Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа



Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа
Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа
H01L51/48 - Приборы на твердом теле, предназначенные для выпрямления, усиления, генерирования или переключения или конденсаторы или резисторы по меньшей мере с одним потенциальным барьером или поверхностным барьером; с использованием органических материалов в качестве активной части или с использованием комбинации органических материалов с другими материалами в качестве активной части; способы или устройства специально предназначенные для производства или обработки таких приборов или их частей (способы или устройства для обработки неорганических полупроводниковых тел, включающей в себя образование или обработку органических слоев на них H01L 21/00,H01L 21/312,H01L 21/47)

Владельцы патента RU 2694118:

Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" (RU)

Изобретение относится технологии изготовления фотовольтаических преобразователей. Согласно изобретению предложен способ изготовления фотовольтаических (ФВЭ) элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора [Сu(NН3)4](ОН)2 растворением Сu(ОН)2 в насыщенном растворе аммиака в этиленгликоле с концентрациями от 5 до 100 мг/мл, прогрев подложки, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения раствора методом вращения подложки (центрифугирования) на слой оксида индия, допированного фтором, на стекле в режиме вращения, от 2500 до 3500 об/мин в течение 30-90 секунд, с последующим отжигом при температуре 150-300°С в течение 1 часа, нанесение методом центрифугирования подложки слоя перовскита, нанесение аналогичным образом на слой перовскита полупроводящего органического слоя метилового эфира фенил-С61-масляной кислоты, а затем батокупроина, терморезистивное напыление проводящих контактов на основе серебра. Изобретение обеспечивает возможность варьировать толщину получаемого слоя ФВЭ за счет изменения концентрации медьсодержащего прекурсора, а также снижение температуры получения полупроводникового дырочно-транспортного слоя, что обеспечивает возможность их применения в рамках таких технологических процессов как струйная печать на гибких подложках и нанесения методом вращения подложки. 1 табл., 2 ил.

 

Изобретение относится к технологии изготовления фотовольтаических элементов с жидкофазным нанесением полупроводниковых слоев р-типа на основе оксида меди и может быть использовано при создании тонкопленочных полупроводниковых дырочно-транспортных слоев (ДТС) в фотовольтаических преобразователях (ФВП).

Известны различные подходы к размещению транспортных слоев в устройствах. Наиболее полным образом для планарной архитектуры они суммированы в работе [US 20160005987 A1 опублик.01.07.2014. Planar Structure Solar Cell with Inorganic Hole ransporting Material / Alexey Koposov, Changqing Zhan, Wei Pan.]. В данном случае речь идето полупроводниковых слоях на основе стехиометрических и нестехиометрических оксидов, используемых в перовскитных фотовольтаических элементах. Для формирования планарной структуры солнечного элемента предложен к использованию в том числе и оксид меди. Основными подходами к построению данной архитектуры, описанными в патенте являются следующие методы: формирование дырочно-транспортного слоя поверх металлического электрода, с последующим нанесением поверх него перовскита; нанесение на прозрачный электрод последовательно электрон-транспортного, перовскитного и после чего дырочно-транспортного слоя, с дальнейшим формированием металлического электрода поверх последнего. Описанный в патенте метод нанесения позволяет достичь толщины от 1 до 150 нм.

Данный метод имеет следующие недостатки: использование планарной архитектуры приводит к снижению стабильности и деградации ФВП. Одним из путей, позволяющим избежать описанных выше ограничений, является реализация инвертированной архитектуры ФВП.

Известен метод получения дырочно-транспортных слоев на основе оксида меди (I) в рамках планарной архитектуры ФВП [WO 2016/080854 A2 опублик.26.05.2016. Hybrid organic-inorganic perovskite-based solar cell with copper oxide as a hole transport material / Nouar Amor, Alharbi Fahhad Hussain, Hossain Mohammad Istiaque.]. В данном случае слой из оксида меди формируется на поверхности перовскита, предварительно полученного на слое электронотранспортного слоя, нанесенного на прозрачный электрод на стекле. Проводящий контакт наносится на непосредственно на ДТС.

Данный метод имеет следующие недостатки: как уже было сказано выше, использование планарной архитектуры приводит к снижению стабильности и деградации ФВП, помимо этого, Сu2О является нестабильным веществом подверженным окислению до оксида меди (II). Одним из путей, позволяющим избежать описанных выше ограничений, является реализация инвертированной архитектуры ФВП и использование нестехиометрического оксида меди.

