1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы



1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
1-адамантил-3-(((1r,4as,10ar)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина, проявляющая ингибирующее действие в отношении фермента тирозил-днк-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы
C07C275/22 - содержащего кольца, кроме шестичленных ароматических колец

Владельцы патента RU 2697409:

Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет" (Новосибирский государственный университет, НГУ) (RU)
Федеральное государственное бюджетное учреждение науки Новосибирский институт органической химии им. Н.Н. Ворожцова Сибирского отделения Российской академии наук (НИОХ СО РАН) (RU)
Федеральное государственное бюджетное учреждение науки Институт химической биологии и фундаментальной медицины Сибирского отделения Российской академии наук (ИХБФМ СО РАН) (RU)

Изобретение относится к области органической химии, а именно к соединению, представляющему собой 1-адамантил-3-(((1R,4аS,10аR)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевину формулы I. Технический результат: получено новое производное адамантана, проявляющее способность ингибировать фермент тирозил-ДНК-фосфодиэстеразу 1 человека (Tdp1). 1 ил., 2 табл., 3 пр.

 

Изобретение относится к молекулярной биологии, биохимии, медицине и фармакологии, конкретно к соединению, являющимся производным дегидроабиетиламина формулы I, у которого выявлена способность ингибировать фермент тирозил-ДНК-фосфодиэстеразу 1 человека (Tdp1) и способность усиливать действие алкилирующего химиопрепарата - темозоломида на перевиваемых клеточных линиях глиобластомы U-87MG и SNB-19.

Традиционная химиотерапия онкологических заболеваний направлена на повреждение ДНК злокачественных клеток, и одним из факторов, влияющих на ее результат, является эффективность систем репарации ДНК. Во многих раковых клетках отдельные ферменты репарации ДНК гиперэкспрессированы, что в сочетании с ускоренной клеточной пролиферацией приводит к резистентности таких опухолей к лекарственным препаратам. Развитие молекулярной биологии привело к принципиальному изменению подходов к созданию новых противоопухолевых препаратов. Важным стратегическим направлением лечения онкологических заболеваний является избирательное подавление активности ряда ферментов, вовлеченных в регуляцию жизнедеятельности клеток. В последнее время соединения - ингибиторы репарации ДНК рассматриваются как потенциальные лекарства [Hosoya N., Miyagawa K., Targeting DNA damage response in cancer therapy. // Cancer Sci. 2014, 105, 370-388]. При лишении раковой клетки способности к восстановлению поврежденной ДНК, существенно возрастает эффективность традиционных методов лечения. Поиск ингибиторов ключевых ферментов репарации ДНК относится к перспективным направлениям медицинской химии и является одним из путей создания эффективной терапии сердечно-сосудистых, нейродегенеративных и онкологических заболеваний [Laev S.S., Salakhutdinov N.F., Lavrik O.I., Tyrosyl-DNA phosphodiesterase inhibitors: Progress and potential // Bioorg. Med. Chem. 2016, 24, 5017-5027].

Особым примером заболеваний, для которых поиск новых терапевтических подходов является необходимым, может служить злокачественная глиома - наиболее распространенная среди взрослого населения первичная опухоль центральной нервной системы (ЦНС). Современный стандарт терапии для пациентов с недавно диагностированной мультиформной глиобластомой (ГБМ, глиома IV степени) включает хирургическую резекцию опухоли, лучевую терапию и адъювантную химиотерапию темозоломидом (ТМЗ). Однако, несмотря на мультимодальный подход к терапии данного заболевания, медиана выживаемости с момента постановки диагноза составляет около 12-15 месяцев. Важно отметить, что медиана выживаемости при использовании полного комплекса терапевтических мер составляет 14,6 месяцев по сравнению с 12,2 месяцами для пациентов, при лечении которых химиотерапия не применялась.

