Способ изготовления трубных изделий высокой точности из гафния



Способ изготовления трубных изделий высокой точности из гафния
Способ изготовления трубных изделий высокой точности из гафния

Владельцы патента RU 2707376:

Акционерное общество "Чепецкий механический завод" (RU)

Изобретение относится к металлургии, в частности к способам изготовления труб, трубных полуфабрикатов из металлического гафния с содержанием основного металла не менее 98,8 мас.%, используемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности. Способ изготовления трубных изделий из гафния включает горячую ковку слитка с промежуточными подогревами, горячее выдавливание, многостадийную холодную прокатку с промежуточными и финишной термическими обработками. Проводят многопереходную горячую ковку слитка в интервале температур 850÷1100°C при температуре подогрева 1060÷1100°С с регламентированной степенью деформации на каждом переходе 20÷50% и суммарной степенью деформации не менее 80%. Горячее выдавливание трубных заготовок выполняют в одну стадию с регламентированным коэффициентом вытяжки 5÷10. Механическую обработку горячевыдавленных трубных заготовок проводят с выводом поперечной разностенности до значения не более 5%. Многостадийную холодную прокатку осуществляют со степенью деформации 15÷45% на каждой стадии и суммарной степенью деформации не менее 80%, до и после каждой операции термической обработки проводят химическое травление. Получают трубные изделия из гафния высокой точности при одновременном обеспечении высокого выхода в годное. 6 з.п. ф-лы, 1 табл.

 

Изобретение относится к области обработки металлов давлением, в частности к способам изготовления труб, трубных полуфабрикатов из металлического гафния с содержанием основного металла не менее 98,8 мас.%, используемых в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности.

Известен способ изготовления труб из гафния путем изгибания и сварки плоского листа металла (патент JP 02010299, опубликовано в 1990 году). Известный способ требует выполнения сварки листового гафния и не обеспечивает равномерности свойств в области сварного шва.

Известен способ изготовления бесшовных труб из гафния с содержанием основного металла 95 мас.% (патент JP 3236453, опубликовано 22.10.1992). Способ включает холодную прокатку трубной заготовки, полученной многократной обработкой давлением, с промежуточными термическими обработками между операциями холодной прокатки в диапазоне температур 650ч800°С и окончательную термическую обработку готовой трубы на конечном размере. Известный способ изготовления включает термическую обработку холоднокатаной трубы в диапазоне температур 650ч800°С, что недопустимо для труб, полученных из металлического гафния с содержанием основного металла не менее 98,8 мас.%, так как при указанных условиях термической обработки не обеспечивается снятие напряжений, возникающих в процессе холодной обработки давлением, а также требуемый уровень механических характеристик.

Наиболее близким аналогом заявляемого изобретения является известный способ изготовления труб из гафния (патент RU 2564189, опубликовано 27.09.2015), который предполагает механическую обработку слитка с последующим нанесением на него защитного покрытия, нагрев до температуры 950ч1100°С, горячую ковку с получением поковки. Ковка слитка выполняется до температуры на металле 750ч800°С с подогревами при температуре 950ч1050°С. Из поковки механической обработкой изготавливают заготовки круглого профиля и проводят их вакуумную термическую обработку при температуре 750ч950°С. На заготовку наносят защитное покрытие, нагревают до температуры 750ч950°С и выдавливают в штангу. Штангу механически обрабатывают и сверлением получают гильзу, на которую наносят защитное покрытие, нагревают до температуры 750ч950°С и выдавливают в трубную заготовку. Затем выполняют механическую обработку трубной заготовки, химическое травление, вакуумную термическую обработку при температуре 750ч950°С, многопроходную холодную прокатку с суммарной степенью деформации до 60%, при этом после каждой операции холодной прокатки со степенью деформации до 30% проводят промежуточную и финишную вакуумную термическую обработку при температуре 750ч950°С.

Недостатком известного способа является низкое значение выхода в годное, связанное с низким качеством поверхности поковки, обусловленным широким температурным диапазоном ковки и выдавливания, необходимостью двойного горячего выдавливания, каждое из которых требует механической обработки.