Известен метод получения дырочно-транспортных мезопористых слоев на основе оксида меди для перовскитных солнечных элементов [CN 104409636A опублик. 18.11.2014. Perovskite thin-film solar cell with three-dimensional ordered mesopore support layer/ Yang Liying]. В данном случае для формирования ДТС используются заранее полученные наночастицы оксида меди организующиеся в сплошным слой самосборкой.

Данный метод имеет следующие недостатки: получаемые слои не имеют достаточной сплошности, что приводит к появлению тока утечек.

Наиболее близким к предложенному методу является подход, снованный на использовании комплексных металло органических соединений, меди [US 6086957 опублик 11.07.2000. Method of producing solution-derived metal oxide thin films / Boyle Timothy J., Ingersoll David]. В данном случае раствор ацетат меди (II) растворяют в смеси пиридана с усксусной кислотой в течение суток до полной гомогенности раствора, после чего провдят осаждение при текмпературе 300°С с дальнейшим нагревом до 650°С для окончательного формирования пленки оскида.

Данный метод имеет следующие недостатки: высокие температуры, используемые в процессе синтеза, в значительной степени увеличивают стоимость производства тонкопленочных покрытий на основе оксида меди.

Для устранения недостатков описанных выше подходов было предложено использование комплексного медь содержащего соединения состава [Сu(NН3)4](ОН)2 получаемого in situ растворением гидроксида меди в насыщенном растворе аммиака в этиленгликоле. Его применение позволит избежать взаимодействия прекурсора с прозрачным электродом, снизить температуру разложения до 150°С, тем самым снизив энергозатраты на производство. Вместе с тем, высокая сплошность слоя, позволит исключить ток утечек.

Техническим результатом заявляемого изобретения является возможность варьировать толщину получаемого слоя за счет изменения концентрации медьсодержащего прекурсора, а так же снижение температуры получения полупроводникового дырочно-транспортного слоя, что обеспечивает возможность их применения в рамках таких технологических процессов как струйная печать на гибких подложках и нанесения методом вращения подложки.

Технический результат достигается следующим образом: получение органометалического прекурсора состава [Cu(NH3)4](OH)2 растворением свежеосажденного Cu(OH)2 в насыщенном растворе аммиака в этиленгликоле с концентрациями от 15 до 100 мг/мл, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения предварительно полученного раствора методом вращения подложки (центрифугирования) на слой предварительно очищенного FTO (ультразвуковая обработка в ацетоне, толуоле, изопропиловом спирте, активация под действием озона в течение 20 минут) на стекле со скоростью от 2500 до 3500 об/мин 30-90 секунд с последующим отжигом при от 150 до 300°С 1 час, формирование перовскитного фотоактивного слоя на оксиде меди в перчаточном боксе в атмосфере аргона, формирование электрон-транспортного слоя, формирование электродного слоя

Данная солнечная ячейка может быть изготовлена с помощью стандартных технологических операций. В данном патенте представлена технология, базирующаяся на методе нанесения на вращающуюся подложку (центрифугирования), однако для оксида меди она может быть расширена для использования в струйной печати. Также достигнутое снижение температуры процесса разложения позволит в дальнейшем использовать данную технологию и для полимерных субстратов в рамках гибких ФВП.

Изобретение поясняется изображениями, где на фигуре 1 показана зонная диаграмма устройства фотовольтаического преобразователя с дырочно-транспортным слоем на основе нестехиометрического оксида меди. На фигуре 2 приведена общая схема устройства где: 1 - металлический электрод, 2 - электрон-транспортный слой, 3 - слой фуллерена С60, 4 - фотоактивный перовскитный слой, 5 - дырочно-транспортный слой, 6 - прозрачный электрод, 7 - стекло.

При жидкофазном нанесении подложки методом центрифугирования критическую роль играет скорость вращения подложки. Так при скоростях менее 2500 об/мин излишки прекурсора не успевают покинуть подложку в результате чего формируется слой с толщиной превосходящей оптимальную для транспорта заряда (>50 нм). Скорость вращения более 3500 об/мин низкая сплошность получаемого слоя отрицательно сказывается на выходных характеристиках устройств. Т.о. наиболее оптимальным для нанесения является режим со скоростью вращения подложки около 3000 об/мин.

