для поддержки воздушных мостиков используется структура, выполненная в виде микроперфорации в поддерживающем слое, перфорация заполняется металлом и планаризуется, а поддерживающий слой затем удаляется. Недостатком метода является наличие дополнительной трудоемкой и сложной операции планаризации.

Известны также из литературы примеры изготовления алюминиевых воздушных мостов для диапазона 4-8 ГГц, например [9, 10]. Длина таких мостов составляла 300-500 мкм, высота до 15 мкм, толщина самого мостика 2 мкм требует применения для обратной литографии очень толстого 32 мкм резиста SU8, что является существенным недостатком. Для устройств миллиметрового и субмиллиметрового диапазонов волн не требуется таких больших размеров мостиков, и процесс изготовления может быть существенно упрощен. Для устранения естественного оксидного слоя на поверхности нижнего алюминия в этом процессе также требуется ионное травление в том же вакуумном цикле, что дополнительно усложняет процесс изготовления.

Целью предлагаемого изобретения является: упрощение технологии и повышение воспроизводимости устройств с воздушными тонкопленочными микромостиками, формирование таких мостиков произвольной формы, снятие ограничения на форму и площадь мостиков, снижение сопротивления и индуктивности мостиков, снятие ограничения на применение одного металла в качестве материала мостика, применение стандартных операций фотолитографии и нанесения тонких пленок без использования гальванизации и применения агрессивных химикатов.

Сущность изобретения поясняется фигурами: Фиг. 1, где изображена подложка (1), пленки проводников копланарной линии (2) и воздушный мостик (3), замыкающий общий электрод с двух сторон от центрального проводника. На Фиг. 2 приведено изображение в электронном микроскопе такого мостика, изготовленного по п. 1 формулы изобретения.

Поставленные цели достигаются тем, что: для изготовления перемычек в виде тонкопленочных воздушных мостиков по п. 1 формулы изобретения, представляющих собой полоску пленки металла, присоединенную с двух сторон к различным электродам на подложке и имеющих зазор между пленкой мостика и подложкой в средней части, выполняют следующую последовательность операций:

1. Наносят позитивный фоторезист S1813, экспонируют, проявляют

2. Наносят пленки металла (TiAuPd, Cu, Al и др.) и взрывают фоторезист под пленкой, в результате чего на подложке остаются контактные площадки и соединительные проводники.

3. Методом фотолитографии из позитивного фоторезиста (например, S1813) или негативного (обращенного AZ5214) формируется поддерживающий слой полимера в области будущего просвета мостика.

4. Нагревом полоски резиста по п. 3 при температуре 150°С и выше в течение 5 минут достигают формирования профиля поддерживающего слоя куполообразной формы и его дополнительное задубливание.

5. Наносят следующий слой фоторезиста (позитивного 81813или негативного AZ5214) и формируют открытые области для металлизации будущего мостика

6. Напыляют пленку мостика из подходящего материала, совместимого с материалом разводки, например TiAuPd, отличающегося хорошей адгезией, высокой электропроводностью и достаточной жесткостью.

7. Помещают подложку в ремувер типа диметилформамид или S1165 для взрывного (lift-off) удаления металла поверх резиста, а также медленного растворения задубленного по п. 4 поддерживающего слоя под мостиком.

Второй способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем по п. 4 формулы изобретения, представляющих собой полоску пленки металла, присоединенную с двух сторон к различным электродам на подложке и имеющие зазор между пленкой мостика и подложкой в средней части, заключающийся в выполнении последовательности операций 1-5 как в п. 1, затем напылении пленки алюминия, нанесении резиста, экспозиции, проявлении и химическом стравливании пленки алюминия в том же щелочном проявителе (например, MF24) в открытых областях. Последним этапом происходит удаление резиста от последней литографии и поддерживающей пленки резиста путем растворения ремувере типа диметилформамид или S1165, либо выжиганием в плазме кислорода.

Новым по сравнению с прототипом является применение стандартных позитивных и негативных фоторезистов без требования различия скорости растворения в проявителе. Не требуется применять дополнительный процесс электролитического нанесения материала мостика. Не требуется применять специальный агрессивный состав (плавиковой кислоты и цианида) для селективного травления слоя земляного электрода. Не требуется проводить ионное травление пленки нижнего электрода.

Физический механизм достижения целей изобретения заключается в использовании процесса обратной (взрывной) литографии вместо двухэтапного химического травления, использования эффекта растворения фоторезиста в стандартном щелочном проявителе, либо в ремувере под сводом мостика, существенным признаком является отсутствие необходимости выполнения условия, что толщина мостика больше толщины нижней пленки электрических проводников. В способе-прототипе требуется дополнительное электролитическое осаждение материала мостика, тогда как в предложенном варианте используются стандартные технологичные процессы магнетронного или термического напыления и стандартные химреактивы для обработка стандартных фоторезистов.

