Способ меднения лавсановых нитей

Изобретение относится к химической технологии текстильных материалов и касается способа меднения лавсановых нитей (волокон), и может быть использовано при изготовлении электропроводящих металлизированных лавсановых нитей, используемых в электронике, электротехнической и других областях современной техники. Cпособ меднения поверхности лавсановых нитей включает подготовку поверхности: обезжиривание и щелочную активацию поверхности лавсановой нити - и химическую металлизацию: осаждение меди в щелочном растворе сульфатов меди в виде медно-аммиачных комплексов на подготовленную поверхность лавсановой нити с использованием в качестве восстановителя гидразин сульфата в присутствии стабилизатора дисперсности триэтиленгликоля или полиэтиленгликоля. Изобретение обеспечивает получение на нитях лавсана электропроводных медных покрытий, сплошных и однородных как на нано-, так и на микро-масштабе, при обеспечении экономичности и экологичности процесса. 1 табл., 7 ил.

 

Изобретение относится к способам меднения пластмасс, в частности лавсановых нитей (полиэтилентерефталата), и может быть использовано при изготовлении электропроводящих металлизированных лавсановых нитей, используемых в электронике, электротехнической и других областях современной техники.

Известен способ меднения полимерных композиционных материалов на основе углеродных волокон (патент RU №2328551 С1 МПК С23С 18/38, C25D 5/54, C25D 3/38 опубликован 10.07.2008), который включает подготовку поверхности полимерного композитного материала: очистку, обезжиривание, выдержку полимерного композитного материала в течение 40-60 минут в кислом растворе электролита (сульфат меди, концентрированная серная кислота, хлористый натрий) - и электрохимическое осаждение меди в этом же электролите. Недостатком такого способа является использование углеродных волокон, которые не обладают достаточной гибкостью для изготовления гибких проводников с высокой прочностью к эксплуатационным и монтажным изгибам, а также низкая экологичность и опасность производства из-за использования концентрированной серной кислоты.

Известен способ получения медных покрытий на неметаллических материалах (авт. свид. SU №1029637 А1 МПК С23С 18/40 опубликован 15.10.1993), включающий проведение каталитической обработки поверхности и осаждения меди с использованием щелочных растворов меди и борогидрида натрия (раствор, содержащий пентагидрат сернокислой меди, триэтаноламин, одноатомный спирт, гидроксид натрия, смешивается с расвтором, содержащим борогидрид натрия, гидроксид натрия и тетраборат натрия) в присутствии формалина. К недостаткам указанного метода следует отнести низкую экологичность и нестабильность растворов формальдегида при хранении (требуется применение стабилзирующих добавок и постоянный анализ используемого реактива для получения систем, отвечающих условиям однородности и устойчивости).

Известен способ неэлектролитической металлизации арамидных волокон (патент RU №2144965 С1 МПК D06M 11/83, D01F 11/08 опубликован 27.01.2000), включающий подготовку поверхности арамидных волокон в кислотном растворе (азотная, хлорсульфоновая или фторсульфоновая кислота) в течение не менее 2 с при температуре в интервале 10-100°С и металлизацию медью при использовании катионов палладия и олова в качестве катализатора активации в присутствии формальдегида (ионы меди образуют комплекс с удержанием их в растворе, например, с тетранатриевой солью этилендиаминтетрауксусной кислоты). Недостатком данного способа является применение формальдегида, а также высокая затратность из-за использования драгоценных металлов.

Наиболее близким техническим решением, выбранным в качестве прототипа, является способ металлизации дисперсных тканых и нетканых материалов, в том числе лавсановой ткани, (патент RU №2363790 С2 МПК D06M 11/83, С23С 18/40, С23С 18/38, С23С 18/30, С23С 18/31, С23С 18/18), включающий предварительную химическую активацию поверхности покрываемого материала и последующую химическую металлизацию, осуществляемую из раствора, содержащего сульфат меди и гидроксид натрия. Перемешивание растворов барботажем воздуха при температуре 60-65°С. В качестве активатора используют глиоксалевую и/или щавелевую кислоты, а в качестве стабилизатора дисперсности - тетраэтиленгликоль и глиоксаль в качестве восстановителя, а также гидроксид натрия для поддержания требуемого уровня рН раствора.

