Способ получения изобутилена

Изобретение относится к способу получения изобутилена разложением метил-третично-бутилового эфира (МТБЭ) на гетерогенном алюмосиликатном катализаторе при повышенной температуре в присутствии водяного пара. В качестве катализатора используют промышленные алюмосиликатные катализаторы марки К-84 или К-97 или К-15. Процесс проводят при температуре 200-300°С, соотношении H2O:МТБЭ=1,0-3,0 и объемной скорости подачи МТБЭ 0,5-1,0 ч-1. Предложенный способ позволяет снизить количество примеси диметилового эфира и затраты на приготовление катализатора. 2 табл., 4 пр.

 

Изобретение относится к нефтехимической промышленности, точнее к процессам получения мономеров для синтетического каучука, а именно к процессу получения изобутилена.

Известен способ получения изобутилена дегидратацией триметилкарбинола (ТМК). (П.А. Кирпичников, А.Г. Лиакумович, Л.М. Попова и др. Химия и технология мономеров для синтетических каучуков. Л., Химия, 1981, с. 219-224)

По данному способу смесь углеводородов С4, содержащую изобутилен, подвергают гидратации в присутствии кислотного катализатора (серной кислоты или сульфокатионита). Затем образовавшийся третичный спирт - ТМК отделяют ректификацией и подвергают его дегидратации на тех же кислотных катализаторах с выделением и очисткой образовавшегося изобутилена. Процесс характеризуется большими энергетическими затратами за счет циркуляции и нагрева больших объемов воды (более чем десятикратный массовый избыток воды к изобутилену) и сложностью технологической схемы, включающей дополнительную стадию получения промежуточного продукта ТМК.

Известен способ получения изобутилена разложением метилтретбутилового эфира (МТБЭ) в присутствии кислого катионитного катализатора (RU 2233259 С1, 2004.07.27)

Недостатками данного способа являются: образование «вредной» примеси - диметилового эфира (ДМЭ); потери изобутилена за счет его изомеризации в cis-бутен-2; низкая производительность процесса (конверсия МТБЭ за проход составляет менее 50%, а объемная скорость подачи МТБЭ - не более 0,2 ч-1).

Образование ДМЭ и скелетная изомеризация изобутилена в cis-бутен-2 являются следствием применения кислого катионитного катализатора, так как данный процесс проходит на кислотных центрах катализатора. Этим обусловлена низкая конверсия МТБЭ за проход и малая объемная скорость подачи сырья, что в конечном итоге предполагает большие рецикловые потоки непревращенного сырья и влечет за собой увеличение энергетических затрат.

Известен способ получения изобутилена путем разложения метил-третично-бутилового эфира на гетерогенном катализаторе при повышенной температуре и давлении, характеризующемуся тем, что в качестве катализатора используют синтетический цеолит общего назначения NaX и процесс проводят при атмосферном давлении в присутствии водяного пара при следующих условиях: температура 200-250°С, объемная скорость подачи МТБЭ 1,0-2,0 ч-1. В этих условиях процесс проходит с минимальным образованием побочных продуктов разложения МТБЭ. Конверсия МТБЭ за проход составляет 96-99% при селективности по изобутилену не ниже 99%. (Ru 2351580 16.10.2007)

Известен способ получения изобутилена путем разложения МТБЭ на гетерогенном алюмосиликатсодержащем кальций-боро-фосфатном катализаторе КБФ, используемом в процессе получения изопрена разложением 4,4-диметилдиоксана (ТУ 38.103427-86 «Катализатор КБФ-76У).

Процесс проводят в присутствии небольшого избытка водяного пара при атмосферном давлении и температуре 200-250°С, объемной скорости подачи МТБЭ 1,0-2,0 ч-1. (Ru 2422424, 19.10.2009 - прототип) Массовое соотношение H2O: МТБЭ равно (0,3-0,7). Катализатор КБФ-78 используют в виде гранул диаметром 2,7-2,9 мм, массовая доля хлора не более 1,0%. Насыпная плотность 0,6-0,65 г/см3, удельная поверхность 80-20 м2

По способу-прототипу снижается выход ДМЭ и потери изобутилена за счет его изомеризации. Конверсия МТБЭ за проход составляет от 76 до 99% при селективности образования изобутилена не менее 99,5.

