Система выявления утечек пара в отсеках подводной лодки

Изобретение относится к средствам обнаружения утечек пара в отсеках подводной лодки. Сущность: система содержит распределенные по турбинным отсекам подводной лодки источники информации о наличии утечек пара, связанные через приборы предварительной обработки информации с центральной системой управления. Причем источники информации используют информацию от извещателя, состоящего из измерительной линии (1-5), блока (А1) контроллера, блока (А2) коммутаций, блока (А3) высоковольтного преобразователя, предварительного усилителя (А4) и блока (А5) питания. Измерительная линия (1-5) включает завихритель (1) газового потока, зарядную (2) и измерительную (3) камеры с электродами, воздуходувку (4) с крыльчаткой, вращаемой электродвигателем (5). Зарядная камера (2) измерительной линии выполнена с возможностью сепарации частиц крупнее 5 мкм за счет воздействия на поступающий газовый поток униполярного импульсного коронного заряда. Зарядная камера (2) измерительной линии выполнена также с возможностью автоматического устранения налипания и конденсации мелкодисперсных частиц на ее центральном электроде за счет периодической перемены полярности подаваемого на него высоковольтного напряжения. Технический результат: расширение функциональных возможностей, сокращение времени обнаружения утечек. 1 ил.

 

Область техники, к которой относится изобретение

Настоящее изобретение к системам обнаружения утечек пара в отсеках подводной лодки, а также, для обеспечения ядерной и радиационной обстановки в отсеках подводной лодки, и может быть использовано, в частности в судостроении, конкретнее - в системах обеспечивающих работу блоков паро-производящей и паротурбинной установок на подводных лодках.

Цель изобретения - повышение эффективности эксплуатации ядерной энергетической установки, путем расширения ее функциональных возможностей, а также провести диагностику предаварийных состояний, связанных с появлением и развитием дефектов, приводящих к появлению течей в трубо- и паропроводах

Уровень техники

Из существующего уровня техники известны:

«Устройство для детектирования течей пароводяной смеси из трубопровода» RU 2461807, опубликовано 20.09.2012, авторы Александров П.А., Калечиц В.И., Маслаков О.Ю., Хозяшева Е.С., Шахов М.Н.

В данной системе дополнительно содержится лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой. Недостатком является то, что система имеет недостаточную чувствительность «сухого» пара, и в условиях подводной лодки не защищена от загрязнения.

В настоящее время для детектирования течей из трубопроводов применяются акустические методы контроля наличия течей, основанные на анализе акустических сигналов, распространяющихся по трубопроводам, либо на регистрации акустических шумов, генерируемых при истечении среды через образовавшийся дефект (патент РФ №2221230, 21.09.2001, опубл. 10.01.20004; заявка №96101920, 29.01.1996, опубл. 10.04.1998; патент РФ №2186356, 27.07.2002; С.Б. Шиманский, Б.П. Стрелков, А.Н. Ананьев, А.Н. Любишкин, Т. Инджимо, Х. Мочидзуки, И. Касан, К. Йокота, Дж. Каназава. Акустический метод обнаружения течи с помощью высокотемпературных микрофонов. «Атомная энергия», 2005, т. 98, с. 98-104). Недостатком этих методов является низкая достоверность детектирования, связанная с наличием постоянных акустических шумов.

Наиболее близкой по технической сущности к заявляемой системе выявления утечек пара в отсеках подводной лодки, является «Устройство для детектирования течей пароводяной смеси из трубопровода» RU 2461807, опубликовано 20.09.2012, авторы Александров П.А., Калечиц В.И., Маслаков О.Ю., Хозяшева Е.С., Шахов М.Н. включающая дополнительно лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой.

Недостатком данного технического решения является:

- Система имеет недостаточную чувствительность «сухого» пара, а также в условиях подводной лодки не защищена от загрязнения.