У авторов изобретения имеется положительный опыт изготовления описанных структур по п. 1 и п. 4 формулы изобретения. Были изготовлены мостики по п. 1. и п. 4 из TiAuPd и алюминия (см. Фиг. 2) длиной 10 мкм, шириной от 1 до 10 мкм, толщиной 100 нм. Куполообразный профиль поддерживающего слоя резиста S1813 под мостиком формировался путем нагрева до температуры растекания 150°С.

Технический результат предлагаемого решения состоит в достижении поставленных целей: повышении воспроизводимости, снижении трудоемкости и времени изготовления перемычек в виде воздушных мостиков, уменьшении сопротивления, индуктивности и емкости таких перемычек, уменьшении количества технологических операций и применение стандартных методов и материалов тонкопленочной микроэлектроники.

Предлагаемые воздушные мостики предназначены для использования в копланарных линиях передачи. Их необходимость объясняется особенностями распространения волны в таких линиях. В копланарной линии передачи существуют две основные моды распространения, это квази-ТЕМ мода (нечетная или копланарная), для которой поля в двух щелях ориентированы в противофазе, и не-ТЕМ мода (четная или щелевая), для которой поля в щелях находятся в фазе. Копланарная мода является предпочтительной, поскольку имеет низкие потери на излучение. Устранение нежелательной щелевой моды достигается симметрией конструкции и использованием воздушных мостиков для соединения широких проводников земляной шины. Емкость стандартного воздушного моста высотой более 0.1 мкм и площадью от 4 до 20 мкм2 находится в пределах 0.02-0.05 фФ, тогда как погонная емкость копланарной 50 Ом линии составляет около 25 фФ. Таким образом, такой воздушный мостик практически не вносит искажений в распространение копланарной моды на частотах менее 100 ГГц.

Сущность изобретения заключается в технологии формирования тонкопленочной перемычки куполообразной формы, повторяющей в сечении профиль поддерживающего (жертвенного, sacrificial) слоя фоторезиста, который затем удаляется.

Формирование воздушного мостика поверх такой линии в значительной степени определяется тем или иным методом формирования и последующего удаления поддерживающего слоя. Возможны разные варианты технологии, в зависимости от материала мостика, типа применяемого фоторезиста, позитивного или негативного, и метода формирования собственно мостика: либо методом взрыва, либо химическим травлением.

После формирования поддерживающей прослойки выполняют еще одну фотолитографию, экспозицию, проявление, нанесение металлической пленки и ее взрыв (по п. 1 формулы изобретения). В результате поверх поддерживающей прослойки оказывается нанесена пленка мостика, которая имеет электрический контакт с двух сторон. Поддерживающий слой удаляется в ремувере (диметилформамид) одновременно с пленкой металла поверх резиста, либо посредством выжигания в плазме кислорода.

Возможна и другая технология формирования мостика, когда напыление алюминия производится на всю поверхность подложки, затем наносят фоторезист, экспонируют, проявляют и стравливают алюминий в растворе щелочи в открытых областях без резиста.

Достигнутые преимущества предложенной технологии позволяют: упростить изготовление воздушных мостиков, использовать стандартную технологию фотолитографии и стандартные термические и магнетронные методы нанесения тонких пленок, формировать мостики длиной вдоль копланарной линии более 10 мкм, снизить паразитную вносимую мостиком емкость ниже 0.05 фФ, снизить паразитное сопротивление мостика ниже 1 Ом, снизить индуктивность мостика ниже 1 пГн.

Литература

1. US Patent 4,857,481 Method of fabricating airbridge metal interconnects, assignee Motorola Inc., date Aug. 15, 1989

2. US Patent 4,920,639 Method of making a multilevel electrical airbridge interconnect, assignee Microelectronics and Computer Technol. Corp., date May 1, 1990.

3. US Patent 5,148,260 Semiconductor device having an improved air-bridge lead structure, assignee Kabushiki Kaisha Toshiba, date Sep.15, 1992.

4. US Patent 5,171,713 Process for forming planarized air-bridge interconnects on a semiconductor substrate, inventor J.A.Matthews, date Dec. 15, 1992.

5. US Patent 5,891,797 Method of forming a support structure for air bridge wiring of an integrated circuit, assignee Micron Technol. Inc., date Apr. 6, 1999.

6. US Patent 6,218,911 B1 Planar airbridge RF terminal MEMS switch, assignee TRW Inc., date Apr. 17, 2001.

7. US Patent 6,476,704 B2 MMIC airbridge balun transformer, assignee The Raytheon Comp., date Nov. 5, 2002.

8. US Patent 7,037,744 B2 Method for fabricating a self-aligned nanocolumnar airbridge and structure produced thereby, date May 2, 2006.