Задача, на решение которой направлено заявляемое изобретение, заключается в получении трубных изделий высокой точности из гафния при одновременном обеспечении высокого выхода в годное.

Технический результат достигается тем, что способ изготовления трубных изделий из гафния включает горячую ковку слитка с промежуточными подогревами, горячее выдавливание, холодные прокатки с промежуточными и финишной термическими обработками, при этом горячую ковку слитка проводят в интервале температур 850ч1100°С при температуре подогрева 1060ч1100°С с регламентированной степенью деформации между подогревами 20ч50% и суммарной степенью деформации не менее 80%, горячее выдавливание трубных заготовок выполняют в одну стадию с регламентированным коэффициентом вытяжки 5ч10, механическую обработку горячевыдавленных трубных заготовок проводят с выводом поперечной разностенности до значения не более 5%, а холодные прокатки осуществляют со степенью деформации 15ч45% между термическими обработками и суммарной степенью деформации не менее 80%, до и после каждой операции термической обработки проводят химическое травление.

Допускается проведение термической обработки трубных заготовок на промежуточных и готовом размерах в защитной атмосфере инертных газов.

Допускается проведение термической обработки трубных заготовок на промежуточных и готовом размерах в вакууме.

Допускается проведение термической обработки трубных заготовок на промежуточных размерах без использования вакуума и защитной атмосферы.

Допускается проведение промежуточных термических обработок трубных заготовок не после каждой холодной прокатки, а через две или три холодные прокатки при заявленной степени деформации.

Перед нагревом и горячим выдавливанием допускается нанесение на трубные заготовки медного подсмазочного покрытия.

Перед нагревом и ковкой допускается нанесение на слиток медного подсмазочного покрытия.

Изготовление трубных изделий с осуществлением заявленных действий при заявленной последовательности и заявленных условиях, выбранных экспериментально, снижает уровень дефектообразования по поверхности поковок, металл прорабатывается по всему сечению, обеспечивая получение регламентированных механических и коррозионных свойств, соответствующих требованиям отраслевых и мировых стандартов, а также высокую точность получаемых размеров изделий.

Ковка слитка в заявленном узком диапазоне температур с регламентированной заявленной степенью деформации обеспечивает глубокую проработку структуры материала при отсутствии поверхностных и внутренних дефектов поковки. Дополнительное нанесение перед нагревом на слиток под ковку защитного покрытия снижает окисление поверхности.

Выдавливание трубных заготовок в заданном температурном диапазоне с регламентированным значением коэффициента вытяжки позволяет получить равномерную проработку структуры материала как по сечению, так и по длине заготовки, не нарушая его целостности по всему объему. Дополнительное использование медного подсмазочного покрытия обеспечивает снижение усилий пресса в процессе выдавливания, повышение качества поверхности выдавленных трубных заготовок и снижение съемов при последующей механической обработке.

Многостадийная холодная прокатка с регламентированной степенью деформации между термическими обработками и регламентированной суммарной степенью деформации обеспечивает глубокую проработку материала по всему сечению трубы и гарантирует высокое качество наружной и внутренней поверхностей труб, коррозионную стойкость изделий, высокую точность размеров. Промежуточные и финишная термические обработки гарантируют снятие механических напряжений и получение требуемого комплекса физико-механических свойств готовых изделий.

Проведение термической обработки трубных заготовок промежуточного и готового размеров в вакууме и защитной атмосфере обеспечивает отсутствие окисления и повышение скорости выполнения операции.

Проведение термической обработки трубных заготовок на промежуточных размерах без использования вакуума и защитной атмосферы дополнительно повышает скорость выполнения операций, при этом высокая стойкость металлического гафния с содержанием основного вещества не менее 98,8 мас.% обеспечивает образование тонкого поверхностного газонасыщенного слоя, удаляемого последующим травлением.