С учетом низкой эффективности терапии, стратегии, направленные на преодоление резистентности и усиления ответа на ТМЗ в настоящее время активно изучаются. Резистентность к химиотерапии может быть обусловлена различными факторами, например, способностью опухолевых клеток к активному выведению химиотерапевтических препаратов, экспрессией антиапоптотических белков, а также изменением активности систем репарации ДНК. Известно, что эффективность ТМЗ (алкилирующего агента, который осуществляет перенос метальной группы на пуриновые основания ДНК (О6-гуанин, N7-гуанин и N3-аденин)), зависит от работы системы репарации ДНК. Так, О6-метилгуанин (О6-MeG), может удаляться метилгуанин метилтрансферазой (MGMT, прямая репарация). Кроме того, в опухолях с дефектом в системе репарации неправильно спаренных оснований (MMR-) О6-MeG может не оказать повреждающего действия [Zhang, J., Stevens, M.F.G., Bradshaw, T.D. Temozolomide: mechanisms of action, repair and resistance. // Curr. Molecular Pharm. 2012, 5, 102-114]

В связи с этим, ключевые ферменты систем репарации являются важнейшими мишенями для создания химиотерапевтических препаратов. К числу перспективных мишеней относится фермент тирозил-ДНК-фосфодиэстераза1 (Tdp1). Этот фермент является важной мишенью в случае противоопухолевой терапии, основанной на применении ингибиторов топоизомеразы 1 (Top1) [Negrini S., Gorgoulis V.G., Halazonetis T.D., Genomic instability-an evolving hallmark of cancer. // Nat. Rev. Mol. Cell. Biol. 2010, 11, 220-228]. Tdp1 играет ключевую роль в удалении аддуктов Top1-ДНК, стабилизированных ингибиторами Top1, такими как камптотецин и его клинические производные. Мутация в гене Tdp1 делает клетки гиперчувствительными к камптотецину - каноническому ингибитору Top1 [El-Khamisy S.F., Masutani М., Suzuki Н., Caldecott K.W., A requirement for PARP-1 for the assembly or stability of XRCC1 nuclear foci at sites of oxidative DNA damage. // Nucleic Acids Res., 2003, 31, 5526-5533]. Мыши, нокаутные по Tdp1, гиперчувствительны к камптотецину и его производным. Также при подавлении экспрессии Tdp1 с помощью миноциклина усиливается антиметастатический эффект иринотекана и увеличивается продолжительность жизни экспериментальных животных [Huang Н. - С, Liu J., Baglo Y., Rizvi I., Anbil S., Pigula M., Hasan Т., Mechanism-informed Repurposing of Minocycline Overcomes Resistance to Topoisomerase Inhibition for Peritoneal Carcinomatosis. // Mol. Cancer Ther., 2018, 17, 508-520]. И, наоборот, гиперэкспрессия Tdp1 приводит к защите клеток от повреждений ДНК, вызванных камптотецином [Nivens М.С., Pouliot J.J., Felder Т., Pena М.М.О., Spencer Н.Т., Galloway, А.Н., Engineered resistance to camptothecin and antifolates by retroviral coexpression of tyrosyl DNA phosphodiesterase-I and thymidylate synthase. // Cancer Chemother. Pharmacol., 2004, 53, 107-115; Alagoz M., Gilbert D.C., El-Khamisy S., Chalmers A.J., DNA Repair and Resistance to Topoisomerase I Inhibitors: Mechanisms, Biomarkers and Therapeutic Targets. // Curr. Med. Chem., 2012, 19, 3874-3885]. Более того, в опухолях кишечника с гиперэкспрессией Tdp1 снижен ответ на терапию иринотеканом [Meisenberg С., Gilbert D.C., Chalmers A., Haley V., Gollins S., Ward S.E., El-Khamisy, S.F., Clinical and Cellular Roles for TDP1 and TOP1 in Modulating Colorectal Cancer Response to Irinotecan. // Mol. Cancer Ther. 2015, 14, 575-585]. Следовательно, подавление активности Tdp1 может значительно усилить терапевтический эффект ингибиторов Top1.

Помимо способности удалять ковалентные аддукты Top1 и ДНК, Tdp1 может гидролизовать в ДНК АР-сайты и индуцировать их репарацию [Речкунова Н.И., Лебедева Н.А., Лаврик О.И.. Тирозил-ДНК-фосфодиэстераза 1 - новый участник репарации апуриновых/апиримидиновых сайтов в ДНК. // Биоорг. химия 2015, 41 (5), 531-538]. Эта активность особенно актуальна для репарации повреждений ДНК, инициированных монофункциональными алкилирующими агентами, включая метилметансульфонат и темозоломид, а также ионизирующим излучением. Таким образом, подавление активности Tdp1, может повышать чувствительность опухолевых клеток к препаратам, входящим в стандарт терапии онкологических заболеваний, в том числе глиобластомы [Pommier Y., Huang S.N., Gao R., Das B.B., Murai J., Marchand, C., Tyrosyl-DNA-phosphodiesterases (TDP1 and TDP2). // DNA Repair 2014, 19, 114-29].