Раскрытие изобретения

Сущность изобретения заключается в возможности комплексного контроля и анализа физических параметров контролируемых объектов и факторов влияющих на возникновение и развитие аварийной обстановки в блоках паротурбинной и паропроизводящей установках, за счет обработки данных поступающих от адресных источников информации.

Техническим результатом заявленного изобретения, является, существенное сокращение времени обнаружение утечек пара и предотвращения аварийной ситуации.

Технический результат достигается путем комплексного мониторинга контролируемых объектов за счет использования раннее не используемой информации от электроиндукционных датчиков, защищенных от влияния аэрозольных частиц за счет предварительной сепарации частиц крупнее 5 мкм на входе измерительной линии, а так же предусмотренного автоматического устранения налипания и конденсации других мелкодисперсных частиц на центральном электроде зарядной камеры путем периодической перемены полярности подаваемого на него высоковольтного напряжения.

Задачей изобретения является: расширение функциональных возможностей оператора, контролировать работу паропроизводящей и паротурбинной установок, оперативно выявлять течи пара, в том числе и «сухого», а также прогнозировать возможный выход из строя: паропроводов, паровых турбин, парогенераторов и т.д.

Совокупность новых элементов и их взаимодействие в предложенной системе, не обнаружено в доступных авторам источниках.

Краткое описание и устройство

Источником информации для системы предлагается использовать информацию от извещателя, состоящего из измерительной линии 1-5, блока контроллера (А1) 7, блока коммутаций (А2) 9, блока высоковольтного преобразователя (A3) 8, предварительного усилителя (А4) 6, блока питания (А5), фигура 1.

Извещатель выдает информацию по трем заданным уровням концентрации аэрозолей замыканием и размыканием «сухих» контактов реле.

Принцип работы

Аэрозольные частицы через отверстия завихрителя 1 газового потока засасываются в газоход измерительной линии, включающей в себя зарядную камеру 2 и измерительную камеру 3. Необходимая скорость потока аэрозольных частиц обеспечивается воздуходувкой, имеющей крыльчатку 4, вращаемой электродвигателем 5.

В зарядной камере аэрозольные частицы под воздействием униполярного импульсного коронного разряда приобретают объемный электрический заряд. Так как заряд частиц идет не непрерывно, а с определенной скважностью, то формируются «пачки» заряженных частиц, чередующихся с незаряженными частицами. Одновременно с прямолинейным движением частицы находятся во вращательном движении относительно оси поступательного движения. Это приводит к тому, что более крупные частицы отбрасываются на периферию газохода измерительной линии и в измерительную камеру 3 не попадают, огибая ее снаружи. Попадающие в измерительную камеру 3 высокодисперсные заряженные частицы наводят на ее измерительном электроде электрический сигнал. Этот сигнал поступает на предварительный усилитель (А4) 6, обеспечивающий согласование высокого выходного сопротивления измерительного электрода со схемой обработки сигнала. В предварительном усилителе осуществляется также усиление сигнала, снимаемого с измерительного электрода.

С предварительного усилителя (А4) 6 усиленный сигнал поступает в блок контроллера (А1) 7 на вход селективного усилителя 7.1. На выходе селективного усилителя 7.1 получается квази-синусоидальный сигнал частотой 30 Гц. Частота выходного сигнала определяется частотой генератора высоковольтных модулирующих импульсов блока высоковольтного преобразователя (A3) 8. Этот блок формирует высоковольтные униполярные импульсы напряжения, подаваемые в зарядную камеру. Электрический сигнал с выхода селективного усилителя 7.1 поступает на (АЦП) 7.2. АЦП преобразует аналоговый сигнал в цифровой, который поступает на вход микропроцессора. Микропроцессор 7.3 формирует сигналы для оценки концентраций аэрозолей (пожарной ситуации), подает сигналы на схему памяти, на вход аналогового усилителя 7.4 и схемы включения реле 9.1 (порог 1), реле 9.2 (порог II) и реле 9.3. Полученный электрический сигнал, пропорциональный текущему значению концентрации аэрозольных частиц, выводится на разъем Х3.