Проведение термической обработки труб на промежуточных размерах не после каждой холодной прокатки обеспечивает высокую производительность процесса путем исключения процессов термической обработки на вспомогательных операциях, таких как травление, подготовка трубных заготовок к прокатке. При этом высокая пластичность металлического гафния и оптимальные схемы деформации с регламентированной степенью деформации обеспечивают получение труб с высоким качеством поверхности и заданными характеристиками механических свойств.

Предлагаемый способ опробован в условиях производства предприятия-заявителя при изготовлении труб высокой точности из слитков металлического гафния.

Слиток гафния марки ГФЭ-1 с содержанием суммы гафния и циркония не менее 99,8 мас.%, гафния не менее 98,8 мас.%, циркония не более 1,0 мас.% нагревали до температуры 1060ч1100°С и выполняли его горячую ковку на ковочном прессе за пять переходов по такой схеме, при которой коэффициент вытяжки между подогревами при температуре 1060ч1100°С составлял 45%, 34%, 37%, 24% и 22% соответственно, при этом суммарный коэффициент вытяжки составлял более 85%. На часть слитков, откованных по описанному маршруту, перед нагревом наносили защитное покрытие.

Из полученных поковок механической обработкой изготавливали трубные заготовки. На заготовки методом электродуговой металлизации или электрохимическим методом наносили медное подсмазочное покрытие, выполняли нагрев до температуры 800°С и выдавливание с коэффициентом вытяжки 6,8.

Трубные заготовки обтачивали и растачивали с выводом поперечной разностенности до значения не более 2,4%, выполняли термическую обработку в вакууме при температуре 850°С и многостадийную холодную прокатку с коэффициентом вытяжки по проходам 15ч41%. Суммарный коэффициент вытяжки составлял 90,8%. Промежуточные и финишную термические обработки выполняли при температуре 850°С, до и после каждой термической обработки выполняли осветляющее химическое травление в растворе азотной и плавиковой кислот со съемом от 0,02 мм на стенку трубы.

Для повышения производительности часть трубных заготовок подвергали термической обработке на промежуточном и готовом размерах с использованием защитной атмосферы инертного газа при температуре 850°С.

Для дополнительного повышения производительности часть трубных заготовок промежуточного размера подвергали термической обработке без использования защитной атмосферы и вакуума при температуре 850°С. После проведения химического травления термообработанных трубных заготовок газонасышенного слоя не выявлено, неблагоприятное воздействие на качество труб отсутствует.

Часть холодных прокаток выполняли в несколько этапов с суммарной степенью деформации до 41% без проведения промежуточных термических обработок.

В результате по различным схемам получены трубы, характеризующиеся свойствами, приведенными в таблице.

Трубные изделия, изготовленные данным способом, соответствуют требованиям отраслевых и международных стандартов и предназначаются для использования в качестве конструкционного материала для активных зон атомных реакторов, в химической и нефтегазовой промышленности, медицине.

По сравнению с наиболее близким аналогом заявляемый способ позволяет изготавливать трубные изделия более высокого качества, с более высоким выходом в годное в более коротком производственном цикле. Низкая себестоимость изготовления обеспечивается высоким выходом металла в годное, значительным снижением уровня брака, сокращением цикла изготовления.

1. Способ изготовления трубных изделий из гафния, включающий горячую ковку слитка с промежуточными подогревами, горячее выдавливание трубных заготовок, механическую обработку, многостадийную холодную прокатку с промежуточными и финишной термическими обработками, отличающийся тем, что проводят многопереходную горячую ковку слитка в интервале температур 850÷1100°С при температуре подогрева 1060÷1100°С с регламентированной степенью деформации на каждом переходе 20÷50% и суммарной степенью деформации не менее 80%, горячее выдавливание трубных заготовок выполняют в одну стадию с регламентированным коэффициентом вытяжки 5÷10, механическую обработку горячевыдавленных трубных заготовок проводят с выводом поперечной разностенности до значения не более 5%, осуществляют многостадийную холодную прокатку со степенью деформации 15÷45% на каждой стадии и суммарной степенью деформации не менее 80%, до и после каждой операции термической обработки проводят химическое травление.