Существенными признаками данного способа металлизации, совпадающими с признаками предлагаемого способа, является наличие этапа предварительной химической активации поверхности и последующей химической металлизации из раствора, содержащего сульфат меди, в присутствии стабилизаторов дисперсности.

Недостатком описанного в патенте метода металлизации является невысокая экологичность и опасность производства из-за высокой токсичности глиоксалевой кислоты (на этапе активации) и глиоксаля (на этапе металлизации) и затратность метода из-за достаточно высокой цены используемого восстановителя и сложности оборудования (необходимость использования барботажной колонны). Недостатком данного патента является отсутствие информации об однородности, толщине и удельной электропроводности получаемого металлического покрытия.

Задачей предлагаемого изобретения является разработка эффективной экономичной технологии получения металлизированных лавсановых нитей при повышении экологичности процесса (без использования экологически опасных веществ).

Технический результат достигается за счет предварительной щелочной активации поверхности лавсана с последующей металлизацией химическим восстановлением гидразин сульфатом из растворов, содержащих соли меди в щелочной среде в присутствии комплексообразователей (сульфаты меди и водный аммиак) и стабилизаторов дисперсности (триэтиленгликоля или полиэтиленгликолей).

Предлагаемый способ меднения лавсановых нитей иллюстрируется на фиг. 1-7 и в табл. 1.

На фиг. 1 представлены данные рентгенофазового анализа (РФА) поверхности лавсановой нити после меднения при использовании триэтиленгликоля в качестве стабилизатора дисперсности.

На фиг. 2 представлены данные РФА поверхности лавсановой нити после меднения при использовании полиэтиленгликоля (ПЭГ-6000) в качестве стабилизатора дисперсности.

На фиг. 3 представлен спектр характеристического рентгеновского излучения для исходной лавсановой нити, полученный методом рентгеноспектрального микроанализа (РСМА).

На фиг. 4 представлен спектр характеристического рентгеновского излучения для омедненной лавсановой нити.

На фиг. 5 представлено изображение исходной лавсановой нити, полученное методом растровой электронной микроскопии (РЭМ) при увеличении ×3000.

На фиг. 6 представлено РЭМ-изображение омедненной лавсановой нити при увеличении ×2000.

На фиг. 7 представлено РЭМ-изображение омедненной лавсановой нити при увеличении ×35000.

В табл. 1 представлен элементный состав лавсановых нитей до и после меднения по данным количественного рентгеноспектрального микроанализа.

Предлагаемый способ меднения поверхности лавсановых нитей включает активацию поверхности лавсановой нити и химическую металлизацию: осаждение меди в щелочном растворе на подготовленную поверхность лавсановой нити с использованием в качестве восстановителя гидразин сульфата.

Для активации поверхности лавсановая нить подвергалась кипячению в водном растворе гидроксида натрия (0.125 М/л) при температуре 55-60°С в течение 35 минут. Для улучшения активирующей способности раствора в его состав вводили изопропиловый спирт или триэтиленгликоль. Затем нить промывали водой до рН 7, ацетоном и высушивали.

Нити лавсана после обезжиривания и активации обрабатывали водными стехиометрическими растворами реагентов, синтезируемыми непосредственно перед реакцией восстановления.

Перед металлизацией лавсановых нитей к водным растворам (0.03-0.2 М) сульфатов меди в виде медно-аммиачных комплексов при температуре 50-55°С добавляли стабилизатор дисперсности (триэтиленгликоль или полиэтиленгликоли, например, ПЭГ-4000, ПЭГ-6000). В полученные растворы помещали предварительно активированные нити лавсана и выдерживали их при комнатной температуре в течение 30-40 минут.