9. Mohammad Abuwasib, Philip Krantz, and Per Delsing. Fabrication of large dimension aluminum air-bridges for superconducting quantum circuits. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 31(3):031601, 2013.

10. Zijun Chen, Anthony Megrant, Julian Kelly, Rami Barends, Joerg Bochmann, Yu Chen, Ben Chiaro, Andrew Dunsworth, Evan Jeffrey, JY Mutus, et al. Fabrication and characterization of aluminum airbridges for superconducting microwave circuits. Applied Physics Letters, 104(5):052602, 2014

1. Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем, состоящий из нанесения и формирования фоторезиста для формирования поддерживающего слоя, нанесения и формирования второго слоя фоторезиста для формирования области перемычки воздушного мостика, нанесения слоя металла мостика, удаления обоих слоев фоторезиста, отличающийся тем, что методом фотолитографии из пленки металла (TiAuPd, Сu, Аl) на подложке формируют контактные площадки и соединительные проводники, методом фотолитографии из фоторезиста формируется поддерживающий слой полимера в области будущего просвета мостика, нагревом полоски поддерживающего резиста выше температуры растекания достигают формирования профиля поддерживающего слоя куполообразной формы, наносят следующий слой фоторезиста и формируют открытые области для металлизации будущего мостика, напыляют пленку мостика из подходящего материала, совместимого с материалом разводки, например TiAuPd, отличающегося хорошей адгезией, высокой электропроводностью и достаточной жесткостью, помещают подложку в ремувер для быстрого удаления металла поверх резиста методом взрыва (lift-off), а также медленного растворения поддерживающего слоя под мостиком.

2. Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем по п. 1, отличающийся тем, что длина мостика вдоль копланарной линии составляет 1-10 мкм, толщина 100-200 нм.

3. Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем по п. 2, отличающийся тем, что для формирования профиля поддерживающего слоя куполообразной формы фоторезист дополнительного слоя после экспозиции и проявления нагревают до температуры 150°C, что приводит к скруглению прямоугольных краев этого слоя и позволяет наносить пленку мостика без разрыва.

4. Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем, состоящий из нанесения и формирования фоторезиста для формирования поддерживающего слоя, нанесения и формирования второго слоя фоторезиста для формирования области перемычки воздушного мостика, нанесения слоя металла мостика, удаления обоих слоев фоторезиста, отличающийся тем, что методом фотолитографии из пленки металла (TiAuPd, Сu, Аl) на подложке формируют контактные площадки и соединительные проводники, методом фотолитографии из фоторезиста формируется поддерживающий слой полимера в области будущего просвета мостика, нагревом полоски поддерживающего резиста выше температуры растекания достигают формирования профиля поддерживающего слоя куполообразной формы, напыляют пленку мостика из алюминия, отличающегося хорошей адгезией, высокой электропроводностью и достаточной жесткостью, наносят следующий слой фоторезиста и экспонируют, тем самым формируют открытые области для травления будущего мостика, помещают подложку в проявитель для химического травления алюминия в открытых областях резиста, а также растворения поддерживающего слоя под мостиком в ремувере, не разрушающем алюминий.

5. Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем по п. 4, отличающийся тем, что длина мостика вдоль копланарной линии составляет 1-10 мкм, толщина 100-200 нм.

6. Способ изготовления воздушных мостиков в качестве межэлектродных соединений интегральных схем по п. 5, отличающийся тем, что для формирования профиля поддерживающего слоя куполообразной формы фоторезист дополнительного слоя послеэкспозиции и проявления нагревают до температуры 150°C, что приводит к скруглению прямоугольных краев этого слоя и позволяет наносить пленку мостика без разрыва.



 

Похожие патенты:

Изобретение относится к способам обработки подложек. Способы включают этап обеспечения протекания водосодержащей жидкой среды через канал для потока и по меньшей мере одну выпускную щель на подложку, подлежащую обработке, а также облучение водосодержащей жидкой среды ультрафиолетовым излучением с заданной длиной волны по меньшей мере на участке канала для потока, непосредственно прилегающем к по меньшей мере одной выпускной щели, и после прохождения водосодержащей жидкой среды через выпускное отверстие в направлении подложки и, таким образом, перед нанесением и во время нанесения водосодержащей жидкой среды на поверхность подложки, подлежащей обработке.