2. Способ по п.1, отличающийся тем, что термические обработки трубных заготовок с промежуточным и готовым размерами проводят с использованием защитной атмосферы инертных газов.

3. Способ по п.1, отличающийся тем, что термические обработки трубных заготовок с промежуточным и готовым размерами проводят с использованием вакуума.

4. Способ по п.1, отличающийся тем, что термические обработки трубных заготовок с промежуточным размером проводят без использования вакуума и защитной атмосферы.

5. Способ по п.1, отличающийся тем, что термические обработки трубных заготовок с промежуточным размером проводят через две или три холодные прокатки.

6. Способ по п.1, отличающийся тем, что перед нагревом трубных заготовок под выдавливание на их поверхность наносят медное подсмазочное покрытие.

7. Способ по п.1, отличающийся тем, что перед нагревом слитка под ковку на его поверхность наносят защитное покрытие.



 

Похожие патенты:

Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем.

Изобретение относится к области металлургии, к разработке новых нерадиоактивных материалов и может быть использовано в атомной энергетической промышленности для изготовления специального оборудования для влажного и сухого хранения отработанного ядерного топлива и его транспортировки.

Изобретение относится к ядерной технике и может быть использовано при изготовлении тепловыделяющих элементов и тепловыделяющих сборок для активных зон реакторов на быстрых нейтронах с жидкометаллическим теплоносителем.

Изобретение относится к составу водорастворимого покрытия для защиты поверхности ядерного топливного стержня, а также к раствору покрытия и способу его нанесения.

Группа изобретений относится к композитной оболочке тепловыделяющего элемента ядерного реактора. Композитная оболочка тепловыделяющего элемента ядерного реактора содержит подложку, содержащую внутренний слой на основе циркония и один промежуточный слой, расположенный на указанном внутреннем слое и состоящий по меньшей мере из одного промежуточного материала, выбранного из тантала, молибдена, вольфрама, ванадия, гафния или их сплавов, и по меньшей мере один внешний слой, расположенный на подложке и состоящий из защитного материала, выбранного из хрома или сплава на основе хрома.

Изобретение относится к атомной энергетике и может найти применение при изготовлении тепловыделяющих элементов (твэлов) для атомных реакторов. Способ герметизации твэлов включает аргонодуговую сварку оболочки с заглушкой из высокохромистой стали, снаряжение твэла топливом, приварку к другому концу оболочки второй заглушки, термообработку сварных соединений.

Данное изобретение относится к оболочкам микротвэлов ядерного реактора. Оболочка полностью или частично изготовлена из композиционного материала с керамической матрицей, содержащей волокна карбида кремния (SiC) в качестве армирования матрицы и межфазный слой между матрицей и волокнами.

Изобретение относится к трубчатой оболочке тепловыделяющего элемента водяного реактора. .

Изобретение относится к атомной энергетике и может использоваться в тепловыделяющих элементах (ТВЭЛ) с таблеточным топливом, которые применяются в быстрых энергетических реакторах.
Изобретение относится к области ядерной энергетики и может быть использовано в сверхвысокотемпературных космических реакторах. .

Изобретения относятся к области обработки металлов давлением и их термической обработки, в частности к производству изделий из труднодеформируемых, высокопрочных металлов и сплавов, включая титан и его сплавы, нитинол.
Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок из титановых двухфазных сплавов. Заготовку подвергают термической обработке для получения дуплексной структуры с объемной долей зерен первичной α-фазы не более 30%.