Микропроцессор следит за скоростью изменения сигнала и его абсолютным значением по заданному алгоритму, что позволяет извещателю осуществлять селекцию сигнала по величине, скорости нарастания и длительности воздействия.

Блок высоковольтного преобразователя (A3) 8 обеспечивает формирование импульсов высокого напряжения, необходимых для работы электроиндукционного датчика. Блок обеспечивает смену полярности коронного разряда с отрицательной на положительную на 4±1 секунды один раз в минуту.

В микропроцессор поступают сигналы о функционировании блоков извещателя и исправности обмоток реле, включающих 1, 2 и 3 пороги. При неисправности хотя бы одного из контролируемых узлов микропроцессор передает на блок коммутации (А2) 9.4 сигнал на отключение извещателя. При этом в телеметрию выдается сигнал «Неисправность».

Блок питания (А5) обеспечивает гальваническую развязку с источником питания, получение необходимых для работы извещателя напряжений, включение и отключение извещателя, преобразование команды технологического контроля и выдачу телеметрической информации о состоянии извещателя.

Использование изобретения позволит повысить безопасность, безаварийность эксплуатации ядерного реактора, паротурбинной установки и технических средств, охраняемых помещений подводной лодки, а также принять меры к устранению причин, вызвавших ядерную и радиационную опасность в отсеках подводной лодки, и избежать аварию и ее последствия.

Система обнаружения пара в отсеках подводной лодки, содержащая распределенные по турбинным отсекам подводной лодки источники информации о наличии утечек пара в отсеках подводной лодки, связанные через приборы предварительной обработки информации с центральной системой управления для централизованного сбора, хранения и обработки информации с целью выдачи предупредительного сигнала о возникновении аварийной опасности, отличающаяся тем, что источники информации используют информацию от извещателя, состоящего из измерительной линии, блока контроллера, блока коммутаций, блока высоковольтного преобразователя, предварительного усилителя и блока питания, измерительная линия включает завихритель газового потока, зарядную и измерительную камеры с электродами, воздуходувку с крыльчаткой, вращаемой электродвигателем, при этом зарядная камера измерительной линии выполнена с возможностью сепарации частиц крупнее 5 мкм за счет воздействия на поступающий газовый поток униполярного импульсного коронного заряда, а также с возможностью автоматического устранения налипания и конденсации мелкодисперсных частиц на ее центральном электроде за счет периодической перемены полярности подаваемого на него высоковольтного напряжения.



 

Похожие патенты:

Изобретение относится к области контроля состояния водителя и обеспечения безопасности управления транспортных средств. Способ предупреждения засыпания водителя транспортного средства, включающий формирование эталона зрачка водителя на основе общего для любого человека описания, периодическое освещение лица водителя инфракрасным светом, получение изображения лица, обнаружение областей глаз, определение границ области движения зрачка, определение частоты и направлений движения глаз, определение частоты морганий, определение длительности периода времени, в течение которого глаза закрыты, сравнение параметров, характеризующих состояние водителя с эталонными, принятие решения о необходимости сигнализации о засыпании водителя, отличающееся тем, что осуществляется определение эталона и текущего состояния цвета склеры глаза и температуры круговой мышцы глаза водителя, сравнение текущих параметров с эталонными и учет при принятии решения о необходимости сигнализации о засыпании водителя.

Группа изобретений относится к медицинской технике, а именно к сбору медицинских изображений для томографической визуализации. Способ мониторинга движения в процессе медицинской визуализации содержит инициацию сбора данных изображения, измерение физиологических сигналов пациента, при этом физиологические сигналы содержат один нейрофизиологический сигнал, прогнозирование на основе нейрофизиологического сигнала, возникнет ли пороговое значение движения пациента и изменение сбора данных изображения, когда прогнозируется, что возникнет пороговое значение движения пациента, при этом изменение включает в себя смещение сбора данных в область пациента, менее чувствительную к движению.
Изобретение относится к области охранной сигнализации, в частности к средствам персональной мобильной охраны. Технический результат изобретения заключается в слежении за сторонними объектами внешнего воздействия, находящимися на удаленном расстоянии от объекта охраны.

