Способ наращивания монокристаллических слоёв полупроводниковых структур

Изобретение относится к способу наращивания слоев полупроводниковых структур, осуществляемого методами эпитаксиального осаждения. Сущность: способ наращивания монокристаллических слоев полупроводниковых структур, осуществляемого методом эпитаксиального осаждения, заключается в том, что пропускают поток ростообразующего вещества над поверхностью монокристаллической полупроводниковой подложки, нагретой до заданной температуры, и активируют эту поверхность лазерным излучением, направленным под скользящим углом к поверхности и имеющим линейную поляризацию, при которой вектор Е электрического поля лежит в плоскости, практически перпендикулярной к плоскости, касательной к поверхности в точке падения лазерного излучения. Технический результат заключается в повышении скорости наращивания монокристаллических слоев в полупроводниках без увеличения количества дефектов их структуры. 6 з.п. ф-лы, 1 ил.

 

Область техники, к которой относится изобретение

Данное изобретение относится к способу наращивания слоев полупроводниковых структур, осуществляемого методами эпитаксиального осаждения (как парофазной эпитаксией химическим осаждением, так и молекулярно-лучевой эпитаксией).

Уровень техники

В настоящее время процессы формирования полупроводниковых гомо- и гетероструктур методами эпитаксиальной технологии широко применяются для нужд различных отраслей электронного полупроводникового приборостроения. Известные способы проведения эпитаксиального наращивания содержат следующие этапы:

- на пьедестале в герметичной химически стойкой камере (реакторе) располагают плоскую, цилиндрическую или сферическую подложку из монокристалла вещества с необходимыми физико-химическими и структурными параметрами;

- пьедестал с расположенной на нем подложкой нагревают до оптимальной температуры с целью термической активации ее поверхности;

- пропускают над поверхностью нагреваемой подожки поток росто-образующего вещества (возможно, в газовой атмосфере) определенного химического состава с определенной скоростью;

- выбирают время процесса в зависимости от требуемой толщины получаемых эпитаксиальных слоев.

Скорости роста полупроводниковых слоев, формируемых за счет парофазной эпитаксии химическим осаждением, обычно не превышают долей микрона в минуту. Скорости роста полупроводниковых слоев, формируемых за счет молекулярно-лучевой эпитаксии, могут составлять один моноатомный слой в минуту в режиме послойного роста.

Для интенсификации процесса эпитаксиального роста полупроводниковых слоев применяют облучение поверхности роста при помощи лазерного излучения (авторское свидетельство СССР №1671072, опубл. 27.09.2007; патент РФ №2629655, опубл. 30.08.2017; заявка Японии №07-66136, опубл. 10.03.1995).

Однако во всех этих документах лазерное излучение используют для дополнительного нагрева (вплоть до расплавления) полупроводникового материала, для чего направляют это излучение на поверхность полупроводниковой подложки почти отвесно. Это приводит к увеличению числа дефектов в монокристаллической структуре наращиваемого слоя.

В патенте США №6869865 (опубл. 22.03.2005) описан выбранный в качестве ближайшего аналога способ изготовления полупроводниковых устройств, в котором применяют лазерное излучение, вызывающее в объеме кристаллической структуры многофононную абсорбцию, благодаря чему сокращается количество дефектов. И хотя в данном способе не происходит расплавления полупроводника, мощность лазерного излучения должна быть достаточно большой, чтобы проникать внутрь кристаллической струтктуры, поскольку данный способ направлен в первую очередь на активацию примесей, внедренных в эту кристаллическую структуру. Как показано на Фиг. 24 упомянутого патента, падающее почти отвесно лазерное излучение возбуждает атомы примеси и атомы самой монокристаллической структуры практически во всех направлениях и на всю глубину этой структуры. В то же время, при наращивании полупроводниковых слоев важно возбуждать (активировать) атомы лишь поверхностного слоя монокристаллической структуры.