Недостатком способов получения изобутилена разложением МТБЭ с использованием указанных гетерогенных катализаторов является большой выход диметилового эфира, достигающий 0,1% масс., что существенно влияет на показатели процесса.

С целью снижения выхода диметилового эфира и снижения затрат при использовании катализатора предложено получение изобутилена разложением МТБЭ осуществлять с использованием в качестве алюмосиликатного катализатора промышленного катализатора марки К-84 или к-97 или К-15.

Процесс проводят в присутствии водяного пара при температуре 200-300°С, соотношении H2O: МББЭ 1,0-3,0 и объемной скорости подачи МТБЭ 0,5-1,0 ч -1.

Указанные катализаторы имеют следующий состав:

Состав катализатора К-84, масс %:

Al2O3 - 22,40, Fe2O3 - 0,42, MgO - 0,43, CaO - 0,67, K2O - 2,4, Na20 - 1,2, TiO2 - 0,47, SiO2 - остальное.

(Ru 1695631 14.06.1989) ТУ 38.50378-88)

Состав катализатора К-97, масс %:

Al2O3 - 22,40, Fe2O3 - 0,42, MgO - 0,43, CaO - 6,2, K2O - 2,4, Na20 - 1,2 TiO2 - 0,47, SiO2 - остальное.

(Ru 2167710, 07.08.2000) ТУ 2173-158-0410600-2003.

Состав катализатора К-15, масс %:

Al2O3 - 22,40, Fe2O3 - 0,42, MgO - 0,43, CaO - 4,8, K2O - 2,4, Na20 - 1,2, TiO2 - 0,47, В2О3-5,0, SiO2 – остальное.

(Ru 2278105, 24.01.2005). ТУ 2173-002-54330351-2015.

Катализаторы имеют вид гранул диаметром 4,0-5,0 мм, массовая доля хлора не более 1,0%. Насыпная плотность 1,02-1,04 г/см3. Удельная поверхность 9-11 м2/г.

При одинаковом сроке службы катализаторов выход ДМЭ снижается до 0,01% масс.

Промышленная применимость предлагаемого способа подтверждается следующими примерами.

Пример 1

В проточный металлический цилиндрический реактор с электрообогревом диаметром 2,5 см и высотой 21 см загружают 100 см3 катализатора К-84. Через реактор при температуре 200°С пропускают МТБЭ с объемной скоростью VМТБЭ=0,5 ч-1 и воду при массовом соотношении вода: МТБЭ - 0,3. На выходе из реактора получают газ и водный слой, содержащий метанол.

Состав полученной газовой фазы, мас. %: изобутилен - 92,57%, МТБЭ - 5,55%, метанол - 1,00%, ДМЭ - 0,003%. ТМК - 0,01%, вода - 0,24%, димеры изобутилена - 0,24%×10-2, cis-бутен-2 - 0,25%×10-2.

См. Таблицу 1. Конверсия МТБЭ - 85,7%. Селективность по изобутилену - 99,80%. Конверсию МТБЭ рассчитывают как отношение превращенного МТБЭ к поданному на реакцию в мас. %.

Селективность по изобутилену рассчитывают как разность: 100% - примеси (ДМЭ, ТМК, димеры изобутилена, cis-бутен-2, тримеры изобутилена) %.

Выход ДМЭ - 0,003%.

Результаты опыта см. таблицу 2.

Пример 2.

Разложение МТБЭ проводят в условиях примера 1 на катализаторе К-97 при температуре 240°С, объемная скорость VМТБЭ=1,0 ч-1,. Массовое соотношение вода: МТБЭ - 0,5

Состав полученной газовой фазы, мас. %: изобутилен - 85,29%, МТБЭ - 11,76%, метанол - 2,34%, ДМЭ - 0,006%, вода - 0,30%, ТМК - 0,01%, димеры изобутилена - 0,27×10-2%.