Изобретение относится к области вычислительной техники. Технический результат – расширение функциональных возможностей системы видеонаблюдения для обеспечения возможности создания сценарного видеоролика с присутствием в кадре заданного объекта или группы объектов.

Изобретение относится к средствам и методам защиты населения в нештатной ситуации. Технический результат заключается в повышении быстродействия.

Изобретение относится к вспомогательным системам автомобиля. Система граничного обнаружения для транспортного средства содержит запоминающее устройство, блок датчиков, процессор.
Изобретение относится к обеспечению безопасности судов. Техническим результатом является повышение безопасности мореплавания в критических ситуациях.

Носимое вычислительное устройство содержит шлем виртуальной реальности (ШВР), который генерирует среду виртуальной реальности. Посредством генерирования и отслеживания данных позиционирования виртуальная среда может быть прервана или приостановлена.

Заявленное изобретение относится к способу охранного мониторинга и может быть использовано в случаях применения одного пассивного оптико-электронного средства обнаружения (СО) для сигнализационного контроля дороги.

Система радиоуправления машиной со стреловым оборудованием содержит беспроводной пульт дистанционного управления (1), блок передачи данных (12), электронный ключ безопасности (18).

Изобретение относится к газоразрядным (плазменным) приборам для проверки изделий, в т.ч. космических аппаратов (КА), на герметичность.

Изобретение относится к области испытания устройств на герметичность и может быть использовано для испытания на герметичность контейнеров с повторно закрываемыми укупорками, наполненных жидкостью.

Изобретение относится к космической технике, в частности для регистрации микрометеороидов и заряженных частиц ионосферы. Устройство контроля герметичности элементов конструкции космического аппарата содержит приемник ионов, установленный на расстоянии от контролируемой поверхности космического аппарата, спутниковый модем, устройство формирования сигнала, при этом спутниковый модем, устройство формирования сигналов и приемников ионов заключены в одном защитном корпусе, вход приемника ионов соединен с устройством формирования сигнала, выход которого соединен со входом спутникового модема, соединенного с антенной, фокусирующую сетку, прикрепленную к защитному корпусу, устройство ионизации потока газовых частиц, прикрепленное со стороны фокусирующей сетки к защитному корпусу, в защитном корпусе установлен фотоэлектронный умножитель, а на контролируемой поверхности космического аппарата установлен пьезодатчик, соединенный с помощью усилителя с устройством формирования сигнала, при этом на поверхности космического аппарата установлены измерительные антенны не менее трех штук, которые дополнительно снабжены антенными усилителями, соединенными с устройством формирования сигнала.

Изобретение относится к области испытания устройств на герметичность и позволяет оперативно обнаруживать микротечи в вакуумных камерах электрофизических устройств, использующих в качестве теплоносителя или охладителя воду, и направлено на оперативное бесконтактное обнаружение в них микротечей как в процессе обработки внутренней поверхности камеры вспомогательным разрядом, так и непосредственно в штатном режиме работы установки, что обеспечивается за счет того, что при воздействии на стенку камеры плазмы или потока электронов происходит разложение вытекающих паров воды, образуются электронно-возбужденные молекулы гидроксила OH(A2Σ), спектр излучения которых регистрируется спектральным прибором.

Изобретение относится к неразрушающему контролю целостности элементов изделий с рабочей средой и может использоваться для контроля изделий при повышенных рабочих температурах.

Изобретение относится к области контроля герметичности и может быть использовано для контроля нарушений целостности элементов конструкции реактивного двигателя .

Изобретение относится к технике контроля герметичности подземной запорной арматуры и позволяет повысить чувствительность контроля трубопровода под слоем грунта.

Изобретение относится к контролю герметичности магистральных газопроводов и позволяет повысить точность определения мест утечек. .
Наверх