В литературе имеются данные о некоторых ингибиторах Tdp1, эффективных при различных концентрациях в диапазоне значений IC50 0.15-100 мкМ. Известны ингибиторы производные гликозидов: неомицина, нетилмицина, спектиномицина [Liao Z., Thibaut L., Jobson A., Pommier Y., Inhibition of Human Tyrosyl-DNA Phosphodiesterase by Aminoglycoside Antibiotics and Ribosome Inhibitors // Mol. Pharmacol. 2006, 70, 366-372]. Однако для ингибирования необходимы достаточно высокие концентрации, кроме того, селективность ингибирования данного фермента очень низкая. В том же диапазоне концентраций ингибируют тирозил-ДНК-фосфодиэстеразу 1 диамидины [Huang S.N., Pommier Y., Marchand С., Tyrosyl-DNA Phosphodiesterase 1 (Tdp1) inhibitors // Expert Opin. Ther. Pat. 2011, 9, 1285-1292]. Активно изучается способность ингибировать Tdp1 производных инденоизохинолина [Elsayed M.S.A., Su Y., Wang P., Sethi Т., Agama K., Ravji A., Redon C.E., Kiselev E., Horzmann K.A., Freeman J.L., Yves Pommier Y., Cushman M., Design and Synthesis of Chlorinated and Fluorinated 7 Azaindenoisoquinolines as Potent Cytotoxic Anticancer Agents That Inhibit Topoisomerase I // J. Med. Chem. 2017, 60, 5364-5376]. Исследована ингибирующая активность в отношении Tdp1 производных 2-циано-3-фенилпроп-2-ентиоамида. Соединения ингибируют фермент со значениями IC50=0.9-100 мкМ [Sirivolu V.R., Vernekar S.K., Marchand С., Naumova A., Chergui A., Renaud А., Stephen A.G., Chen F., Sham Y.Y., Pommier Y., Wang Z., 5-Arylidenethioxothiazolidinones as inhibitors of tyrosyl-DNA phosphodiesterase I // J.Med.Chem. 2012, 55, 8671-8684]. Были обнаружены такие новые классы ингибиторов как аналоги бензопентатиепина [Zakharenko A., Khomenko Т., Zhukova S., Koval О., Zakharova О., Anarbaev R., Lebedeva N., Korchagina D., Komarova N., Vasiliev V., Reynisson J., Volcho K., Salakhutdinov N., Lavrik O. // Bioorg. Med. Chem. 2015, 23, 2044-2052], производные кумаринов [Khomenko Т., Zakharenko A., Odarchenko Т., Arabshahi H.J., Sannikova V., Zakharova O., Korchagina D., Reynisson J., Volcho K., Salakhutdinov N.. Lavrik O. // Bioorg. Med. Chem. 2016, 24, 5573-5581] и производные усниновой кислоты [Zakharenko A., Luzina О., Koval О., Nilov D., Gushchina I., DyrkheevaN., V., Salakhutdinov N.. Lavrik O. // J. Nat. Prod. 2016, 79, 2961-2967].

Наиболее близким к заявляемым соединениям - прототипом, является инденоизохинолины, представляющие собой полициклическую структуру формулы II [Nguyen ТХ, Morrell A, Conda-Sheridan М, Marchand С, Agama K, Bermingham A, Stephen AG, Chergui A, Naumova A, Fisher R, BR, Pommier Y, Cushman M. // J Med Chem. 2012, 23, 55, 7297].

Недостатками известного соединения являются невысокая активность в отношении очищенного фермента Tdp1 (IC50 29.5 мкмоль) и значительная цитотоксичность.

Задачей изобретения является выявление нового эффективного ингибитора фермента Tdp1, обладающего высокой активностью и низкой токсичностью и проявляющего синергетический эффект с темозоломидом в отношении клеток глиобластомы.

Технический результат: повышение эффективности ингибирования фермента Tdp1, расширение ассортимента ингибиторов фермента Tdp1 и усиление цитотоксического действия алкилирующего химиопрепарата темозоломида на культуры клеток глиобластомы человека.