Конверсия МТБЭ - 96,47%. Селективность по изобутилену - 99,98%. Выход ДМЭ - 0,006%.

Пример 3.

Разложение МТБЭ проводят в условиях примера 1 на катализаторе К-15 при температуре 350°С, VМТБЭ=0,7 ч-1. Массовое соотношение вода: МТБЭ - 0,6

Состав полученной газовой фазы, мас. %: изобутилен - 76,72%, МТБЭ - 20,4%, метанол - 2,15%, ДМЭ - 0,009%, вода - 0,31%, ТМК - 0,07%, димеры изобутилена - 0,33%×10-2%.

Конверсия МТБЭ - 91,30%. Селективность по изобутилену - 99,01%. Выход ДМЭ - 0,009%.

Пример 4.

Разложение МТБЭ проводят в условиях примера 1 на катализаторе К-97 при температуре 250°С, объемной скорости VМТБЭ=0,5 ч-1. Массовое соотношение вода: МТБЭ - 0,7.

Состав полученной газовой фазы, мас. %: изобутилен - 71,99%, МТБЭ - 23,55%, метанол - 3,70%, ДМЭ - 0,007%, вода - 0,23%, ТМК - 0,01%, димеры изобутилена - 0,50×10-2%

Конверсия МТБЭ - 89,56%. Селективность по изобутилену - 99,95%. Выход ДМЭ 0,007%.

Результаты приведенных примеров представлены в таблице 2

Способ получения изобутилена разложением метил-третично-бутилового эфира (МТБЭ) на гетерогенном алюмосиликатном катализаторе при повышенной температуре в присутствии водяного пара, отличающийся тем, что в качестве катализатора используют промышленные алюмосиликатные катализаторы марки К-84 или К-97 или К-15 и процесс проводят при температуре 200-300°С, соотношении H2O:МТБЭ=1,0-3,0 и объемной скорости подачи МТБЭ 0,5-1,0 ч-1.



 

Похожие патенты:

Настоящее изобретение относится к фунгицидным производным N-циклоалкил-N-{[2-(1-замещенный циклоалкил)фенил]метилен}карбоксамида и их тиокарбонильным производным формулы (I) и промежуточным соединениям для их получения, применению соединений формулы (I) в качестве фунгицидов, в частности в форме фунгицидных композиций, и к способу борьбы с фитопатогенными грибами растений с применением этих соединений или их композиций.

Изобретение относится к способу и установке для получения аммиака и производного соединения аммиака, такого как мочевина, из природного газового сырья, а также к способу модернизации установки для синтеза аммиака и мочевины.

Изобретение относится к композиция для тримеризации этилена. Композиция содержит по меньшей мере одно соединение хрома, по меньшей мере одно арилокси-соединение элемента M, выбранного из группы, состоящей из магния, кальция, стронция, бария, общей формулы [M(RO)2-nXn]y, в которой RO означает арилокси-радикал, производный от ROH, содержащий от 6 до 80 атомов углерода, X означает галоген или углеводородный остаток (гидрокарбил), содержащий от 1 до 30 атомов углерода, n есть целое число, которое может принимать целые значения 0 или 1, и y есть целое число от 1 до 10, и по меньшей мере одну добавку, выбранную из соединений типа простого эфира, циклических или нет, вводимую в количестве, близком к стехиометрическому по отношению к элементу M.