Раскрытие изобретения

Задачей настоящего изобретения является разработка такого способа эпитаксиального наращивания полупроводниковых слоев, который обеспечивал бы повышение скорости наращивания монокристаллических слоев в полупроводниках без увеличения количества дефектов их структуры.

Для решения этой задачи с достижением указанного технического результата предложен способ наращивания монокристаллических слоев полупроводниковых структур, осуществляемого методом эпитаксиального осаждения, заключающийся в следующем: пропускают поток ростообразующего вещества над поверхностью монокристаллической полупроводниковой подложки, нагретой до заданной температуры; активируют эту поверхность лазерным излучением, направленным под скользящим углом к поверхности и имеющим линейную поляризацию, при которой вектор Е электрического поля лежит в плоскости, практически перпендикулярной к плоскости, касательной к поверхности в точке падения лазерного излучения.

Особенность способа по настоящему изобретению состоит в том, что в качестве материала монокристаллической полупроводниковой подложки могут использовать вещество, выбранное из группы, включающей монокристаллический кремний, арсенид галлия, карбид кремния, нитрид алюминия, а в качестве ростообразующего вещества могут использовать вещество, выбранное из группы, включающей моносилан, трихлорсилан, тетрахлорид кремния, триметилгаллий, арсин, аммиак.

Другая особенность способа по настоящему изобретению состоит в том, что поверхность монокристаллической подложки могут выбирать плоской или выпуклой.

Еще одна особенность способа по настоящему изобретению состоит в том, что заданную температуру могут выбирать меньше той температуры, которая обычно необходима для обеспечения протекания с требуемой скоростью химической реакции на поверхности подложки между адсорбированными на ней атомами или молекулами ростообразующего вещества и атомами внешнего слоя этой поверхности

Еще одна особенность способа по настоящему изобретению состоит в том, что скользящий угол могут выбирать не превышающим 3°.

Еще одна особенность способа по настоящему изобретению состоит в том, что на поверхность подложки могут направлять дополнительное лазерное излучение с частотой, соответствующей максимуму поглощения в спектре молекулы или атома ростообразующего вещества, под углом к поверхности, не превышающим 3°.

Наконец, еще одна особенность способа по настоящему изобретению состоит в том, что могут выбирать удельную мощность (основного) лазерного излучения и (или) дополнительного лазерного излучения такой величины, при которой не происходит дополнительного нагрева поверхности.

Подробное описание вариантов осуществления

На приложенном чертеже показана схема реализации способа, предложенного в настоящем изобретении.

Ссылочная позиция 1 на этом чертеже обозначает монокристаллическую полупроводниковую подложку, на которой нужно наращивать слои полупроводника. В качестве материала этой монокристаллической полупроводниковой подложки 1 может использоваться любое вещество, к примеру, монокристаллический кремний, арсенид галлия, карбид кремния, нитрид алюминия. При этом сама монокристаллическая полупроводниковая подложка 1 может быть как плоской, так и выпуклой (в виде цилиндра или сферы).

Над монокристаллической полупроводниковой подложкой 1 пропускают поток ростообразующего вещества. В качестве такого ростообразующего вещества можно использовать, например, моносилан, трихлорсилан, тетрахлорид кремния, триметилгаллий, арсин, аммиак и любые иные вещества, требуемые в зависимости от необходимости формирования конкретной многослойной структуры. Если наращивание осуществляется эпитаксией из парофазного состояния путем химического осаждения, это ростообразующее вещество подается в газовом потоке в заданной концентрации, как это известно специалистам. В случае молекулярно-лучевой эпитаксии ростообразующее вещество представляет собой поток атомов, поступающих на поверхность роста в вакуумной камере при остаточном давлении не выше 10-8 мм. рт.ст.