Фотовольтаические преобразователи были реализованы в рамках нижеприведенного маршрута. На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 5 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 15 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

На предварительно очищенный слой оксида индия допированного фтором на стекле методом центрифугирования подложки был нанесен прекурсор оксида меди, полученный растворением Сu(ОН)2 в этиленгликоле насыщенном аммиаком с концентрацией 50 мг/мл, с последующим отжигом при температуре 300°С в течение 1 часа. Затем, на сформировавшийся слой нестехиометрического оксида меди методом центрифугирования подложки был нанесен слой перовскита, аналогичным образом уже на слой перовскита был нанесен полупроводящий органический слой РСВМ, а затем ВСР. Проводящие контакты на основе серебра были получены терморезистивным напылением металла.

При изготовлении солнечных элементов по с представленной архитектурой на фигуре 3 с различной толщиной слоя оксида никеля были получены следующие значения параметров ФВП, приведенные в таблице 1.

Способ изготовления фотовольтаических элементов с использованием прекурсора для жидкофазного нанесения полупроводниковых слоев р-типа, включающий получение прекурсора [Сu(NН3)4](ОН)2 растворением Сu(ОН)2 в насыщенном растворе аммиака в этиленгликоле с концентрациями от 5 до 100 мг/мл, прогрев подложки, формирование слоя нестехиометрического оксида меди путем жидкофазного нанесения раствора методом вращения подложки (центрифугирования) на слой оксида индия, допированного фтором, на стекле в режиме вращения, от 2500 до 3500 об/мин в течение 30-90 секунд, с последующим отжигом при температуре 150-300°С в течение 1 часа, нанесение методом центрифугирования подложки слоя перовскита, нанесение аналогичным образом на слой перовскита полупроводящего органического слоя метилового эфира фенил-С61-масляной кислоты, а затем батокупроина, терморезистивное напыление проводящих контактов на основе серебра.



 

Похожие патенты:

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей. Гибридные, тонкопленочные фотопреобразователи с гетеропереходами и слоями, модифицированными максенами Ti3C2Tx, работающие в видимом спектре солнечного света, а также ближних УФ и ИК областей (300-780 нм).

Изобретение относится к способу изготовления многослойной подложки для светоизлучающего устройства. Способ содержит следующие этапы: (a) обеспечение стеклянной подложки, обладающей показателем преломления при 550 нм, составляющим 1,45-1,65, (b) нанесение покрытия в виде слоя оксида металла на одну сторону стеклянной подложки, причем оксид металла выбран из группы, состоящей из TiO2, Al2O3, ZrO2, Nb2O5, HfO2, Ta2O5, WO3, Ga2O3, In2O3 и SnO2 и их смесей, (c) нанесение покрытия в виде стеклофритты, обладающей показателем преломления при 550 нм от 1,70 до 2,20, на упомянутый слой оксида металла, причем упомянутая стеклофритта содержит, по меньшей мере, 30 мас.% и самое большее 75 мас.% Bi2O3, (d) отжиг полученной покрытой стеклянной подложки при температуре, составляющей 530-620°C.

Использование: для создания электропроводной основы для OLED. Сущность изобретения заключается в том, что электропроводная основа для OLED содержит: стеклянную подложку из органического или минерального стекла с показателем n1 преломления от 1,3 до 1,6, имеющую первую основную сторону, называемую первой поверхностью; и электрод, поддерживаемый стеклянной подложкой на той же стороне, что и первая поверхность, каковой электрод содержит слой, размещенный в виде сетки, называемой металлической сеткой, каковая сетка выполнена из металла(-ов), имеющего(-их) поверхностное сопротивление менее 20 Ом/квадрат, и имеет толщину е2 по меньшей мере 100 нм, причем сетка сформирована из нитей, причем нити имеют ширину А, меньшую или равную 50 мкм, и разделены межнитевым расстоянием В, меньшим или равным 5000 мкм, причем нити разделены множеством электрически изолирующих неэлектропроводных зон с показателем преломления выше 1,65, на той же стороне, что и первая поверхность (11), основа содержит: электрически изолирующий световыводящий слой под металлической сеткой; и электрически изолирующий слой, частично структурированный по его толщине, причем этот слой имеет заданный состав и показатель n3 преломления от 1,70 до 2,3 и размещен на световыводящем слое, каковой частично структурированный слой сформирован: областью, размещенной наиболее отдаленно от световыводящего слоя, структурированной полостями, содержащими металлическую сетку, причем эта область содержит неэлектропроводные зоны; и еще одной областью, называемой нижней областью, размещенной под металлической сеткой и на световыводящем слое, и тем, что сетка утоплена вглубь от поверхности, называемой верхней поверхностью неэлектропроводных зон, и промежуток Н между верхней поверхностью и поверхностью металлической сетки составляет более 100 нм, причем Н измеряется между серединой поверхности нитей и верхней поверхностью, и тем, что нити вдоль их длины имеют центральную зону между боковыми зонами, которые расположены заподлицо с верхней поверхностью.