Настоящее изобретение относится к cоединению общей формулы (I), или его энантиомеру, или их смеси, или его фармацевтически приемлемым солям: В формуле (I) кольцо Р выбрано из пятичленного гетероарила, имеющего от одного до двух гетероатомов, выбранных из группы, состоящей из N, О и S, в качестве атома кольца, и пятичленного гетероциклила, имеющего один гетероатом N в качестве атома кольца; кольцо Q выбрано из фенила и пиридила; А, В или Y выбран из -СН- и N; R1 выбран из алкила, содержащего от 1 до 6 атомов углерода, и циклоалкила, содержащего от 3 до 6 атомов углерода, где указанный алкил, содержащий от 1 до 6 атомов углерода, или циклоалкил, содержащий от 3 до 6 атомов углерода, необязательно дополнительно замещен одной или более чем одной группой, выбранной из группы, состоящей из алкила, содержащего от 1 до 6 атомов углерода, галогена и галогеналкила, содержащего от 1 до 6 атомов углерода; R2 выбран из галогена и галогеналкила, содержащего от 1 до 6 атомов углерода; R3 являются одинаковыми или разными и каждый из них независимо выбран из водорода, алкила, содержащего от 1 до 6 атомов углерода, циклоалкила, содержащего от 3 до 6 атомов углерода, пяти- или шестичленного гетероциклила, имеющего один гетероатом О в качестве атома кольца, и оксо, где указанный алкил, содержащий от 1 до 6 атомов углерода, необязательно дополнительно замещен одной или более чем одной группой, выбранной из группы, состоящей из галогена, гидроксила, алкокси, содержащего от 1 до 6 атомов углерода, и гидроксиалкила, содержащего от 1 до 6 атомов углерода; R4 выбран из фенила и пиридила, где каждый из указанных фенила и пиридила необязательно дополнительно замещен одной или более чем одной группой, выбранной из группы, состоящей из галогена и галогеналкила, содержащего от 1 до 6 атомов углерода, где указанный галогеналкил, содержащий от 1 до 6 атомов углерода, предпочтительно представляет собой трифторметил; s представляет собой целое число от 0 до 3; t представляет собой 0 или 1.

Изобретение относится к способу получения олефинов, включающему: крекинг углеводородного сырья на катализаторе FCC в зоне FCC с получением отработанного катализатора FCC и потока продуктов крекинга; получение сырьевого потока олигомеризации, содержащего углеводороды С4 и С5, из указанного потока продуктов крекинга; подачу указанного сырьевого потока олигомеризации в зону олигомеризации для олигомеризации олефинов в указанном сырьевом потоке в жидкой фазе с получением потока олигомерата; и разделение указанного потока олигомерата в дебутанизаторе на первый поток, содержащий углеводороды С4, и второй поток, содержащий углеводороды С5+, причем давление в верхней части колонны дебутанизатора составляет от 300 до 350 кПа (изб.), и температура в нижней части составляет от 250° до 300°C; разделение второго потока, содержащего углеводороды С5+ в депентанизаторе для получения промежуточного потока, содержащего углеводороды С5, и жидкого потока продуктов олигомерата, содержащего углеводороды С6+, причем давление в верхней части колонны депентанизатора составляет от 10 до 60 кПа (изб.) и температура в нижней части составляет от 225° до 275°C и рециркуляцию промежуточного потока, содержащего углеводороды С5, в указанную зону олигомеризации для поддержания жидкой фазы.

Настоящее изобретение относится к вариантам способа очистки гликолей от примесей переходных металлов. Один из вариантов способа включает добавление гипофосфита щелочного или щелочноземельного металла к неочищенным гликолям с получением реакционной смеси и нагревание полученной реакционной смеси до температуры от 190 до 280°С с последующим отделением образовавшегося осадка и получением очищенного гликоля.

Настоящее изобретение относится к способу получения нейтрализатора сероводорода и меркаптанов, возникающих при добыче и транспорте углеводородных жидкостей по трубопроводам.

Изобретение относится к простому способу получения карбоксилатов олова (II) путем взаимодействия металла с окислителем в присутствии стимулирующей добавки йода в бисерной мельнице вертикального типа в уайт-спирите со стеклянным бисером в качестве перетирающего агента в массовом соотношении с загрузкой (без металла) 1:1.