Поставленная задача решается применением производного дегидроабиетиламина формулы I:

у которого выявлена высокая ингибирующая активность в отношении фермента репарации Tdp1 (IC50 0.1 мкмоль), низкая токсичность в отношении ряда опухолевых клеток и усиление эффективности действия темозоломида в отношении перевиваемых клеточных линий глиобластомы.

Ранее в литературе не было описано ни одного примера изучения активности производных смоляных кислот в качестве ингибиторов ферментов репарации. Важность поиска новых ингибиторов именно среди природных соединений и их производных вызвана как значительным химическим разнообразием этих молекул, так и присущей многим природным соединениям комплементарностью к мишеням биологического происхождения [Bermingham A., Price Е., Marchand С., Chergui A., Naumova A., Whitson Е.L., Krumpe L.R.Н., Goncharova Е.I., Evans J.R., McKee Т.С., Henrich C.J., Pommier Y., Identification of Natural Products That Inhibit the Catalytic Function of Human Tyrosyl-DNA Phosphodiesterase (TDP1) // SLAS disc. 2017, 22, 9, 1093-1105]. Кроме того, важным фактором является коммерческая доступность смоляных кислот. Исходным соединением является дегидроабиетиламин - дитерпеновый первичный амин, получаемый в промышленности из дегидроабиетиновой кислоты, содержащейся в живице хвойных деревьев. Важно отметить, что дегидроабиетиламин можно получать непосредственно из доступной живичной канифоли восстановлением нитрила дегидроабиетиновой кислоты.

Поскольку ингибиторы ферментов репарации ДНК используются в "коктейлях" с известными противоопухолевыми препаратами, обладающими высокой токсичностью, важно, чтобы применение новых соединений в лекарственных формах не приводило бы к дополнительной токсической нагрузке на организм. В связи с этим на первом этапе был выполнен анализ цитотоксичности предлагаемого соединения на широком спектре перевиваемых клеточных линий. Использовали культуры клеток человека, имеющие как опухолевое, так и не опухолевое происхождение. К числу первых относятся такие перевиваемые клеточные линии, как культуры клеток аденокарциномы молочной железы человека (MCF-7, MDA-MB-231), линия карциномы легких (А-549) и глиобластома человека (U-87MG, SNB-19). Неопухолевые клеточные культуры были представлены линией клеток фибробластов легких человека WI-38.

На втором этапе, также с помощью стандартного МТТ-теста, цитотоксическая активность темозоломида (ТМЗ) и его комбинации с предлагаемым соединением оценивалась на клеточных линиях глиобластомы человека U-87MG и SNB-19. На линии U-87MG цитотоксичность ТМЗ оценивали при концентрациях 2000 и 2500 мкмоль, а на SNB-19 при концентрациях 1250 и 2000 мкмоль. Ингибитор Tdp1 использовали в концентрации 100 мкмоль, за исключением экспериментов с SNB-19, где концентрации ТМЗ и ингибитора Tdp1 составили 2000 мкмоль и 75 мкмоль соответственно. В результате было показано, что комбинация ТМЗ с соединением в указанных концентрациях приводила к снижению жизнеспособности обеих клеточных линий до 40% по сравнению с монотерапией ТМЗ. Таким образом, можно говорить о потенцировании ТМЗ предлагаемым соединением (рисунок 1).

Изобретение иллюстрируется следующими примерами:

Пример 1. Методика синтеза соединения I.

В круглодонной колбе 50 мл в хлороформе смешали 0,5 г (0.0018 моль) дегидроабиетиламина с эквимолярным количеством адамантилизоцианата 0,31 г (0.0018 моль). Кипятили с обратным холодильником в течение 2 часов. Контроль реакции проводили методом тонкослойной хроматографии, по окончании реакции охладили до комнатной температуры. Реакционную смесь промыли дважды водой (2×15 мл). Органический слой сушили над прокаленным Na2SO4, после чего упарили на ротационном испарителе. Очищали методом колоночной хроматографии на 10 г силикагеля, элюент хлороформ/метанол. Выход 73% (0,59 г). Спектральные исследования выполнены в Химическом Сервисном Центре коллективного пользования СО РАН. Спектры ЯМР 1Н и 13С регистрировали на спектрометрах Bruker DRX-500 (1Н: 500.13 МГц, 13С: 125.76 МГц). В качестве внутреннего стандарта использовали остаточные сигналы растворителя - хлороформа (1Н 7.24, 13С 76.90 м.д.). Отнесение сигналов в спектрах ЯМР проводилось с привлечение стандартных одномерных и двумерных экспериментов (COSY, HETCOR, COLOC, НМВС, HSQC). Нумерация атомов в соединениях дана для отнесения сигналов в спектрах ЯМР и не совпадает с нумерацией атомов в номенклатурном названии. Масс-спектры высокого разрешения записывали на спектрометре DFS ThermoScientific в режиме полного сканирования в диапазоне m/z 0-500, ионизация электронным ударом 70 эВ при прямом вводе образца. Разделение продуктов реакций проводили с помощью колоночной хроматографии на силикагеле (60-200 μ, Masherey-Nagel).