Меднение проводили из смеси указанных водных растворов солей меди в виде медно-аммиачных комплексов щелочным раствором (гидроксид натрия 0.15-0.5 М) гидразин сульфата (2 моля на моль Сu2+) при температуре 50-55°С. Растворы смешивали постепенно при перемешивании покачиванием.

После завершения меднения реакционные растворы охлаждали до комнатной температуры, помещали в охладительную смесь и выдерживали в течение 24 ч при температуре 7-8°С. Затем нити промывали холодной дистиллированной водой до отрицательной реакции на ионы [SO4]-2 (проба по реакции с ВаСl2) и/или на ионы Сl (проба по реакции с AgNO3) и высушивали при комнатной температуре на воздухе.

Пример 1.

Для активации поверхности обезжиренные лавсановые нити выдерживают в водном растворе гидроксида натрия с концентрацией 0.125 М/л при температуре 35°С в течение 30-35 мин.

Активированную нить лавсана помещают в раствор водно-аммиачного комплекса (раствор №1) и выдерживают при температуре 22°С в течение 24 часов.

В полученную систему (раствор №1 с помещенной в него лавсановой нитью) при температуре 45-48°С в течение 20 мин вводят по капле раствор восстановителя (раствор №2). Прибавление раствора №2 ведут с такой скоростью, чтобы температура реакционной смеси не превышала 50°С.

Полученную реакционную смесь перемешивают покачиванием при температуре 45-48°С в течение 30-40 минут. Меднение нити сопровождается сменой окраски раствора от светло-желтой до красно-коричневой и снова бесцветной.

После завершения процесса меднения реакционную смесь охлаждают до комнатной температуры и помещают в охладительную смесь, выдерживая при температуре 7-8°С в течение 24 часов.

Затем омедненную лавсановую нить извлекают из реакционной смеси, промывают холодной водой до отрицательной реакции на ионы [SO4]-2 (проба по реакции с ВаСl2) и рН промывных вод, равного 7. После промывки омедненную лавсановую нить высушивают на воздухе при комнатной температуре.

Состав раствора №1:

сульфат меди - 2.5 г;

водный аммиак (23.4%) - 5 мл;

триэтиленгликоль - 1 мл;

дистиллированная вода - 45 мл.

Состав раствора №2:

гидразин сульфат - 3.6 г;

гидроксид натрия - 0.3 г;

дистиллированная вода - 50 мл.

Пример 2. Активацию обезжиренной лавсановой нити проводят аналогично методике Примера 1.

В раствор восстановителя (раствор №3) помещают активированную нить лавсана и выдерживают при температуре 45°С в течение 10 минут.

К обработанной лавсановой нити, находящейся в растворе №3, прибавляют по капле раствор медно-аммиачного комплекса (раствор №4). Температуру реакции поддерживают в области 45-50°С в течение 25-30 минут. По мере прибавления раствора №4 к раствору №3 наблюдается постепенное изменение окраски реакционной смеси от зелено-голубой через желтоватую к бесцветной. Затем смесь выдерживают при температуре 45-50°С до появления розово-красного окрашивания нити и очень слабой зелено-голубой окраски реакционной смеси (в течение 25-30 минут).

После завершения меднения нити охлаждение, промывка и высушивание нити осуществляется в соответствии с методиками Примера 1.

Состав раствора №3:

гидразин сульфат - 1.599 г;

гидроксид натрия - 1 г;

дистиллированная вода - 50 мл.

Состав раствора №4:

сульфат меди - 1.523 г;

водный аммиак (23.4%) - 3 мл;

ПЭГ-6000 - 1 мл;

дистиллированная вода - 3.5 мл.

Данные РФА для образцов, полученных в соответствии с описанным методом, демонстрируют однофазность полученного медного покрытия лавсановых нитей (на фиг.1 представлен образец, полученный по методикам Примера 1, а на фиг.2 - по методикам Примера 2). Дополнительных пиков, связанных с примесными фазами, не обнаружено в пределах точности данного метода.

