Красноизлучающий термически стабильный фотолюминофор ba3bi2(bo3)4:eu3+ для чипов светодиодов

Изобретение относится к области производства источников излучения и касается красноизлучающего термически стабильного фотолюминофора Ba3Bi2(ВО3)4 для чипов светодиодов. Фотолюминофор Ba3Bi2(ВО3)4 допирован ионами Eu3+ и принадлежит к семейству M3Ln2(ВО3)4, где М=Ва, а лантаноиды (Ln) замещены трехвалентным висмутом. При этом катионы Ва2+ и Bi3+ разупорядоченно распределены по трем кристаллографически неэквивалентным позициям кристаллической структуры Ba3Bi2(ВО3)4. Технический результат заключается в увеличении оптимальной концентрации ионов допантов и исключения необходимости использования редкоземельных ионов в кристаллической структуре матрицы фотолюминофора. 2 з.п. ф-лы, 6 ил.

 

Изобретение относится к светоизлучающим материалам в «красной» области спектра для индикаторной техники, конкретно к фотолюминофорам (Фл) для чипов светодиодов, излучающих свет при пропускании через него электрического тока, и способу получения такого фотолюминофора.

Актуальность проблемы в рассматриваемой области техники заключается в том, что на сегодняшний день традиционно используемые красноизлучающие фотолюминофоры Y2O3:Eu3+ и Y2O2S:Eu3+ испускают свет с гораздо меньшей интенсивностью чем сине-излучающие и зелено-излучающие фотолюминофоры, что создает трудности при создании чипов для светодиодов на ближнем ультрафиолетовом излучении.

Для оценки новизны заявленного решения рассмотрим ряд известных технических средств аналогичного назначения.

Известен патент US 7274045 для светоизлучающих приложений на основе боратов различных металлов, допированных редкоземельными и переходными элементами. Среди соединений, заявленных в этом патенте, имеется семейство ортоборатов M3Ln2(ВО3)4, допированных Eu2+, Mn2+, Pb2+, Се3+, Eu3+, Tb3+, Bi3+, где М=Mg, Са, Sr, Ва и Zn, a Ln=Sc, Y, La, Gd, Lu. Данное семейство характеризуется тем, что позиции катионов расположены друг от друга на относительно большом расстоянии в элементарной ячейке большого объема.

Оптико-техническая сущность данного решения состоит в том, что двухвалентные ионы допанты занимают в формуле матрицы позиции М, а трехвалентные ионы допанты занимают в формуле матрицы позиции Ln. Чип светодиода (СД), в котором применяются данные фотолюминофоры, имеет полосы излучения в спектральной области 200-500 нм. Данное техническое решение, как наиболее близкое к заявленному по техническому существу и достигаемому результату, принято в качестве прототипа.

Известен фотолюминофор, член данного семейства ортоборатов, с формулой Sr3Y2(BO3)4 (SYB), активированный Eu+3 (L. Не, Y. Wang. J. Alloys Comp. 431 (2007) 226. Doi: 10.1016/j.jallcom.2006.05.047), как перспективный красный фотолюминофор для плазменных панелей. Люминесценция этого соединения, допированного Eu3+, измерена при оптической накачке на длинах волн 254 нм и 147 нм. Данный фотолюминофор проявляет люминесцентные свойства типичные для соединения, допированного Eu3+. Ионы трехвалентного европия входят в нецентросимметричные позиции в кристаллической структуре, что выражается в интенсивной полосе излучения в области 612 нм, которое соответствует электрическому дипольному переходу 5D0-7F2 иона Eu3+. Концентрационное тушение люминесценции при накачке на длине волны 234 нм наступает при 10 ат. % ионов европия (Y. Zhang, Y. Li, Alloys Compd. 384 (2004) 88), на длине волны накачки 254 нм при 15 ат. % и на длине волны накачки 147 нм при 5 ат. % (L. Не, Y. Wang. J. Alloys Comp. 431 (2007) 226.). Координаты цветности значительно лучше, чем у (Y, Gd)BO3: Eu (х=0.640, у=0.359), но интенсивность испускания составляет только 40% от значения (Y, Gd)BO3:Eu3+. Интенсивность испускания повышается с 40% до 60% от значения (Y, Gd)BO3:Eu3+ после содопирования данного фотолюминофора La3+ и Al3+. Таким образом, в данных работах было установлено, что Sr3Y2(BO3)4:Eu3+ является перспективным красноизлучающим вакуумным ультрафиолетовым (VUV) фотолюминофором для плазменных панелей (PDP).