Изобретение относится к химии гуанидинсодержащих низкомолекулярных и высокомолекулярных соединений и может найти применение при получении препаратов, способных подавлять рост бактерий.

Изобретение относится к способу обработки газовой смеси с помощью методики разделения. Способ обработки газовой смеси, которая образуется из потока продукта реактора для синтеза диметилового эфира из синтез-газа и которая содержит диметиловый эфир, диоксид углерода и другой компонент, который является более низкокипящим, чем диоксид углерода, включает охлаждение газовой смеси при первом уровне давления от первого уровня температуры до второго уровня температуры и промывание фракции газовой смеси, которая остается в газообразном состоянии при втором уровне температуры, в поглотительной колонне флегмой, преимущественно содержащей диоксид углерода, при этом флегма частично образована из фракции газовой смеси, которую отделяют в жидком состоянии в процессе охлаждения.

Изобретение относится к одностадийному способу получения бутадиена путем конверсии дробно подаваемого сырья, содержащего этанол или этанол и по меньшей мере один прекурсор бутадиена, в бутадиен в газовой фазе в движущемся в объеме но меньше мере одного реактора синтеза бутадиена слое катализатора, имеющего высокую стойкость к истиранию и разрушению при продвижении через указанный реактор.

Изобретение относится к способу получения бутадиена из этанольного сырья, содержащего по меньшей мере 80 мас.% этанола. Способ включает, по меньшей мере, A) стадию превращения этанола в бутадиен, содержащую, по меньшей мере, реакционную секцию, на которую подают, по меньшей мере, этанольный поток и часть потока ацетальдегида со стадии E), работающую при давлении от 0,1 до 1,0 МПа и температуре от 300 до 400°C в присутствии катализатора, и секцию разделения, позволяющую разделить поток, выходящий с указанной реакционной секции, на по меньшей мере один газообразный поток и по меньшей мере один жидкий поток, причем часть потока ацетальдегида со стадии E), которую не подают в указанную реакционную секцию, образует промывочный поток; B) стадию экстракции бутадиена, содержащую, по меньшей мере, секцию сжатия, сжимающую указанный газообразный поток, выходящий со стадии A), до давления в интервале от 0,1 до 1,0 МПа, секцию газожидкостной промывки, на которую подают этанольный поток, состоящий из указанного этанольного технологического сырья, и/или часть этанольного потока, выходящего со стадии E), а также подают указанный сжатый газообразный поток, причем подачу газов осуществляют при температуре в интервале от 10 до 60°C, а подачу жидкостей при температуре от 20 до -30°C, и получают по меньшей мере этанольный поток, обогащенный бутадиеном, и поток газообразных побочных продуктов, и секцию перегонки, в которую подают указанный этанольный поток, обогащенный бутадиеном, и получают поток неочищенного бутадиена и остаток этанол/ацетальдегид/вода, причем указанная секции перегонки работает при давлении от 0,1 до 1 МПа; C) стадию промывки водой газообразных побочных продуктов, на которую подают поток газообразных побочных продуктов со стадии B), а также часть обогащенного водой потока с указанной стадии E) и на которой получают, по меньшей мере, поток водно-спиртовой смеси; D) стадию удаления примесей и коричневых масел, на которую подают, по меньшей мере, поток этанол/ацетальдегид/вода, выходящий со стадии B), и часть водного потока со стадии E) и получают, по меньшей мере, рафинат вода/этанол/ацетальдегид, поток легких коричневых масел и поток тяжелых коричневых масел; E) стадию обработки сточных вод, на которую подают, по меньшей мере, рафинат вода/этанол/ацетальдегид, выходящий со стадии D), и получают, по меньшей мере, этанольный поток, поток ацетальдегида и водный поток; F) стадию первой очистки бутадиена, содержащую, по меньшей мере, секцию газожидкостной промывки, в которую снизу подают поток неочищенного бутадиена со стадии B), а сверху водный поток, который может представлять собой поток воды из источника, внешнего по отношению к процессу получения бутадиена, и/или часть водного потока, выходящего со стадии E), причем в указанной секции промывки получают сверху предварительно очищенный поток бутадиена, а снизу поток отработавшей воды; G) стадию дальнейшей очистки бутадиена, на которую подают, по меньшей мере, указанный предварительно очищенный поток бутадиена, выходящий с указанной стадии F), и получают по меньшей мере очищенный поток бутадиена.