Метод РСМА показывает, что элементный состав поверхности исходных и метализованных лавсановых нитей не одинаков. Как видно из спектров характеристического рентгеновского излучения, для исходных нитей наблюдаются пики углерода и кислорода (фиг. 3). Для омедненных лавсановых нитей появляются интенсивные характеристические пики меди (фиг. 4). По данным количественного РСМА анализа (таблица 1) поверхность металлизированных лавсановых нитей на 100% состоит из меди.

На фиг. 6 представлено изображение омедненной лавсановой нити, полученное методом РЭМ при малых увеличениях. Сравнительный анализ РЭМ-изображений исходных (фиг. 5) и омедненных (фиг. 6) лавсановых нитей показал, что размер поперечного сечения (диаметр) нитей после обработки меняется: для исходной нити диаметр в среднем составляет 20 мкм, в то время как для металлизованных примерно 24 мкм.

Большие увеличения выявляют морфологию медных покрытий, которая кардинально отличается от таковой для исходных нитей. Если исходные нити имеют относительно однородную, гладкую поверхность, то поверхность омедненных нитей является чешуйчатой. Чешуйки, образующие покрытие металлизированной лавсановой нити, плотно примыкают друг к другу, микротрещины отсутствуют, покрытие является равномерным и бездефектным по всей длине волокна.

В случае больших увеличений (×35000-50000) обнаруживается характерная наноструктура поверхности, состоящая из кристаллитов с кубическими гранями (фиг. 7). Размеры кристаллитов находятся в пределах от 100 до 500 нм, причем кристаллиты плотно срастаются друг с другом, образуя однородное покрытие.

По данным РЭМ и РСМА поверхность обработанных волокон покрыта пленкой меди толщиной порядка 2 мкм, что находится в согласии с данными РФА.

Электрическое сопротивление металлизованных нитей составляло 0.6-0.9 Ом/см.

Технико-экономическая эффективность предлагаемого способа металлизации лавсановых нитей заключается в обеспечении экономичности процесса за счет использования относительно недорогих доступных отечественных реактивов, подготовки поверхности лавсановой нити без использования солей драгоценных металлов и полезного расходования большей части компонентов растворов меднения, а также повышения экологичности за счет использования экологически безопасных веществ.

Техническим результатом предлагаемого способа является получение сплошного однородного электропроводного медного покрытия на лавсановой нити методом мягкой растворной химии. Разработанный метод дает возможность получить на нитях лавсана электропроводные медные покрытия, сплошные и однородные как на нано-, так и на микро-масштабе, при обеспечении экономичности (доступность и дешевизна используемых реагентов) и экологичности (без использования экологически опасных веществ) процесса.

Данное изобретение можно применять в химической, электротехнической и кабельной промышленности, для изготовления металлизированных тканей и гибких нагревательных элементов.

Способ меднения лавсановых нитей, включающий предварительную химическую активацию поверхности покрываемого материала и последующую химическую металлизацию, отличающийся тем, что для активации поверхности лавсановая нить подвергается кипячению в 3-5% водном растворе гидроксида натрия, а металлизация осуществляется химическим восстановлением щелочным раствором гидразин сульфата из растворов, содержащих соли меди (сульфаты меди) в виде медно-аммиачных комплексов в щелочной среде в присутствии стабилизаторов (триэтиленгликоля или полиэтиленгликолей), при температуре 50-55°С после выдерживания лавсановых нитей в растворе восстановителя при комнатной температуре в течение 30-40 мин.



 

Похожие патенты:

Изобретение относится к способам меднения пластмасс, в частности лавсановых нитей (волокон), и может быть использовано при изготовлении электропроводящих металлизированных лавсановых нитей, используемых в электронике, электротехнической и других областях современной техники, в том числе для получения тонких гибких электропроводников.

Изобретение относится к химической технологии волокнистых материалов и касается способа изготовления целлюлозных волокон, пропитанных металлическими наночастицами, в частности наночастицами серебра.

Изобретение относится к химической технологии волокнистых материалов и касается способа придания волокну электропроводности и проводящим волокнам, ткани и изделию из таких волокон.