1-Адамантил-3-(((1R,4aS,10aR)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина I.

ЯМР 1Н (500 МГц, CDCl3, δ, м.д., J/Гц): 7.15 (1Н, д, J11, 12=8.1, Н-11), 6.97 (1Н, д, J11, 12=8.1, Н-12), 6.88 (1H, с, Н-14), 3.94-3.06 (2Н, м, Н-18), 2.93-2.83 (2Н, м, Н-7), 2.80 (1H, септ, J12, 16=6.9, Н-15), 2.25 (1H, д, 2J=13.0, Н-1е), 2.03 (3Н, м, Н-26, Н-27, Н-28), 1.91 (6Н, м, Н-23, Н-24, Н-25), 1.88-1.79 (1Н, м, Н-6а), 1.77-1.65 (2Н, м, Н-6е, Н-2а), 1.62 (9H, м, Н-29, Н-30, Н-31, Н-3, Н-2е), 1.42 (1H, дд, Н-5), 1.35 (1Н, d, 2J=13.0, Н-1а), 1.20 (6Н, д, J16, 15=6.9, Ме-16, Ме-17), 1.18 (3Н, с, Ме-20), 0.88 (3Н, с, Ме-19). ЯМР 13С (125 МГц, CDCl3, δ, м.д.): 157.2 (С-21), 147.2 (С-9), 145.4 (С-13), 134.7 (С-8), 126.8 (С-14), 124.1 (С-11), 123.7 (С-12), 50.7 (С-18), 50.3 (С-22), 44.8 (С-5), 42.3 (С-23, С-24, С -25), 38.6 (С-4), 37.3 (С-1), 36.4 (С-10), 36.3 (С-29, С-30, С-31), 36.0 (С-3), 33.3 (С-15), 30.1 (С-7), 29.4 (С-26, С-27, С-28), 25.2 (Ме-20), 23.9 (Ме-17, Ме-16), 18.7 (С-6), 18.6(Ме-19), 18.6 (С-2). MS m/z 462.3601 [М]+ (calcd for C31H46O1N2, 462.3605).

Пример 2. Исследование влияния соединения I на активность Tdp1.

Рекомбинантная тирозил-ДНК-фосфодиэстераза 1 человека (КФ 3.1.4.) экспрессированная в системе Escherichia coli (плазмида рЕТ 16B-Tdp1 предоставлена доктором Кальдекотт К.У., Университет Сассекса, Великобритания) и выделена как описано [Interthal Н., Pouliot J.J., Champoux J.J., The tyrosyl-DNA phosphodiesterase Tdp1 is a member of the phospholipase D superfamily. // Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 12009-12014; Lebedeva N.A., Rechkunova N.I., Lavrik O.I., AP-site cleavage activity of tyrosyl-DNA phosphodiesterase 1. // FEBS Lett., 2011, 585, 683-686.].

В качестве тест-системы для определения ингибирующих свойств исследуемых соединений использована реакция удаления тушителя флуоресценции Black Hole Quencher 1 (BHQ1) с 3'-конца олигонуклеотида, катализируемая Tdp1. На 5'-конце олигонуклеотида находится (5,6)-FAM - флуорофор, интенсивность флуоресценции которого возрастает при удалении тушителя. Для измерения флуоресценции использовался флуориметр POLARstar OPTIMA производства BMG LABTECH.