Недостатками данных веществ является высокая стоимость входящих в состав его матрицы редкоземельных элементов, и не самая высокая оптимальная концентрация элемента допанта, после которой наступает тушение люминесценции.

Задачей заявляемого изобретения является увеличению оптимальной концентрации ионов допантов до 50%, а также обеспечение возможности использования менее дорогостоящих химических элементов.

Сущность заявленного технического решения выражается в следующей совокупности существенных признаков, достаточной для решения вышеуказанной задачи изобретения.

Красноизлучающий термически стабильный фотолюминофор Ba3Bi2(ВО3)4, для чипов светодиодов, допированный ионами Eu3+, принадлежащий к семейству M3Ln2(ВО3)4, где М=Ва, а лантаноиды (Ln) замещены трехвалентным висмутом, отличающийся разупорядоченным распределением катионов Ва2+ и Bi3+ по трем кристаллографически неэквивалентным позициям кристаллической структуры Ba3Bi2(ВО3)4.

Кроме того, заявленное техническое решение характеризуется наличием ряда дополнительных факультативных признаков, а именно;

- оптимальная концентрация активных ионов европия составляет 50% по замещению висмута;

- координаты цветности равны (х=0.650, у=0.350) и термически стабильны в интервале температур 299-466 K.

Заявленная совокупность существенных признаков обеспечивает достижение технического результата, который заключается в том, что она приводит к увеличению оптимальной концентрации ионов допантов до 50% (концентрация, при которой наблюдается максимальная интенсивность излучения), а также применению менее дорогостоящих химических элементов. Достигнуто значение оптимальной концентрации иона активатора, превышающее значение в прототипе Sr3Y2(ВО3)4:Eu3+ более чем в три раза, что является основным преимуществом данного фотолюминофора по отношению к его прототипу. Кроме того, снижена стоимость данного фотолюминофора по отношению к прототипу за счет отсутствия редкоземельных ионов в кристаллической структуре матрицы фотолюминофора

Сущность заявляемого технического решения поясняется графическими материалами, где на фиг. 1 представлена кристаллическая структура Ba3Bi2(BO3)4, на фиг. 2а - сопоставление дифрактограмм исследованных образцов с теоретической дифрактограммой Ba3Bi2(BO3)4, на фиг. 2б - зависимости объема элементарной ячейки от концентрации Eu3+, на фиг. 3а - спектры люминесценции Ba3Bi2(BO3)4: Eu3+ при накачке 611 нм, на фиг. 3б - спектры люминесценции Ba3Bi2(BO3)4: Eu3+ при накачке 393 нм (в полосу поглощения Eu3+), на фиг. 4 - зависимость интегральной интенсивности люминесценции от концентрации Eu3+ для Ba3Bi2(BO3)4: Eu3+, на фиг. 5 - спектры люминесценции для Ba3Bi2(Bo3)4:Eu3+ 50 ат. % при разных температурах, на фиг. 6 - распределение катионов Ва2+, Bi3+ и Eu3+ по трем кристаллографически неэквивалентным позициям кристаллической структуры Ba3Bi2(BO3)4: Eu3+.

Серия допированных европием боратов Ba3Bi2(BO3)4: Eu3+ синтезирована методом кристаллизации из расплава при температуре 1200°С и выдержке 30 мин. с последующим медленным охлаждением. В качестве исходных веществ для синтеза фотолюминофоров использовались реактивы ВаСО3, H3BO3, Eu2O3 (все осч) и Bi2O3 (хч). Синтез проводился в платиновых тиглях. После смешивания шихта прессовалась под нагрузкой 90-100 кг/см3.

Допирование Ba3Bi2(BO3)4 ионами Eu3+ осуществлено в широком диапазоне концентрации по формуле Ba3Bi2-xEux(BO3)4: (х=0.005; 0.05, 0.01, 0.2, 0.3, 0.5, 0.7, 1.0, 1.3, 1.6).

Рентгенофазовый анализ образцов проведен на порошковом дифрактометре Rigaku «MiniFlex II» с монохроматизированным излучением CuKα1+α2. Образцы содержали только фазу Ba3Bi2(BO3)4 (фиг. 2а).

Люминесценция. В материалах, активированных редкоземельными ионами, концентрация активных ионов ограничивается эффектом концентрационного тушения люминесценции, в связи с чем должна быть определена оптимальная концентрация ионов Eu3+ в матрице, соответствующая максимальной интенсивности люминесценции. Для этого синтезирована и исследована концентрационная серия образцов красноизлучающих фотолюминофоров Ba3Bi2-xEux(BO3)4: (х=0.005; 0.05, 0.01, 0.2, 0.3, 0.5, 0.7, 1.0, 1.3, 1.6).

