Устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов



Устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов
Устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов
Устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов
Устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов
Устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов
A61B6/00 - Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии (рентгеноконтрастные препараты A61K 49/04; препараты, содержащие радиоактивные вещества A61K 51/00; радиотерапия как таковая A61N 5/00; приборы для измерения интенсивности излучения, применяемые в ядерной медицине, например измерение радиоактивности живого организма G01T 1/161; аппараты для получения рентгеновских снимков G03B 42/02; способы фотографирования в рентгеновских лучах G03C 5/16; облучающие приборы G21K; рентгеновские приборы и их схемы H05G 1/00)

Владельцы патента RU 2731412:

федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет", (ДГТУ) (RU)

Изобретение относится к трехмерным вращательным рентгеновским средствам получения изображения для использования в компьютерной томографии и идентификации плотности отдельных участков рентгеновского изображения. Устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов, содержащее герметичный контейнер с жидкостью, в котором укреплен объект исследования и составной цилиндрический калибровочный фантом, отличающееся тем, что на крышке контейнера находятся два намагниченных по толщине взаимно притягивающихся магнита, один из которых, управляющий, расположен на внешней стороне упомянутой крышки и выполнен с возможностью перемещения по поверхности крышки, а другой, управляемый – на её внутренней стороне, при этом с внутренним магнитом жестко связана немагнитная трубка, ориентированная перпендикулярно плоскости крышки, внутрь трубки вставлен немагнитный шток, положение которого фиксируется за счет трения, на свободном конце штока укреплен калибровочный фантом, установленный соосно с осью вращения контейнера в непосредственной близости к исследуемой области объекта. Изобретение обеспечивает возможность изменения позиции составного цилиндрического калибровочного фантома относительно интересуемой области объекта исследования без нарушения герметичности контейнера. 5 ил.

 

Изобретение относится к трехмерным вращательным рентгеновским средствам получения изображения для использования в компьютерной томографии и идентификации плотности отдельных участков рентгеновского изображения. Изобретение может быть использовано при исследованиях в направлении физического и стоматологического материаловедения, например при исследовании физико-химических механизмов повреждения зубной эмали.

Технология рентгеновской компьютерной томографии (КТ) разработана в начале 1970-х годов и позволяет неразрушающим образом исследовать внутреннюю структуру объекта, как природного, так и искусственного происхождения. Проекции изучаемого объекта при прохождении через него рентгеновских фотонов под разными углами обзора реконструируются для получения набора виртуальных сечений объекта. При этом обычная рентгенография ограничивается предоставлением двумерных изображений, которые представляют собой суммирование поглощенных фотонов в исследуемом материала вдоль пути рентгеновского излучения, генерируемого источником. Пространственное разрешение КТ для применения в медицине обычно составляет около 1 мм3 (минимальный геометрический элемент - воксель - реконструированного объемного изображения является кубом стороной около 1 мм), при этом современные системы компьютерной рентгеновской компьютерной микротомографии (микро-КТ) способны получать трехмерные изображения объекта с разрешением, меньшим 1 мкм3. Помимо оценки геометрии исследуемого объекта, КТ применяется для изучения плотности минерализации на основе значений по шкале серого цвета (от 0 до 65535) изображения КТ, позволяющей визуализировать затухание рентгеновского излучения, проходящего через образец. Ряд работ демонстрируют, что значения данной шкалы пропорциональны плотности минерализации. Для количественного определения плотности минерализации требуется калибровка зависимости значения серого от плотности изучаемого образца для конкретных условий проведения томографии (температура, влажность, среда, позиция источника излучения и детектора по отношению друг к другу). С этой целью помещают рядом с исследуемым образцом другой образец - калибровочный фантом, который представляет собой эталон с известными значениями плотности его составляющих.

Для минимизации погрешности измерения и получения максимальной детализации итоговой реконструкции необходимо:

- провести позиционирование калибровочного фантома как можно ближе к исследуемому объекту;

- установить калибровочный фантом по оси вращения предметного столика микро-КТ над или под образцом;

- соблюсти соразмерность исследуемой области и калибровочного фантома.

Таким образом, для исследования локального участка образца, например, не целого зуба, а одного из его жевательных бугорков на предмет количественного снижения плотности минерализации в области кариеса, оператору необходимо провести следующее позиционирование: подвести в емкости с дистиллированной водой калибровочный фантом соразмерный с жевательным бугорком по оси вращения бугорка под или над ним, и зафиксировать его таким образом, чтобы он не перекрыл исследуемую область зуба.