Изобретение относится к способу получения бутадиена из этанольного сырья, содержащего по меньшей мере 80 мас.% этанола. Способ включает, по меньшей мере, A) стадию превращения этанола в бутадиен, содержащую, по меньшей мере, реакционную секцию, на которую подают, по меньшей мере, этанольный поток и часть потока ацетальдегида со стадии E), работающую при давлении от 0,1 до 1,0 МПа и температуре от 300 до 400°C в присутствии катализатора, и секцию разделения, позволяющую разделить поток, выходящий с указанной реакционной секции, на по меньшей мере один газообразный поток и по меньшей мере один жидкий поток, причем часть потока ацетальдегида со стадии E), которую не подают в указанную реакционную секцию, образует промывочный поток; B) стадию экстракции бутадиена, содержащую, по меньшей мере, секцию сжатия, сжимающую указанный газообразный поток, выходящий со стадии A), до давления в интервале от 0,1 до 1,0 МПа, секцию газожидкостной промывки, на которую подают этанольный поток, состоящий из указанного этанольного технологического сырья, и/или часть этанольного потока, выходящего со стадии E), а также подают указанный сжатый газообразный поток, причем подачу газов осуществляют при температуре в интервале от 10 до 60°C, а подачу жидкостей при температуре от 20 до -30°C, и получают по меньшей мере этанольный поток, обогащенный бутадиеном, и поток газообразных побочных продуктов, и секцию перегонки, в которую подают указанный этанольный поток, обогащенный бутадиеном, и получают поток неочищенного бутадиена и остаток этанол/ацетальдегид/вода, причем указанная секции перегонки работает при давлении от 0,1 до 1 МПа; C) стадию промывки водой газообразных побочных продуктов, на которую подают поток газообразных побочных продуктов со стадии B), а также часть обогащенного водой потока с указанной стадии E) и на которой получают, по меньшей мере, поток водно-спиртовой смеси; D) стадию удаления примесей и коричневых масел, на которую подают, по меньшей мере, поток этанол/ацетальдегид/вода, выходящий со стадии B), и часть водного потока со стадии E) и получают, по меньшей мере, рафинат вода/этанол/ацетальдегид, поток легких коричневых масел и поток тяжелых коричневых масел; E) стадию обработки сточных вод, на которую подают, по меньшей мере, рафинат вода/этанол/ацетальдегид, выходящий со стадии D), и получают, по меньшей мере, этанольный поток, поток ацетальдегида и водный поток; F) стадию первой очистки бутадиена, содержащую, по меньшей мере, секцию газожидкостной промывки, в которую снизу подают поток неочищенного бутадиена со стадии B), а сверху водный поток, который может представлять собой поток воды из источника, внешнего по отношению к процессу получения бутадиена, и/или часть водного потока, выходящего со стадии E), причем в указанной секции промывки получают сверху предварительно очищенный поток бутадиена, а снизу поток отработавшей воды; G) стадию дальнейшей очистки бутадиена, на которую подают, по меньшей мере, указанный предварительно очищенный поток бутадиена, выходящий с указанной стадии F), и получают по меньшей мере очищенный поток бутадиена.

Изобретение относится к способу получения бутадиена из этанольного сырья, содержащего по меньшей мере 80 вес.% этанола, включающему по меньшей мере стадию A) превращения этанола в ацетальдегид, стадию B) превращения смеси этанол/ацетальдегид в бутадиен, стадию C1) обработки водорода, стадию D1) экстракции бутадиена, стадию D2) первой очистки бутадиена, стадию D3) дальнейшей очистки бутадиена, стадию E1) обработки выходящих потоков, стадию E2) удаления примесей и коричневых масел и стадию F) промывки водой.