На спектрах возбуждения концентрационной серии образцов Ba3Bi2-xEux(BO3)4: (х=0.005, 0.05, 0.01, 0.2, 0.3, 0.5, 0.7, 1.0, 1.3, 1.6) при длине волны излучения λem=611 нм обнаружены следующие полосы, соответствующие переходам: 7F0-5L8 (318 нм), 7F0-5D4 (361 нм), 7F0-5L7 (376 и 381 нм), 7F0-5L6 (392 нм), 7F0-5D3 (414 нм), 7F0-5D2 (464 нм), и 7F0-5D1 (525 и 532 нм). На всех спектрах наиболее интенсивной является полоса возбуждения, атрибутированная как переход 7F0-5L6. (фиг. 3а). Для всех образцов измерены спектры люминесценции при накачке в полосу поглощения Eu3+ в области 392 нм (фиг. 3б). Полученные спектры люминесценции имеют несколько характеристических линий, которые описываются как внутренние 4f-4f переходы. Линии, соответствующие переходам 5D0-7F2 (611 нм) и 5D0-7F4 (704 нм) интенсивнее, чем линия 5D0-7F1 (592 нм) перехода, что свидетельствует об отсутствии активных ионов Eu3+ в центросимметричных позициях и совпадает с кристаллографическими данными.

Зависимость интегральной интенсивности люминесценции от концентрации Eu3+ по замещению Bi3+ представлена на фигуре 4. Как видно из фиг. 4, оптимальная концентрация европия находится в области 50 ат. %. Координаты цветности (х=0.650, у=0.350 при 26°С) и интенсивность люминесценции в зависимости от температуры для образца Ba3Bi2(BO3)4:Eu3+ 50 ат. % были измерены в температурном диапазоне 299-466 K при накачке в полосу поглощения Eu3+ в области 392 нм (фиг. 5).

Описание кристаллической структуры Ba3Bi2(BO3)4. Кристаллическая структура уточнена в пространственной группе Pnma. В кристаллической структуре содержатся три кристаллографически независимые позиции М1-М3, заполненные статистически катионами бария и висмута, между ними располагаются атомы бора в треугольной координации атомами кислорода BO3.

Координация Ва и Bi. В позиции M1 координацию можно представить, как искаженный октаэдр с длинами связей 2.665(9)-2.787(9) ; еще два атома кислорода удалены на 2.96 и 3.01 .

В позиции М2 атом Bi имеет три относительно короткие связи Bi-O 2.53(1), 2.63(1) и 2.66(1) . Таким образом, его координацию можно описать как искаженный тетраэдр, в одной из вершин которого расположен атом висмута. В противоположном направлении находится еще шесть связей Bi-O на расстояниях 2.843(9)-3.377(9) . Атом Ва2+ координирован восемью атомами кислорода, более симметрично, чем атом Bi.

В позиции M3, атом Bi координирован асимметрично с образованием пяти связей Bi-O на расстояниях 2.359(9)-2.559(9) ; а Ва образует довольно симметричный восьмивершинный полиэдр.

Во всех трех катионных позициях атом висмута формирует асимметричное окружение, вплоть до формирования тетраэдра BiO3 (M2), где одной из вершин является сам атом висмута, это вызвано наличием стереоактивной неподеленной электронной пары у Bi3+, которая локализована в направлении, противоположном наиболее коротким связям Bi-O, и придает дополнительный объем кристаллической структуре.

В концентрационной серии образцов Ba3Bi2-xEux(BO3)4 при низкой концентрации допантов (х≤1), ионы Eu3+ входят в позицию M2 кристаллической структуры Ba3Bi2(BO3)4. После увеличения концентрации ионов европия больше 50 ат. % (x>1), ионы Eu3+ начинают входить также в позицию М3 кристаллической структуры Ba3Bi2(BO3)4 (фиг. 6). Этим обусловлено концентрационное тушение люминесценции в данном фотолюминофоре, так как расстояние между центрами люминесценции резко сокращается, а число безызлучательных переходом между центрами люминесценции возрастает.

Список использованной литературы

1. Не L., Wang Y. Synthesis of Sr3Y2(BO3)4: Eu3+ and its photoluminescence under UV and VUV excitation. J. Alloys Compd. - 2007. - Vol. 431. - P. 226-229.

2. Zhang Y., Li Y. Red photoluminecence and crystal structure of Sr3Y2(BO3)4. J. Alloys Compd. - 2004. - Vol. 384. - P. 88-92.