Изобретение относится к технологии отделки волокнистых материалов и касается способа получения нетканых материалов с антибактериальными свойствами. Способ включает обработку материала раствором, содержащим наноструктурные частицы металла или оксида при температуре 20±5°С, и последующее высушивание, при этом нетканый материал подвергают предварительной обработке ультразвуком для активации поверхности и дальнейшей обработке путем его погружения в раствор или набрызгивания раствора, содержащего заранее приготовленные наноразмерные коллоидные частицы с металлов или оксидов с концентрацией 0.1-5% от веса материала, с последующим высушиванием материала при температуре от 60 до 100°С до постоянного веса.

Настоящее изобретение относится к электропроводящему углеродному волокну, состоящему из нитей углеродного волокна. Описано электропроводящее углеродное волокно, состоящее из нитей углеродного волокна, которые включают в себя металлическое покрытие, в котором нити углеродного волокна включают в себя присутствующий на металлическом покрытии состав на основе по меньшей мере одного полимерного связующего, которое содержит электропроводящие наночастицы, и концентрация металлического покрытия составляет 8-25 мас.%, а концентрация электропроводящих наночастиц - 0,1-1 мас.%, в каждом случае считая на массу углеродного волокна, снабженного металлическим покрытием и составом.
Изобретение относится к мембранной технологии, в частности к получению антибактериальных полимерных мембран, и может быть использовано для очистки воды и водных растворов в пищевой, фармацевтической отраслях промышленности, в медицине.

Изобретение относится к технологиям металлизации тканей, изделий из кожи, из войлока, трикотажных и других материалов с низкой термостойкостью. .

Изобретение относится к проводящим материалам, рассеивающим статический заряд, и касается проводящего моноволокна и ткани. .

Изобретение относится к способу изготовления металлизированного текстильного изделия плоской формы. .

Изобретение относится к технологии модификации тканей за счет введения наночастиц благородных металлов и/или драгоценных или полудрагоценных минералов и может быть использовано в легкой промышленности.

Изобретение относится к области порошковой металлургии и может быть использовано для изготовления абразивного инструмента. Способ получения композиционного алмазосодержащего материала включает смешивание алмазного порошка с алюминиевым порошком, последующее горячее прессование при температуре 500-600°С до получения пористости 3-6 об.% и оксидирование поверхности.

Изобретение относится к нанесению медного покрытия на полиэфирэфиркентон и может быть использовано в радиотехнической промышленности, приборостроении, авиационной промышленности.
Изобретение относится к способам производства гибких печатных плат, соединительных кабелей, шлейфов, микросхем. Предложен способ подготовки поверхности полиимида под химическое осаждение медного покрытия, заключающийся в травлении полиимида водным раствором щелочи, содержащим 150-250 г/л NaOH или КОН, при температуре 60±2°C в течение 5-15 мин с последующей активацией водными растворами азотнокислого серебра состава 3-5 г/л в течение 10-15 мин при комнатной температуре.

Изобретение относится к порошковой металлургии и может быть использовано для повышения термической стабильности порошкообразного гидрида титана. .
Изобретение относится к отрасли производства строительных материалов и может быть использовано при производстве железобетонных стальных конструкций, эксплуатируемых при повышенных нагрузках.
Изобретение относится к области химии и может быть использовано для металлизации стальной проволоки. .

Изобретение относится к металлообработке и может быть использовано в металлургии, машиностроении и других отраслях для обработки проволоки, ленты, труб и других изделий различного сечения.
Изобретение относится к технологии получения металлизированных тканых и нетканых материалов и может быть использовано для производства катализаторов, а также для изготовления декоративных и отделочных материалов.

Изобретение относится к способам меднения пластмасс, в частности полимерных композиционных материалов на основе углеродных волокон, и может быть использовано при производстве мебельной фурнитуры, бытовых приборов, предметов быта, в автомобильной и радиотехнической отраслях промышленности.
Изобретение относится к области нанесения металлических покрытий и может быть использовано при химическом осаждения композиционных медных покрытий на стальные детали, которые могут быть использованы в электрической, химической промышленности и машиностроении.
Наверх