Реакционные смеси объемом 200 мкл содержали буфер (50 мМ Tris-HCl, рН 8,0; 50 мМ NaCl; 7 мМ меркаптоэтанол), 50 нМ олигонуклеотид и различные концентрации ингибиторов. Реакция запускалась добавлением Tdp1 до конечной концентрации 1,3 нМ. Измерения проводились в линейном диапазоне зависимости скорости реакции от времени (до 8 минут) через каждые 55 секунд. Влияние предлагаемых соединений оценивали по величине IC50 (концентрация ингибитора, при которой активность фермента снижена наполовину). Обсчет значений IC50 проводили с помощью программы MARS Data Analisys 2.0 (BMG LABTECH).

Влияние исследуемого соединения на активность Tdp1 представлено в таблице 1. Из таблицы 1 видно, что величина IC50 для соединения I составляет 0.1 мкМ, что в 300 раз ниже, чем у соединения-прототипа II (29.5 мкМ).

Пример 3. Цитотоксичность изучаемого соединения. Индуцированную соединением клеточную гибель оценивали с помощью стандартного МТТ-теста [Mosmann Т. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. // J. Immunol. Meth., 1983, 65, 55-63.] путем колориметрического измерения количества формазана, конвертированного из 3-(4,5-диметилтиазол-2-ил)-2,5-дифенил-2Н-тетразолия бромида (МТТ) клетками, подвергшимися воздействию соединения. Клетки культивировали в среде IMDM, с 40 мкг/мл гентамицина, 100 ед/мл пенициллина, 0,1 мг/мл стрептомицина и 0,25 мкг/мл амфотерицина и в присутствии 10% эмбриональной бычьей сыворотки производства фирмы "Биолот" в атмосфере с 5% СО2. После формирования 50% монослоя в культуральную среду добавляли исследуемый препарат и контролировали пролиферацию клеточной культуры в течение 72 часов. В качестве контроля использовали клетки, культивируемые при соответствующей концентрации DMSO.

Токсичность соединения отсутствовала во всем диапазоне изученных концентраций (до 100 мкмоль).

Важно отметить, что ТМЗ обладал субоптимальной цитотоксичностью, в то время как ингибитор Tdp1 не проявил цитотоксической активности. Как показано в Таблице 2 и на Рисунке 1, комбинация ТМЗ с соединением в указанных концентрациях приводила к снижению жизнеспособности обеих клеточных линий до 40% по сравнению с монотерапией ТМЗ. Таким образом, можно говорить о потенцировании ТМЗ предлагаемым соединением.

Таким образом, предложено соединение, представляющее собой производное дегидроабиетиламина формулы I, у которого выявлена биологическая активность, заключающаяся в способности ингибировать действие фермента тирозил-ДНК-фосфодиэстеразы 1 человека (Tdp1). Предлагаемое соединение, являющееся низкотоксичным эффективным ингибитором тирозил-ДНК-фосфодиэстеразы 1, возможно рассматривать как перспективный агент для комбинированной химиотерапии онкологических заболеваний.

1-Адамантил-3-(((1R,4aS,10аR)-7-изопропил-1,4а-диметил-1,2,3,4,4а,9,10,10а-октагидрофенантрен-1-ил)метил)мочевина формулы I,

проявляющая ингибирующее действие в отношении фермента тирозил-ДНК-фосфодиэстеразы 1 человека и увеличивающая активность темозоломида в отношении клеток глиобластомы.



 

Похожие патенты:

Изобретение относится к способу получения производного мочевины с хелатным центром, тропного к простат-специфичному мембранному антигену для связывания технеция-99м/рения 188/186 для диагностики рака предстательной железы.

Изобретение относится к молекуле формулы один, в которой R1 представляет собой Н, F, Cl, Br или I; R2 представляет собой Н, F, Cl, Br или I; R3 представляет собой Н, F, Cl, Br или I; R4 представляет собой Н, F, Cl, Br или I; R5 представляет собой Н, F, Cl, Br или I; R6 представляет собой (C1-C8)галогеналкил; R7 представляет собой Н; R8 представляет собой Н; R9 представляет собой Н; R10 представляет собой F, Cl, Br, I, (C1-C8)алкил или галоген(C1-C8)алкил; R11 представляет собой C(=O)N(R14)((C1-C8)алкилC(=O)R15); R12 представляет собой Н; R13 представляет собой Н; R14 представляет собой Н; R15 представляет собой N(R16)(R17) или (C1-C8)алкил-C(=O)N(R16)(R17); R16 представляет собой Н; R17 представляет собой галоген(C1-C8)алкил; X1 представляет собой CR12; X2 представляет собой CR13; Х3 представляет собой CR9. Технический результат: получены новые соединения, которые могут быть полезны в борьбе с насекомыми-вредителями.