1. Красноизлучающий термически стабильный фотолюминофор Ba3Bi2(ВО3)4 для чипов светодиодов, допированный ионами Eu3+, принадлежащий к семейству M3Ln2(ВО3)4, где М=Ва, а лантаноиды (Ln) замещены трехвалентным висмутом, отличающийся разупорядоченным распределением катионов Ва2+ и Bi3+ по трем кристаллографически неэквивалентным позициям кристаллической структуры Ba3Bi2(ВО3)4.

2. Фотолюминофор по п. 1, отличающийся тем, что оптимальная концентрация активных ионов европия составляет 50% по замещению висмута.

3. Фотолюминофор по п. 1, отличающийся тем, что координаты цветности равны (х=0.650, у=0.350) и термически стабильны в интервале температур 299-466 K.



 

Похожие патенты:

Изобретение может быть использовано в позитронно-эмиссионных томографах, в геофизических исследованиях скважин, а также в системах безопасности. Сцинтиллятор имеет длину волны излучения больше 200 нм, максимум излучения при 320-460 нм и химическую формулу AD(BO3)X2:E, где А - Ва, Са, Sr, La или их сочетание, D - Al, Ga, Mg или их сочетание, X - F, Cl или их сочетание, Е - Се или сочетание Се и Li.

Изобретение относится к способам получения керамических люминесцентных и сцинтилляционных материалов. Такие материалы находят применение в качестве сцинтилляторов для систем рентгеновской компьютерной томографии, досмотровой техники и др., а также в качестве люминофоров для систем твердотельного освещения.

Изобретение относится к химической промышленности и может быть использовано в полиграфических изделиях. Магнитный люминесцентный пигмент на основе алюмоферрата стронция, кобальта, каждая частица которого обладает как магнитными свойствами, так и стоксовой люминесценцией в спектральном диапазоне 450-750 нм, возникающей под действием возбуждающего излучения, лежащего в спектральном диапазоне длин волн 360-1360 нм.

Изобретение может быть использовано при изготовлении экологически чистых источников света. Сначала готовят исходную смесь следующих компонентов, мол.%: карбонат калия K2CO3 - 12,5; карбонат кальция CaCO3 - 25; борную кислоту Н3ВО3 - 50 и оксид редкоземельного элемента неодима Nd2O3 - 12,5.

Изобретение относится к лазерной технике и может быть использовано при юстировке лазерных систем, анализе распределения интенсивности излучения в лазерном пучке, а также для защиты денежных знаков и ценных бумаг.

Изобретение относится к неорганической химии и индикаторной технике и может быть использовано при изготовлении плазменных панелей, возбуждаемых постоянным и переменным полем.

Изобретение относится к способу нанесения фотолюминесцентного материала на поверхность отлитого полимерного материала транспортного средства. Способ содержит этап, на котором фотолюминесцентный материал растворяют в воде для создания раствора.

Изобретение относится к химии и может быть использовано при производстве люминесцентных материалов для источников и преобразователей света. Готовят реакционную смесь механическим перемешиванием в планетарной мельнице в течение 20 мин порошков пероксидов или оксидов щелочноземельных металлов, оксида европия (III), оксида магния, оксида марганца (II), оксида алюминия, алюминия, перхлората натрия.

Изобретение относится к области органической химии, а именно к новым производным бордипиррометена. Предложено соединения общей формулы I, где R означает O(CH2)1-10CH3, NH-(CH2)1-12N3, а также применение соединения.

Изобретение относится с области светотехники и может быть использовано в светодиодах для автомобилей. Источник (1) света содержит источник когерентного возбуждающего излучения (3) в виде твердотельного лазера (2) с максимумом испускания в спектральном интервале 340-480 нм и монокристалл (4) кристаллофосфора, имеющий состав (Y0,15Lu0,85)3Al5O12 или химическую формулу B1-qAlO3:Dq, где В - по меньшей мере один из химических элементов Y, Lu и Gd, D - по меньшей мере один из химических элементов Eu, Sm, Ti, Mn, Pr, Dy, Cr и Се, q - от 0,0001 до 0,2, а содержание химических элементов, обозначенных в указанной химической формуле как D, составляет 0,01-20 мол.%.

Изобретение может быть использовано в фотонике, лазерной технике и оптоэлектронике при изготовлении лазерных фотоприемников, оптически активных слоёв фотолюминесцентных, катодолюминесцентных и электролюминесцентных устройств, амперометрических биосенсоров, хемилюминесцентных сенсоров, золь-гелевых стекол.
Наверх