Представлен способ получения ароматических углеводородов с применением оксигената в качестве исходного материала. Используют: реакцию с участием оксигената в одном реакторе ароматизации, получение и разделение продукта реакции ароматизации на сепарационной установке А, в которой осуществляют охлаждение, промывку щелочью и/или водой, получение потока газообразных углеводородов X и потока жидких углеводородов Y; получение неароматических углеводородов X1 после удаления газа и/или части оксигената на сепарационной установке В, в которой осуществляется короткоцикловая безнагревная адсорбция, ректификация (разгонка) и/или адсорбция; получение Х2, содержащего неароматические углеводороды, и потока Х3, содержащего ароматические углеводороды, после удаления газа, части оксигената из потока Х на сепарационной установке В, на которой осуществляется короткоцикловая безнагревная адсорбция, ректификация и/или адсорбция, реакцией в другом реакторе ароматизации и разделением на сепарационной установке А, в которой происходит охлаждение, промывка щелочью и/или промывка водой; получение смешанного потока M ароматических углеводородов с числом углеродных атомов в молекуле 7 или менее и потока N остальных углеводородов непрецизионной ректификацией, объединенного потоком Y и потоком Х3, содержащего ароматические углеводороды, на сепарационной установке С.

Изобретение относится к способу деоксигенирования смолы таллового масла, где смола таллового масла, которая содержит некоторую долю жирных и смоляных кислот и/или их производные, нагревается до температуры, достаточной для превращения ее в жидкость; указанная жидкость вводится в слой катализатора (7), для приведения ее в контакт с водородом и одним или несколькими катализаторами (2, 3) в указанном слое катализатора, где указанные катализаторы включают катализатор (2) деоксигенирования NiMo; поступающие материалы каталитически деоксигенируются с помощью водорода; и газообразный эффлюент из слоя охлаждается, с получением жидкого продукта (10), который содержит алифатические и ароматические углеводороды, и которые по существу полностью деоксигенируются.

Изобретение относится к способу получения п-ксилола путем контактирования алифатического спирта при температуре 400-550°С, атмосферном давлении, объемной скорости подачи сырья 1,5-2,5 ч-1 с катализатором, содержащим микромезопористый композит в водородной форме, оксид цинка, оксид хрома при следующем содержании компонентов, % масс.: оксид цинка 0,5-1,5, оксид хрома 5,0-7,0, микромезопористый композит в водородной форме остальное, до 100.

Изобретение относится к одностадийному способу получения бутадиена путем конверсии этанола или смеси этанола с ацетальдегидом в бутадиен в газовой фазе в присутствии твердофазного катализатора.

Изобретение относится к области гетерогенно-каталитических превращений органических соединений, а именно к каталитическому превращению возобновляемого сырья - растительных масел в алкан-ароматическую фракцию углеводородов С3-С11+, которая может быть использована для получения компонентов моторных топлив.

Изобретение относится к реактору с псевдоожиженным слоем для получения легких олефинов из кислородсодержащих соединений и/или С4 углеводородов, содержащему зону реакции, снабженную отводящей трубой, которая расположена аксиально и разделяет зону реакции на зону А быстрой реакции внутри отводящей трубы и зону В смешивания рециркулирующего потока вне отводящей трубы.

Изобретение относится к способу получения олефина, диена или полиена посредством каталитической конверсии по меньшей мере одного спирта, имеющего углеродную цепь по меньшей мере из трех атомов углерода, отличного от пропан-2-ола и глицерина, в присутствии по меньшей мере одного катализатора на основе по меньшей мере одного фосфата металла М или нескольких металлов М, причем М выбран из лантана, празеодима, неодима, прометия, самария, европия, гадолиния, тербия, диспрозия, гольмия, эрбия, тулия, иттербия и лютеция.
Наверх