Устройство регистрации интервалов кардиоцикла и автоматического расчета индекса производительности миокарда сердца человека, в том числе сердца плода во внутриутробном периоде

Изобретение относится к медицинской технике, а именно к устройству измерения кардиоинтервалов человека, в том числе неинвазивно у плода во внутриутробном периоде, и автоматического расчета на их основе индекса производительности миокарда. Устройство содержит последовательно соединенные ультразвуковой датчик с излучателем и приемником отраженного сигнала, устанавливаемые на груди обследуемого или на передней брюшной стенке беременной, фазочувствительный выпрямитель и высокочастотный фильтр, с установленным усилителем с коэффициентом усиления в 10-20 раз, а также блок разрешения, устройство сравнения сигналов, блок памяти эталонов, блок измерения интервалов, сумматор и блок деления. На первом выходе блока измерения интервалов формируются данные об интервале времени нулевого значения ультразвукового сигнала длительностью 20-40 мс, на втором выходе блока измерения интервалов – данные об интервале времени нулевого значения ультразвукового сигнала длительностью 70-100 и более мс, на третьем выходе блока измерения интервалов – данные о длительности периода изгнания, соответствующего максимальному значению усиленного ультразвукового сигнала. На выходе блока деления формируется сигнал индекса производительности миокарда. Обеспечивается точное измерение кардиоинтервалов и достоверный расчет индекса производительности миокарда сердца человека, в том числе и сердца плода во внутриутробном периоде по принципу «от удара к удару». 2 ил.

 

Изобретение относится к медицинской технике, в том числе к диагностике в кардиологии, а также к диагностике состояния сердца плода во внутриутробном периоде.

Одним из фундаментальных методов диагностики состояния сердца является его фазовый анализ, в который входит регистрация временных интервалов сердечного цикла. В первую очередь это относится к контролю частоты сердечных сокращений (ЧСС), который чаще всего осуществляется путем измерения R-R интервалов электрокардиограммы. Для фазового анализа также важны длительности периодов изовлюмического напряжения, расслабления и периода изгнания. Информация, получаемая из показателей рассчитанных на основе таких кардиоинтервалов, важна для оценки сократительной способности сердца и его насосной функции. Особенно важна эта информация при исследовании сердца плода, поскольку никаких измерений артериального давления плода неинвазивными методами сделать невозможно.

Наиболее близким к предлагаемому устройству является устройство точной регистрации ЧСС плода во внутриутробном периоде, описанное в патенте на полезную модель RU №194464 (МПК А61В 8/02, опубл. 11.12.2019 г.). В этом устройстве обеспечивается точная регистрация ЧСС внутриутробного плода неинвазивным способом по принципу «от удара к удару». Существенным отличительным признаком этого устройства, является усилитель, который сигнал, отраженный от сердечных клапанов плода и обладающий несколькими пиками, преобразует в сигнал с двумя четко выраженными трапециями одинаковой амплитуды, соответствующих максимальным значениям сигнала на выходе электронного усилителя и их нулевым значениям. При этом такая форма сигнала возможна только в случае направления ультразвукового излучателя на сердечные клапаны, причем интервалы с нулевым значением сигнала соответствуют периодам изоволюмического сокращения и расслабления, когда никакого движения створок клапанов или потоков крови в сердце не происходит.

Недостатком этого устройства следует признать ограниченность его диагностических возможностей, связанных с регистрацией только частоты сердечных сокращений и анализом ее вариабельности. Этот прибор не позволяет осуществлять фазовый анализ сердечных сокращений и сопоставлять длительности периодов изоволюмических сокращения и расслабления с длительностью фазы изгнания крови.

Известно, что характеристическим показателем, отражающим состояние сократительной функции сердца, обеспечивающей адекватное кровообращение является индекс производительности миокарда (ИПП), который вычисляется по следующей формуле

где (ВИС) - время изоволюмического сокращения (мс), (ВИР)- время изоволюмического расслабления (мс) и (ВИ) - время изгнания (мс).

Ранее на взрослых людях была показана достоверная связь ИМИ (часто называемого индексом Tei - по имени, предложившего его японского ученого) с основными характеристиками систолической и диастолической функции сердца [Tei]. Выявлена достоверная корреляционная связь между этим индексом и «золотыми» стандартами оценки функции миокарда - инвазивными гемодинамическими показателями: максимальной скоростью повышения давления в течение периода изоволюмического сокращения (dP/dt max), максимальной скоростью снижения давления (-dP/dt max) и константой времени снижения давления в течение периода изоволюметрического расслабления (tau) [Lind е.а.].