Изобретение относится к производству гибкого протяженного электролюминесцентного источника света. Способ изготовления гибкого электролюминесцентного источника света включает последовательное нанесение на медную проволоку диэлектрического порошка в полимерном связующем, электролюминесцентного порошка в полимерном связующем и прозрачного электропроводящего полимера, отличающийся тем, что нанесение осуществляют следующим образом: с узла подачи проволоки (УПП) с, по меньшей мере, одной основной катушки подают в моющее устройство медную проволоку, а также в УПП устанавливают, по меньшей мере, одну дополнительную катушку с медной проволокой, при этом УПП оборудуют аппаратом холодной сварки, предназначенным для сварки проволоки в стык, при переходе от основной к дополнительной катушке, образующей, по меньшей мере, одну линию с медной проволокой; пропускают медную проволоку через узел гашения рывком, при этом одной линии с медной проволокой соответствует свой узел гашения рывков; поочередно пропускают непрерывно движущуюся, по меньшей мере, одну медную проволоку через ванны с растворами полимеров с наполнителями по направлению снизу вверх и покрывают соответствующим слоем полимера, на выходе из ванн проволоку пропускают через калибровочную фильеру, которая отсекает часть раствора и формирует на медной проволоке слой полимера заданной толщины; выходящую из ванны и прошедшую калибровочную фильеру медную проволоку с нанесенным слоем полимера заданной толщины подают в вертикальную колонну печей для сушки; на выходе из каждой вертикальной колонны печей проволоку с высушенным полимером охлаждают; после покрытия медной проволоки соответствующими полимерами и сушки полученный гибкий электролюминесцентный источник света (ГЭЛИС) подают в узел проверки диаметра ГЭЛИС и далее в узел протяжки ГЭЛИС, позволяющий протягивать ГЭЛИС с постоянной скоростью, и через узел аккумулирования ГЭЛИС подают в узел приема готового ГЭЛИС для намотки его на бобины.

Изобретение относится к новым кремнийорганическим монофункциональным дизамещенным производным бензотиенобитиофена, способу их получения и их применению в электронике.

Изобретение может быть использовано для создания стабильных и эффективных источников энергии для современных маломощных сенсоров, датчиков и осветительных панелей.

Органический светоизлучающий диод содержит подложку и слой модификации поверхности, расположенный над подложкой и включающий в себя первую пленку по меньшей мере над частью подложки, имеющую первый коэффициент расширения, причем первая пленка содержит наночастицы, и вторую пленку по меньшей мере над частью первой пленки, имеющую второй коэффициент расширения и содержащую выступы и углубления, при этом первый коэффициент расширения больше, чем второй коэффициент расширения, причем первый коэффициент расширения больше 100.

Изобретение относится к прозрачному электроду на подложке для ОСИД, включающему в себя последовательно (i) прозрачную подложку из минерального стекла, (ii) рассеивающий слой, образованный из эмали с высоким показателем преломления, содержащей по меньшей мере 30 мас.% Bi2O3, (iii) барьерный слой из по меньшей мере одного диэлектрического оксида металла, выбранного из группы, состоящей из Al2O3, TiO2, ZrO2 и HfO2, осажденный путем АСО, (iv) слой из прозрачного проводящего оксида (ППО).
Изобретение относится к рассеивающей подложке для устройства с органическим электролюминесцентным диодом. На одну из сторон стеклянного листа наносят стекловидный материал следующего состава, вес.%: Bi2O3 65-85, B2O3 5-12, SiO2 6-20, MgO+ZnO 2-9,5, Al2O3 0-7%, Li2O+Na2O+K2O 0-5, CaO 0,5-5, BaO 0-20, CaO+MgO 0,5-4.