Известны применения калибровочных фантомов при медико-биологических исследования на томографах. Например, (U.S. Patent 5,335,260, G01D 18/00, Aug. 2, 1994), согласно которому рентгеновский снимок биологического объекта (руки человека), находящегося в контейнере с жидкостью производится одновременно с расположенным рядом калибровочным объектом, который имеет вид ступенчатого параллелограмма и выбранного для эталона материала; ступенчатый ослабитель. Степень поглощения рентгеновских лучей связывается с плотностью материала тем, что она зависит как от плотности, так и от толщины. Известен также другой вид калибровочного фантома (U.S. Patent, 4,985,906, GON 23/00, Jan. 15, 1991), который представляет собой систему параллельных цилиндрических емкостей, запаленных жидкостями различной плотности. Данный калибровочный фантом располагается непосредственно на исследуемом биологическом объекте или под ним. Основным недостатком приведенных аналогов является недостаточная точность, обусловленная тем, что при 3-d рентгеновских снимков с помощью томографа, для разных проекций рентгеновские лучи проходят через калибровочный фантом по-разному. Поэтому, приемлемая точность будет только при определенной проекции изображения.

Известны применения калибровочных фантомов для микробиологических объектов, например, тканей парадонта: (RU №2320267 С2 М. Кл. А61В 6/00, опубл. 27.03.2008). В данном аналоге используется ступенчатый калибровочный фантом. Для повышения точности размер фантома соизмерим с размером объекта (зуба). Однако он, как и в предыдущих аналогах, находится с одной стороны объекта и разным образом проявляется при различных проекциях, что снижает точность и технологические возможности, т.к. актуален только для одной проекции.

Наиболее близкой по технической сущности является решение проблемы калибровочного фантома, позволяющего проводить оценку плотности объекта при любой проекции объекта является изготовление калибровочного фантома в виде соосного набора дисков из материалов различной плотности, ось которого совпадает с осью вращения в томографе (Alyahya, A., Alqareer, A. and Swain, М, 2019. Microcomputed Tomography Calibration Using Polymers and Minerals for Enamel Mineral Content Quantitation. Medical Principles and Practice, 28(3), pp. 247-255). Сам объект находится в герметичном контейнере с жидкостью. Калибровочные диски имеют размер, соизмеримый с исследуемым зубом. При таком решении для любой проекции изображение калибровочного фантома будет иметь одинаковый вид. Это значительно расширяет технологические возможности метода и повышает его точность. Недостатком приведенного технического решения является невозможность оперативного изменения положения оси калибровочных фантомов. Кроме того, в ряде случаев требуется исследовать область объекта небольшого объема, расположенную вне оси объекта. Для этого имеется возможность изменить ось вращения путем параллельно смещения контейнера.

Задачей предлагаемого изобретения является разработка устройства позиционирования дискового калибровочного фантома относительно заданного положения оси вращения объекта без нарушения герметичности контейнера с жидкостью, что должно расширить технологические возможности и точность определения плотности материала объекта в микрообластях.

Сущность изобретения заключается в том, что устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов, содержащее герметичный контейнер с жидкостью, в котором укреплен объект исследования и составной цилиндрический калибровочный фантом, при этом на крышке контейнера находятся два намагниченных по толщине взаимно притягивающихся магнита, один из которых, управляющий, расположен на внешней стороне упомянутой крышки, и выполнен с возможностью перемещения по поверхности крышки, а другой управляемый - на ее внутренней стороне, при этом с внутренним магнитом жестко связана немагнитная трубка, ориентированная перпендикулярно плоскости крышки, внутрь трубки вставлен немагнитный шток, положение которого фиксируется за счет трения, на свободном конце штока укреплен калибровочный фантом, установленный соосно с осью вращения контейнера в непосредственной близости к исследуемой области объекта.

Технический результат, состоящий в возможности изменения позиции составного цилиндрического калибровочного фантома относительно интересуемой области объекта исследования без нарушения герметичности контейнера с помощью двух намагниченных по толщине взаимно притягивающихся магнита, один из которых (управляющий) расположен на внешней стороне крышки контейнера, а другой (управляемый) - на ее внутренней стороне, при этом с внутренним магнитом жестко связана легкая немагнитная трубка, ориентированная перпендикулярно плоскости крышки, внутрь трубки вставлен немагнитный шток, положение которого фиксируется за счет трения, на свободном конце штока укреплен калибровочный фантом. Перед проведением исследований на рентгеновском микро томографом составной калибровочный цилиндрический фантом устанавливают соосно с осью вращения контейнера в непосредственной близости к исследуемой области объекта.