Изобретение относится к способу получения мета-хлорбензгидрилмочевины(галодифа) с использованием магнитных наночастиц, модифицированных сульфогруппами. Способ включает конденсацию мета-хлорбензгидриламина, закрепленного на магнитных наночастицах Fe2O3@SO3H, с цианатами щелочных металлов при комнатной температуре в водно-спиртовой среде в течение 1 часа.

Изобретение относится к новым радиофармацевтическим соединениям структурной формулы I. В формуле I R обозначает Н или (C1-C8)алкильную группу; W обозначает связь, -CH(NH2)-, -C(O)-NH-CH(COOH)-, -O-(CH2)n-O-(CH2)n- или -(CH2)nO(CH2)nO(CH2)n; Z обозначает -NHC(O)-, -NH-C(O)-CH(NH2)- или -C(O)-NH-CH(COOH)-; e целое число от 1 до 4; f целое число от 0 до 10; g целое число от 0 до 10; n целое число от 0 до 2; значения радикала NRaRb приведены в формуле изобретения.

Изобретение относится к новому N,N'-бис(диметилкарбамоил)-N, N'-бис(9-антрилметил)гексан-1,6-диамину формулы I: ,обладающему свойствами высокоселективного и высокоэффективного флуоресцентного хемосенсора на катионы Eu 3+.

Изобретение относится к способам получения лекарственного вещества, а именно мета-хлордифенилметилмочевины, которая является оригинальным отечественным антиконвульсантом и рекомендована Фармкомитетом СССР к медицинскому применению в качестве противоэпилептического средства под названием галодиф [1] Задачей изобретения является увеличение выхода галодифа и упрощение способа его получения.

Изобретение относится к новому химическому соединению, а именно к сернокислой соли 2-N-метиламино-5-хлорбензгидрилмочевины, формулы I: которое проявляет противосудорожную активность.

Изобретение относится к способам получения биологически активных 5-хлор-2-аминозамещенных бензгидрилмочевин, эффективно действующих на монокооксигеназную систему печени и проявляющих высокую антигипоксическую активность.

В настоящем изобретении описаны соединения формул (I) и (II), в которых , R1-R7 и R13 описаны в настоящем документе, или их стереоизомеры, энантиомеры или их смеси, или их фармацевтически приемлемые соли.

Изобретение относится к соли бензолсульфоновой кислоты и 2-[(4S)-6-(4-хлорфенил)-1-метил-8-(метилокси)-4H-[1,2,4]триазоло[4,3-a][1,4]бензодиазепин-4-ил]-N-этилацетамида в кристаллической твердой форме, характеризующейся картиной дифракции рентгеновских лучей на порошке (XRPD), содержащей по меньшей мере три угла дифракции, выраженных в градусах 2θ, выбранных из группы, состоящей из примерно 5,5, 7,4, 9,1, 10,0, 10,4, 13,3, 13,6, 14,9, 18,7, 20,4, 20,9, 22,8 и 23,1° (±0,1°); и/или 13C спектром ядерного магнитного резонанса твердого тела (ттЯМР), содержащим по меньшей мере десять пиков, выраженных в виде химических сдвигов в млн-1, выбранных из группы, состоящей из пиков при примерно 169,6, 167,5, 165,6, 160,1, 159,4, 157,1, 155,9, 154,3, 152,4, 146,9, 145,8, 140,0, 137,9, 135,9, 133,4, 132,0, 130,6, 129,9, 128,3, 127,1, 125,6, 123,5, 120,6, 119,1, 114,1, 113,7, 58,0, 53,6, 53,1, 40,7, 37,0, 34,9, 15,8, 14,7 и 12,0 (±0,2 млн-1).

Заявляемое изобретение относится к медицине и представляет собой способ фотодинамической терапии рака кожи. В рамках заявляемого способа предлагается проведение процесса фотодинамической терапии рака кожи фотосенсибилизатором одной химической структуры обладающим низкой темновой токсичностью, а именно копропорфирином.
Изобретение относится к медицине, а именно к онкологии, и может быть использовано для повышения содержания высокодифференцированных клеток в биоптате опухоли молочной железы.