Оптоэлектронное устройство (10) содержит первую подложку (12), имеющую первую поверхность (14) и вторую поверхность (16), оптоэлектронное покрытие (17), расположенное поверх второй поверхности (16) и содержащее подстилающий слой (18), расположенный поверх второй поверхности (16), первый проводящий слой (20), расположенный поверх подстилающего слоя (18), верхний слой (22), расположенный поверх первого проводящего слоя (20), полупроводниковый слой (24), расположенный поверх первого проводящего слоя (20), и второй проводящий слой (26), расположенный поверх полупроводникового слоя (24).

Изобретение может быть использовано для гибридизации матричных фотоприемных устройств (МФПУ) методом перевернутого монтажа. Способ повышения точности контроля качества стыковки БИС считывания и матрицы фоточувствительных элементов (МФЧЭ) включает установку состыкованного модуля в держатель под небольшим углом к оптической оси объектива микроскопа так, чтобы в поле зрения микроскопа появились сфокусированные действительное изображение края МФЧЭ и мнимое изображение того же края МФЧЭ, зеркально отображенное от плоскости БИС считывания.

Изобретение относится к области изготовления изделий электронной техники, заготовкой для которых является слиток полупроводникового материала, требующий калибровки - получение цилиндрической поверхности.

Изобретение относится к измерительной технике, может быть использовано для определения локальной подвижности носителей заряда в локальной области полупроводниковых структур в процессе изготовления и испытания полупроводниковых приборов.

Способ изготовления полупроводникового устройства включает в себя нанесение проводящей пасты, содержащей металлические частицы, на заданную область в электродной пластине, включающей в себя выемку на поверхности электродной пластины, причем заданная область находится рядом с выемкой, размещение полупроводниковой микросхемы на проводящей пасте так, чтобы внешний периферийный край полупроводниковой микросхемы располагался над выемкой, размещение оправки в положении над выемкой и вблизи внешнего периферийного края полупроводниковой микросхемы с обеспечением зазора между оправкой и внешней периферийной частью электродной пластины, которая представляет собой часть, расположенную дальше во внешней периферийной стороне, чем выемка, и затвердевание проводящей пасты путем нагревания проводящей пасты при приложении давления к полупроводниковой микросхеме в направлении электродной пластины.

Узел (20) датчика давления технологической текучей среды включает в себя датчик (30) давления, выполненный с возможностью измерения давления технологической текучей среды.

Изобретение относится к области техники жидкокристаллических дисплеев, в частности к контролю конструкции с МДП-структурой (структурой металл - диэлектрик - полупроводник) в ТПТ (тонкопленочных транзисторах) и его системе.

Изобретение относится к области полупроводниковой микроэлектроники, а именно к технологии сборки полупроводниковых приборов, и может быть использовано для гибридизации кристаллов БИС считывания и матрицы фоточувствительных элементов (МФЧЭ) методом перевернутого монтажа.

Изобретение относится к области микро- и наноэлектроники, а именно к определению физических параметров полупроводниковых приборов, в частности к определению температурной зависимости распределения потенциала в двухзатворных симметричных полностью обедненных полевых транзисторах со структурой «кремний на изоляторе» с гауссовым вертикальным профилем легирования рабочей области, и может быть использовано при моделировании и разработке интегральных схем в специализированных программах.

Изобретение относится к физике полупроводников. Его применение при определении параметров каскадно возбуждаемых ловушек носителей зарядов в полупроводнике позволяет исследовать каскадно возбуждаемый тип ловушек в более широком классе полупроводниковых материалов, начиная с кристаллических и заканчивая органическими полупроводниками и нанокристаллами, и обеспечивает расширенные функциональные возможности за счет определения не только характеристик ловушек, но и энергетической плотности их состояний.
Изобретение относится к приборам и методам экспериментальной физики и предназначено для исследования дефектной структуры кристаллов. Способ имеет преимущество по сравнению с методом рентгенодифракционной топографии: нет необходимости разрушать исследуемый образец, можно осуществлять экспрессный контроль больших партий монокристаллов.
Наверх