Изобретение относится к области металлургии, а именно к титановым сплавам с высокой прочностью и коррозионной стойкостью. Альфа-бета титановый сплав, содержащий, мас.%: алюминиевый эквивалент от 2,0 до 10,0; молибденовый эквивалент от 2,0 до 10,0; от 0,24 до 0,5 кислорода; по меньшей мере 2,1 ванадия; от 0,3 до 5,0 кобальта; необязательно, добавку для измельчения зерна, представляющую собой один или более из церия, празеодима, неодима, самария, гадолиния, гольмия, эрбия, тулия, иттрия, скандия, бериллия и бора, в общей концентрации, которая выше 0 до 0,3; необязательно, антикоррозионную добавку, представляющую собой один или более из золота, серебра, палладия, платины, никеля и иридия, в общей концентрации, которая составляет до 0,5; необязательно, олово до 6; необязательно, кремний до 0,6; необязательно, цирконий до 10; необязательно, азот до 0,25; необязательно, углерод до 0,3; остальное - титан и случайные примеси.

Изобретение относится к области металлургии, а именно к титановым сплавам с высокой прочностью и коррозионной стойкостью. Альфа-бета титановый сплав, содержащий, мас.%: алюминиевый эквивалент от 2,0 до 10,0; молибденовый эквивалент от 2,0 до 10,0; от 0,24 до 0,5 кислорода; по меньшей мере 2,1 ванадия; от 0,3 до 5,0 кобальта; необязательно, добавку для измельчения зерна, представляющую собой один или более из церия, празеодима, неодима, самария, гадолиния, гольмия, эрбия, тулия, иттрия, скандия, бериллия и бора, в общей концентрации, которая выше 0 до 0,3; необязательно, антикоррозионную добавку, представляющую собой один или более из золота, серебра, палладия, платины, никеля и иридия, в общей концентрации, которая составляет до 0,5; необязательно, олово до 6; необязательно, кремний до 0,6; необязательно, цирконий до 10; необязательно, азот до 0,25; необязательно, углерод до 0,3; остальное - титан и случайные примеси.

Изобретение относится к локальному упрочнению листовых заготовок из титанового сплава с использованием лазерного луча. По одному варианту переплавляют лазерным лучом 2 локальный участок листа 1 из титанового сплава по прямой или криволинейной траектории вдоль и/или поперек на полную или не полную толщину.

Изобретение относится к области металлургии, в частности к изделиям из титанового сплава, и может быть использовано для изготовления теплообменников, конденсаторов, холодильников и других изделий, обладающих высокой коррозионной стойкостью.

Изобретение относится к области металлургии, в частности к изделиям из титанового сплава, и может быть использовано для изготовления теплообменников, конденсаторов, холодильников и других изделий, обладающих высокой коррозионной стойкостью.

Изобретение относится к области металлургии, в частности к обработке металлов давлением, и может быть использовано для получения проволоки из высокопрочных сплавов на основе титана.

Изобретение относится к области металлургии, а именно к способам получения изделий из титанового сплава. Способ получения изделия из титанового сплава включает плавление шихтовых материалов с источником водорода, содержащим гидрид титана, с образованием расплава титанового сплава, разливку по меньшей мере части расплава с образованием гидрогенизированного слитка титанового сплава, деформирование гидрогенизированного слитка при температуре сначала в области β-фазы, а затем в области α+β+δ-фаз с образованием обработанного изделия, имеющего меньшую площадь поперечного сечения, чем площадь поперечного сечения гидрогенизированного слитка, и дегидрогенизацию обработанного изделия для снижения содержания водорода в обработанном изделии.

Изобретение относится к области металлургии, а именно к способам получения изделий из титанового сплава. Способ получения изделия из титанового сплава включает плавление шихтовых материалов с источником водорода, содержащим гидрид титана, с образованием расплава титанового сплава, разливку по меньшей мере части расплава с образованием гидрогенизированного слитка титанового сплава, деформирование гидрогенизированного слитка при температуре сначала в области β-фазы, а затем в области α+β+δ-фаз с образованием обработанного изделия, имеющего меньшую площадь поперечного сечения, чем площадь поперечного сечения гидрогенизированного слитка, и дегидрогенизацию обработанного изделия для снижения содержания водорода в обработанном изделии.
Изобретение относится к обработке металлов давлением и может быть использовано при получении заготовок из титановых двухфазных сплавов. Заготовку подвергают термической обработке для получения дуплексной структуры с объемной долей зерен первичной α-фазы не более 30%.
Наверх