Ссылочными позициями 2 на приложенном чертеже обозначены первичные двумерные зародыши эпитаксиального роста на поверхности монокристаллической полупроводниковой подложки 1. Первичной точкой образования такого зародыша могут быть, например, ступени, террасы, изломы в поверхностном слое атомов подлежащего наращиванию полупроводника, а также атомно-гладкие участки его поверхности, атомы которых имеют неспаренные валентные электроны. Эти атомы активируются при нагревании монокристаллической полупроводниковой подложки 1, как и в известных способах. Однако в данном изобретении заданная температура нагрева монокристаллической полупроводниковой подложки 1 имеет пониженное значение по сравнению с известными способами-аналогами. Если, к примеру, для стабильного роста монокристаллического эпитаксиального слоя кремния из газовой фазы при использовании моносилана в качестве ростообразующего вещества в газовом потоке водорода диапазон обычно применяемых температур составляет 900-1200°С (при концентрации моносилана от 0,005% об. до 0,15% об., что обеспечивает скорости роста до 0,1-0,5 мкм/мин), то в настоящем изобретении заданная температура может быть на 30-50°С ниже в зависимости от требований конкретного технологического задания.

Такая пониженная температура является следствием того, что в настоящем изобретении дополнительную энергию для протекания реакции эпитаксии с необходимой скоростью обеспечивается за счет активации атомов внешнего слоя поверхности монокристаллической полупроводниковой подложки 1 лазерным излучением 3, направленным под скользящим углом к поверхности подложки 1. Это лазерное излучение имеет линейную поляризацию, условно показанную на приложенном чертеже в виде отрезка синусоиды. При этом вектор Е электрического поля данного лазерного излучения 3 лежит в плоскости, практически перпендикулярной к поверхности монокристаллической полупроводниковой подложки 1. В случае, когда эта поверхность имеет выпуклую форму, плоскость поляризации лазерного излучения 3 должна быть практически перпендикулярна плоскости, касательной к поверхности подложки 1 в точке падения лазерного излучения 3.

Ссылочной позицией 4 на приложенном чертеже обозначен скользящий угол а, под которым лазерное излучение 3 падает на поверхность монокристаллической полупроводниковой подложки 1. Этот угол в предпочтительном варианте осуществления настоящего изобретения не превышает 3°. При этом мощность лазерного излучения 3 выбирают такой величины, при которой не происходит дополнительного нагрева поверхности.

Благодаря воздействию лазерного излучения 3 атомы двумерных зародышей 2 в поверхностном слое монокристаллической полупроводниковой подложки 1 приобретают дополнительную активацию, тогда как «внутренние» атомы подложки 1 остаются менее активированными благодаря более низкой температуре нагрева всей подложки 1. Вследствие этого в поверхностном слое эпитаксиального роста полупроводника не появляются дополнительные дефекты, обычно вызываемые высоким нагревом этой поверхности.

Для повышения скорости роста эпитаксиального слоя на поверхность монокристаллической полупроводниковой подложки 1 можно направлять дополнительное лазерное излучение (не показано) с частотой, соответствующей максимуму поглощения в спектре молекулы или атома используемого ростообразующего вещества. При этом данное дополнительное лазерное излучение направляют под скользящим углом к поверхности, предпочтительно не превышающим 3°.

Воздействие этого дополнительного лазерного излучения приводит к тому, что в молекулах ростообразующего вещества происходит разрыв связей атомов, образующих эти молекулы. В результате большее число атомов может осаждаться на поверхность эпитаксиального роста монокристаллической полупроводниковой подложки 1, что дает повышение скорости наращивания слоев полупроводника. Мощность дополнительного лазерного излучения, как и мощность основного лазерного излучения 3, предпочтительно выбирают такой, чтобы не происходило дополнительного нагрева поверхности подложки 1.

Таким образом, применение данного изобретения позволяет повысить скорость наращивания слоев полупроводника без увеличения количества дефектов в его монокристаллической структуре.