Сущность изобретения поясняется чертежами, где на

фиг. 1 - приведена конструкция устройства позиционирования калибровочного фантома;

фиг. 2 - приведено пояснение взаимодействия управляющего и управляемого магнита;

фиг. 3 - фотография экспериментального контейнера для исследования выделенной области зуба на рентгеновском микротомографе, закрепленном на стандартном держателе образцов установки Versa 520 (Zeiss, США);

фиг. 4 - калибровка зависимости значения серого от плотности изучаемого образца;

фиг. 5 - результаты исследований объекта с калибровочным фантомом, полученные с использование ПО VGstudio Max (Volume Graphics, Германия).

Устройство позиционирования калибровочного фантома содержит герметичный контейнер 1 с жидкостью, в котором укреплен объект исследования 2 и составной цилиндрический калибровочный фантом 3. Контейнер закрывается герметично крышкой 4 на которой находятся два намагниченных по толщине взаимно притягивающихся магнита 5 и 6. Верхний магнит 5, является управляющим. Нижний магнит 6 является управляемым и, благодаря магнитному притяжению к магниту 5, всегда находится под ним. С управляемым магнитом 6 жестко связана легкая немагнитная трубка 7, внутрь которой с трением вставлен металлический или пластмассовый пруток 8, на свободном конце которого укреплен калибровочный фантом 3, представляющий собой набор дисков из материалов различной плотности.

Устройство работает следующим образом. Контейнер 1 для исследуемого микрообъекта подготавливается предварительно: укрепляется объект 2, выбирается ось вращения контенера 9 рентгеновском микротомографе. С помощью регулируемого прутка 8 фиг. 1) устанавливается вертикальное положение калибровочного фантома 3. Крышка 4 фиксируется на контейнере 1. Управляющий магнит 5 перемещается по поверхности крышки так, чтобы его ось совпала с осью вращения контейнера 9. При этом управляемый магнит 6 вместе с калибровочным фантомом 3 переместится в нужное положение. После этого можно проводить исследование на микротомографе.

Для доказательства реализуемости и работоспособности предлагаемого изобретения был изготовлен лабораторный макет. В качестве контейнера использован пластмассовый одноразовый шприц 15 мл. Верхняя крышка изготовлена из плексигласа толщиной 0,8 мм. В качестве управляющего и управляемого магнитов использованы неодимовые магниты в форме цилиндров диаметром 4 и высотой 4 мм. Калибровочный фантом изготовлен из набора трех кубиков с скругленными гранями (около 1 мм): магниевый сплав Ма2-1.м (плотность составляет 1,78 г/см3), алюминиевый спеченый сплав САС 1-400 (плотность составляет 2,69 г/см3), титан ВТ 1-0 (плотность составляет 4,5 г/см3). Пруток 8 изготовлен из алюминия.

Фотография лабораторного макета приведена на фиг. 2. Экспериментальные исследования зуба с использованием предлагаемого устройства позиционирования проведены на установке Versa 520 (Zeiss, США). Образец представляет собой шлиф (тонкая пластина) верхнечелюстного моляра человека, удаленного у пациента в стоматологическом отделении клиники Ростовского государственного медицинского университета по ортодонтическим причинам (комитет по этике Ростовского государственного медицинского университета одобрил исследование, в котором был использован данный зуб (Sadyrin и соавт., 2020), пациент дал информированное согласие). Были применены следующие параметры сканирования: напряжение рентгеновской трубки 80 кВ, ток 81 мкА, размер пикселя 40 мкм, вращение образца на 360°, время экспозиции 1 с. В процессе сканирования получена 2001 проекция образца с калибровочными фантомами.

В качестве контейнера был использован одноразовый шприц 5 мл. Образец зуба 2 фиксировался на дне шприца стомотологическим воском 10. Калибровочный фантом 3 ориентируется по выбранной оси вращения 9. Контейнер с помощью обрезка иглы 11 фиксировался в патроне 12, укрепленном на стойке 13 стандартного держателя образцов 14 установки Versa 520 (Zeiss, США). В микротомографе столик укреплялся так, чтобы указанные элементы были коаксиальны.

На фиг. 3 представлена калибровочный график, полученный на основании обработки данных плотности минерализации составляющих калибровочного фантома с градациями значений серого цвета на рентгенограмме. С помощью этого градуировочного графика находилась плотность исследуемого объекта в требуемой точке.