Изобретение относится к области биохимии. Описана группа изобретений, включающая искусственную мкРНК для подавления экспрессии гена-мишени, композицию и фармацевтическую композицию для подавления экспрессии гена-мишени, содержащие эффективное количество вышеуказанной искусственной мкРНК, способ подавления экспрессии гена-мишени, включающий применение искусственной мкРНК, способ лечения заболевания, включающий стадию введения искусственной мкРНК, применение искусственной мкРНК в лечении заболевания, где заболевание представляет собой злокачественную опухоль, фиброз легких или фиброз печени.

Изобретение относится к области органической химии, а именно к гетероциклическому соединению формулы (IIA) или его фармацевтически приемлемой соли, где Е обозначает -СН2-; Q обозначает -СН2-, -CH2O- или -СН2ОСН2-; Z обозначает водород или метил; R1 обозначает -SO2Ra, -CORd или -CO2Rd; или R1 обозначает C1-С6-алкил, эта группа необязательно может содержать один или три заместителя, независимо выбранных из галогена и С2-С6-алкоксикарбонила; R12 обозначает водород; R15 обозначает галоген; R16 обозначает галоген; Ra обозначает C1-С6-алкил и Rd обозначает трифторметил или C1-С6-алкил.

Группа изобретений относится к медицине, а именно к онкологии, и может быть использована для снижения в кровотоке метионина для лечения рака, при котором опухолевые клетки ауксотрофны по метионину.

Изобретение относится к способу получения лиофилизата бортезомиба. Способ включает следующие стадии: a) предварительную многократную перекристаллизацию субстанции бортезомиба в хлористом метилене, или метаноле, или ацетоне, или этилацетате путем растворения субстанции бортезомиба в одном из указанных растворителей в соотношении их от 1:3 до 1:20 в течение от около 15 минут до около 30 минут при комнатной температуре и по окончании перекристаллизации последующее упаривание досуха полученного раствора после полного растворения субстанции бортезомиба на роторном испарителе под вакуумом; b) приготовление водного раствора маннита до полного его растворения с концентрацией его в растворе 10-20 мг/мл в течение 0,5-5,0 ч и поддержанием рН от 4,0 до 5,0; c) приготовление водного раствора бортезомиба в водном растворе маннита, полученном на стадии (b), путем растворения субстанции бортезомиба в водном растворе маннита при 15-30°С до полного растворения ее в течение менее 60 минут с получением раствора с концентрацией бортезомиба в нем 1,0-2,5 мг/мл при рН от 5,0 до 6,5 и в среде инертного газа азота или аргона; d) стерилизующую фильтрацию раствора со стадии (с) с использованием фильтрации под вакуумом или фильтрации под давлением 0,1-0,6 МПа и дозирование его во флаконы; e) проведение лиофильной сушки продукта со стадий (d) в камере лиофильной сушки в несколько этапов; f) заполнение камеры лиофильной сушки инертным газом, закупоривание флаконов и закатывание их колпачками.

Изобретение относится к медицине, конкретно к фармакологии, гематологии и онкологии. Предложено применение активатора протеинкиназы А (РКА) в качестве гемопротекторного средства, эффективного при введении in vivo в отношении эритро- и грануломоноцитопоэза.

Группа изобретений относится к медицине и касается способа лечения пациента-человека, имеющего FOLR1-экспрессирующий рак, включающего введение пациенту иммуноконъюгата, который связывается с полипептидом FOLR1, причем указанный иммуноконъюгат содержит антитело или его антигенсвязывающий фрагмент, содержащий CDR-1 вариабельной легкой цепи (VL) согласно SEQ ID NO: 6, CDR-2 VL согласно SEQ ID NO: 7, CDR-3 VL согласно SEQ ID NO: 8, CDR-1 вариабельной области тяжелой цепи (VH) согласно SEQ ID NO: 9, CDR-2 VH согласно SEQ ID NO: 11, CDR-3 VH согласно SEQ ID NO: 12 и майтанзиноид.

Изобретение относится к области органической химии, а именно к гетероциклическому соединению указанной ниже формулы или к его фармацевтически приемлемой соли или N-оксиду, где W, X, Y, Z, -L3P-, -R3N, R4-R8 имеют значения, указанные в формуле изобретения.

Изобретение относится к соединению, представленному формулой I, его энантиомерам, диастереомерам или фармацевтически приемлемым солям, которые обладают действием модулятора N-формил-пептидного рецептора 2.
Наверх