Изобретение относится к оборудованию для производства интегральных схем микромеханических и оптоэлектронных устройств. Сущность изобретения заключается в том, что в устройство введено по меньшей мере одно дополнительное сопло 5 с продольной осью O3-О4, оси O3-O4 сопел 5 расположены под углами λ, находящимися в диапазоне 20-80° к поверхности А платформы 1, причем ось O1-O2 и оси O3-O4 сопел 5 не пересекаются, а проекции осей O3-O4 в плоскости поверхности А платформы 1 составляют углы β с осями, проходящими через центр платформы 1 О и центры оснований 13 сопел 5, при этом оси O3-O4 со сторон, противоположных основаниям 13, направлены по касательной к образующей В столика 3 и могут отклоняться от этого направления в диапазоне +/- 20°.

Изобретение относится к области микроэлектроники, в частности к реакторам высокоплотной и высокочастотной плазменной обработки, и может быть использовано в производстве полупроводниковых приборов и интегральных схем.

Изобретение относится к материаловедению полупроводников и предназначено для контроля качества выращиваемых гетероэпитаксиальных слоев теллурида кадмия-ртути CdHgTe кристаллографической ориентации (310) при отработке процесса молекулярно-пучковой эпитаксии (МПЭ) для выявления различных типов дислокаций в слоях структур CdHgTe.

Изобретение относится к материаловедению полупроводников и предназначено для контроля качества выращиваемых гетероэпитаксиальных слоев теллурида кадмия-ртути CdHgTe кристаллографической ориентации (310) при отработке процесса молекулярно-пучковой эпитаксии (МПЭ) для выявления различных типов дислокаций в слоях структур CdHgTe.

Изобретение относится к области приборостроения и может быть использовано при изготовлении кремниевых кристаллов микромеханических приборов, таких как акселерометры, гироскопы, датчики угловой скорости.

Реактор для плазменной обработки полупроводниковых структур относится к области технологических устройств для травления технологических материалов в области производства изделий электронной техники и может быть использован, например, для проведения высокоаспектных процессов травления кремния в производстве микроэлектромеханических систем (МЭМС) или для создания щелевой изоляции при реализации технологии трехмерной интеграции кристаллов.
Изобретение относится к технологии обработки полупроводниковых приборов или их частей и может быть использовано для предварительной подготовки поверхности кремниевой подложки к технологическим процессам.

Изобретение относится к микроэлектронике, способам контроля и анализа структуры интегральных схем, к процессам жидкостного травления. Сущность изобретения: выравнивание локальной неравномерности толщины слоя двуокиси кремния на поверхности кристалла ИС, образовавшейся в процессе последовательного удаления топологических слоев, производится с помощью локального жидкостного травления, которое осуществляется «закрашиванием» области с более толстым слоем двуокиси кремния заостренным пористым стержнем, насыщенным травителем.

Изобретение относится к области микроэлектроники, в частности к технологии изготовления полупроводниковых структур, являющихся элементной базой функциональной микроэлектроники, и может быть использовано в технологии изготовления интегральных чувствительных элементов газовых датчиков с диэлектрическими мембранами.

Использование: для изготовления МЭМС-приборов. Сущность изобретения заключается в том, что способ разделения пластин на чипы и получения сквозных отверстий большой площади для изделий микроэлектроники включает нанесение на обратную сторону пластины полиимидной пленки, нанесение на лицевую сторону пластины маскирующего слоя, селективного к плазмохимическому травлению материала пластины, формирование рисунка линий реза по маскирующему слою, сквозное плазмохимическое травление пластины до полиимидной пленки, удаление маскирующего слоя, удаление полиимидной пленки, разделение пластин на чипы и удаление балластных участков. Технический результат: обеспечение возможности повышения технологичности изготовления и качества получаемых изделий. 1 з.п. ф-лы, 1 ил.

Способ определения параметров плазменного травления материалов в процессе обработки изделий включает измерение параметров модельного образца в виде структуры, образованной первой и второй акустическими линиями задержки (АЛЗ), содержащими входные и выходные электроакустические преобразователи, выполненные на одной грани плоского кристаллического звукопровода, другая противолежащая грань которого открыта для плазменного травления. Моды колебаний АЛЗ выбраны из условия обеспечения различий в зависимости времени задержки от температуры и толщины звукопровода таким образом, чтобы первая АЛЗ обладала большей чувствительностью к температуре и меньшей чувствительностью к изменению толщины звукопровода в процессе травления, а вторая АЛЗ - меньшей чувствительностью к температуре, но большей чувствительностью к изменению толщины звукопровода в процессе травления по отношению к первой АЛЗ. Искомые параметры упомянутого травления определяют по временной зависимости разности откликов выходных преобразователей при подаче сигнала возбуждения на входные преобразователи АЛЗ. Технический результат - снижение уровня пороговых значений и повышение точности измерения параметров плазменного травления с автоматическим учетом текущей температуры процесса. 7 з.п. ф-лы, 6 ил.
Наверх