На фиг. 4 представлены результаты эксперимента совместно со шкалой плотности.

Таким образом, экспериментальные исследования показали работоспособность предлагаемого изобретения и высокую эффективность в позиционировании калибровочного фантома при исследованиях микроструктуры биологических объектов.

Устройство позиционирования калибровочного фантома при исследованиях микроструктуры биологических объектов, содержащее герметичный контейнер с жидкостью, в котором укреплен объект исследования и составной цилиндрический калибровочный фантом, отличающееся тем, что на крышке контейнера находятся два намагниченных по толщине взаимно притягивающихся магнита, один из которых, управляющий, расположен на внешней стороне упомянутой крышки и выполнен с возможностью перемещения по поверхности крышки, а другой, управляемый - на ее внутренней стороне, при этом с внутренним магнитом жестко связана немагнитная трубка, ориентированная перпендикулярно плоскости крышки, внутрь трубки вставлен немагнитный шток, положение которого фиксируется за счет трения, на свободном конце штока укреплен калибровочный фантом, установленный соосно с осью вращения контейнера в непосредственной близости к исследуемой области объекта.



 

Похожие патенты:

Данное изобретение относится к автоматической либо автоматизированной калибровке систем и датчиковпутем «обучения» интеллектуального датчика в процессе калибровки.

Изобретение относится к системам программирования и тестирования звуковых карточек. Технический результат заключается в обеспечении быстрого программирования и тестирования звуковых карточек.

Изобретение относится к области рентгенотехники и направлено на получение в процессе простой проверки однозначного ответа о техническом состоянии рентгеновского аппарата до начала приема пациентов.

Изобретение относится к технике измерений при воздействии помех, например, в лазерной дальнометрии или в системах охранной сигнализации. Способ проверки вероятности р достоверных измерений прибора, заключающийся в n-кратном повторении измерений, определении количества m недостоверных измерений и сравнении m с предельно допустимым значением количества недостоверных измерений mпд(n), проверку проводят поэтапно, а именно, на первом этапе производят серию измерений, где t - доверительный коэффициент, и если количество недостоверных измерений не превышает m1=0, то прибор считают исправным и проверку прекращают, если m1=1, то серию измерений продолжают до количества , и если количество недостоверных измерений не превышает m2=1, то прибор считают исправным и проверку прекращают, если m2=2, то серию измерений продолжают до количества , и если количество недостоверных измерений не превышает m3=2, то прибор считают исправным и проверку прекращают, аналогичным образом серию измерений продолжают до и считают прибор исправным, если количество недостоверных измерений в серии mk≤(k-1), в противном случае прибор считают не выдержавшим проверку.

Изобретение относится к измерительной технике и может быть использовано для диагностики измерительного канала (ИК), выполняющего измерение контролируемого параметра объекта, в режиме непрерывного технологического процесса.

Группа изобретений относится к измерительной технике и может быть использована для диагностики резервированных измерительных каналов (ИК), выполняющих измерения одного и того же контролируемого параметра объекта, в режиме непрерывного технологического процесса.
Изобретение относится к системам испытания оборудования. Технический результат заключается в обеспечении достаточного тестового покрытия, гарантирующего максимально возможную полноту проведения испытаний.

Способ поверки группы измерительных приборов на производственном объекте по наблюдениям за технологическим процессом относится к области измерительной техники и предназначен для поверки и калибровки измерительных приборов, установленных на объектах трубопроводного транспорта.

Изобретение относится к области измерительной техники и касается способа калибровки измерительного устройства для измерения материальных свойств алмазов. Способ включает в себя предоставление образца из трех или больше измеряемых алмазов, которым присвоены целевые не зависящие от порядка представления алмазов статистические данные по одному или нескольким материальным свойствам, предоставление зарегистрированных измерительным устройством не зависящих от порядка представления алмазов статистических данных для образца из трех или больше упомянутых алмазов и преобразование фактического результата измерения таким образом, чтобы преобразованные наблюдавшиеся статистические данные совпадали с целевыми статистическими данными.

Изобретение относится к транспортным средствам с механической трансмиссией. Способ калибровки датчика выбранной передачи для механической трансмиссии с механизмом переключения передач Н-типа, в котором выбираемые передачи расположены в два ряда и имеют несколько параллельных плоскостей движения рычага переключения передач.

Изобретение относится к медицине, а именно к экспериментальной хирургии, и может быть использовано для оценки жизнеспособности тканеинженерной конструкции при закрытии критического дефекта трахеи на модели экспериментального животного.
Наверх