1. Способ наращивания монокристаллических слоев полупроводниковых структур, осуществляемого методом эпитаксиального осаждения, заключающийся в том, что:

- пропускают поток ростообразующего вещества над поверхностью монокристаллической полупроводниковой подложки, нагретой до заданной температуры;

- активируют упомянутую поверхность лазерным излучением, направленным под скользящим углом к упомянутой поверхности и имеющим линейную поляризацию, при которой вектор Е электрического поля лежит в плоскости, практически перпендикулярной к плоскости, касательной к упомянутой поверхности в точке падения упомянутого лазерного излучения.

2. Способ по п. 1, в котором в качестве материала упомянутой монокристаллической полупроводниковой подложки используют вещество, выбранное из группы, включающей монокристаллический кремний, арсенид галлия, карбид кремния, нитрид алюминия, а в качестве упомянутого ростообразующего вещества используют вещество, выбранное из группы, включающей моносилан, трихлорсилан, тетрахлорид кремния, триметилгаллий, арсин, аммиак.

3. Способ по п. 1, в котором упомянутую поверхность монокристаллической подложки выбирают плоской или выпуклой.

4. Способ по п. 1, в котором упомянутую заданную температуру выбирают меньше той температуры, которая обычно необходима для обеспечения протекания с требуемой скоростью химической реакции на упомянутой поверхности между адсорбированными на ней атомами или молекулами упомянутого ростообразующего вещества и атомами внешнего слоя упомянутой поверхности.

5. Способ по п. 1, в котором упомянутый скользящий угол выбирают не превышающим 3°.

6. Способ по п. 1, в котором направляют на упомянутую поверхность дополнительное лазерное излучение с частотой, соответствующей максимуму поглощения в спектре молекулы или атома упомянутого ростообразующего вещества, под углом к упомянутой поверхности, не превышающим 3°.

7. Способ по п. 6, в котором выбирают удельную мощность упомянутого лазерного излучения и (или) упомянутого дополнительного лазерного излучения такой величины, при которой не происходит дополнительного нагрева упомянутой поверхности.



 

Похожие патенты:

Изобретение относится к области микроэлектронной технологии, а именно к способу формирования полупроводниковых структур для преобразования энергии радиохимического распада С-14 в постоянный ток.

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.

Изобретение относится к технологии создания двумерных магнитных материалов для сверхкомпактных спинтронных устройств. Способ получения дисилицида гадолиния GdSi2 со структурой интеркалированных слоев силицена методом молекулярно-лучевой эпитаксии заключается в осаждении атомарного потока гадолиния с давлением PGd (от 0,1 до менее 1)⋅10-8 Торр или PGd (от более 1 до 10)⋅10-8 Торр на предварительно очищенную поверхность подложки Si(111), нагретую до Ts=350 ÷ менее 400°С или Ts=более 400 ÷ 450°С, до формирования пленки дисилицида гадолиния толщиной не более 7 нм.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления полупроводниковых структур с низкой плотностью дефектов.

Изобретение относится к технологии изготовления полупроводниковых структур для приборов электронной техники и может быть использовано для регулирования степени легирования при эпитаксиальном выращивании в вакууме легированных слоев кремния.
Недостаток традиционных напечатанных пленочных PV-элементов заключается в том, что получение этих элементов часто требует дорогих этапов вакуумной подготовки и термического закаливания или запекания, причем тонкие легированные вакуумные пленки чрезвычайно подвержены коррозии и загрязнению.

Изобретение относится к нанотехнологии, а именно к способу выращивания многослойных наногетероэпитаксиальных структур с массивами идеальных квантовых точек (НГЭС ИКТ).

Изобретение относится к способу изготовления полупроводниковой структуры, выступающей из монолитного кремниевого тела, для формирования активных и пассивных элементов интегральных схем.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления гетероструктур с низкой плотностью дефектов.

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления гетероструктур с низкой плотностью дефектов.
Наверх