Показана информативность этого показателя и в акушерстве. Так, продемонстрировано диагностически значимое увеличение его у плодов с синдромом задержки развития, обусловленным плацентарной недостаточностью и преэклампсией, при анемии плода [Zhang е.а.; Bhorat е.а.]. Преимуществом ИПМ является независимость его от частоты сердечных сокращений, поскольку она не влияет на фазовую структуру кардиоцикла [Bhorat е.а.]. Однако в кардиологии измерение ИПМ требует достаточно длительного времени для ручного расчета, а широкое внедрение этого индекса в практическое акушерство ограничено рядом дополнительных обстоятельств. Так, определение ИПМ требует наличия диагностического ультразвукового прибора высокого класса, работающего в импульсном доплеровском режиме, квалифицированного специалиста и достаточно большого времени для проведения исследования внутрисердечной гемодинамики плода, необходимого для правильной локализации пробного допплеровского объема в полости желудочка, точного определения моментов закрытия клапанов сердца и появления потоков крови [Bhorat е.а.]. В то же время, отраженный от структур сердца плода, ультразвуковой сигнал кардиотокографа, работающего в постоянном допплеровском режиме, несет в себе полную информацию о механических событиях в ходе систолы и диастолы. При этом, идентификация изоволюмических времен сокращения и расслабления представляется более простой задачей, поскольку в эти периоды никаких движений створок клапанов или изменений скорости потоков крови не происходит, а отраженный сигнал устойчиво находится на нулевом уровне. Соответственно время выброса - это период между временами изоволюмического сокращения и расслабления. Более того, использование многокристаллического датчика кардиотокографа обеспечивает хороший «захват» сердца плода и повышает качество сигнала. Ранее авторы доказали техническую возможность регистрации, точного измерения длительности изоволюмических периодов сокращения и расслабления у плода в ходе кардиотокографического исследования, что позволяет рассчитывать ИПМ в автоматическом режиме [сноска на патент].

Техническая задача предлагаемого устройства - обеспечить точное измерение кардиоинтервалов и достоверный расчет индекса производительности миокарда сердца человека, в том числе и сердца плода во внутриутробном периоде по принципу «от удара к удару».

Техническая задача достигается тем, что устройство точной регистрации кардиоинтервалов человека, в том числе у плода во внутриутробном периоде и автоматического расчета для них ИПМ, состоящее из последовательно соединенных ультразвукового датчика (работающего в режиме постоянного допплера) с излучателем и приемником отраженного сигнала, устанавленных на груди обследуемого или на передней брюшной стенке беременной, фазочувствительного выпрямителя и высокочастотного фильтра, с установленным усилителем и коэффициентом усиления в 10-20 раз. Выход усилителя соединен с первым входом блока разрешения и первым входом устройства сравнения сигналов, второй вход устройства сравнения сигналов соединен с выходом блока памяти эталонов, выход устройства сравнения подключен ко второму входу блока разрешения, выход блока разрешения соединен с входом блока измерения интервалов, первый выход блока измерения интервалов, на котором формируются данные об интервале времени нулевого значения ультразвукового сигнала длительностью 20-40 мс, соединен с первым входом сумматора, второй выход блока измерения интервалов, на котором формируются данные об интервале времени нулевого значения ультразвукового сигнала длительностью 70-100 и более мс, соединен со вторым входом сумматора, выход которого соединен с первым входом блока деления, а третий выход блока измерения интервалов, на котором формируются данные о длительности периода изгнания, соответствующего максимальному значению усиленного ультразвукового сигнала, соединен со вторым входом блока деления, на выходе которого формируется сигнал индекса производительности миокарда.

Существенным отличительным признаком устройства, является усилитель, который сигнал с несколькими пиками, отраженный от сердечных клапанов, преобразует в сигнал с двумя ярко выраженными трапециями одинаковой амплитуды, соответствующий максимальному значению сигнала на выходе электронного усилителя и его нулевому значению. При этом такая форма сигнала возможна только в случае направления ультразвукового излучателя на сердечные клапаны, причем нулевые интервалы соответствуют периодам изоволюмического сокращения и расслабления.

Наличие в устройстве блока измерения интервалов, сумматора и блока деления обеспечивает автоматический расчет ИПМ в течение длительного времени (от нескольких минут до нескольких часов, если это необходимо для диагностики состояния сердца).

Устройство и порядок расчетов временных интервалов фаз кардиоцикла основаны фундаментальных фактах физиологии сердечной деятельности. Как следует из описания кардиоцикла (https://ru.wikipedia.org/wiki/Сердечный цикл) есть только два периода, в которых сердечные клапаны - выносящие полулунные (аортальный и легочной артерии) и предсердно- желудочковые (митральный и трехстворчатый) закрыты, а створки их неподвижны - это периоды изоволюмического сокращения и расслабления. В эти периоды отраженный допплеровский ультразвуковой сигнал (УЗС) не имеет частотного сдвига, что соответствует нулю. Во все другие интервалы сигнал будет больше нуля. Если сигнал многократно усилить, то во все другие периоды сердечного он станет максимальным. Т.е. последовательность нулевых и максимальных сигналов на выходе усилителя сигнала позволяет идентифицировать движения сердечных клапанов плода или потоков крови в сердечных камерах, как отражающих ультразвуковой сигнал структур. Таким образом сигнал, отраженный от клапанов и усиленный в 10-20 раз будет выглядеть как последовательность трапеций, разделенных нулевыми интервалами (фиг. 1). Никакие другие сердечные структуры и сосуды не смогут сформировать сигнал подобной формы. Благодаря большому коэффициенту усиления фронты нарастания и спадения сигнала становятся очень короткими и позволяют определить начало и конец каждого кардиоинтервала значительно точнее, чем это можно сделать по сигналу с пиковым значением скорости движения структуры. Анализ сигналов, полученных экспериментально, показал, что наилучший для измерений это фронт падения сигнала перед началом периода изоволюмического напряжения (A1, А2) на фиг. 1. Т.е. кардиоинтервалы, соответствующие изоволюмическому сокращению - это интервалы A11, соотвествующие изоволюмическому расслаблению С1-D1, а периоду изгнания В11.

При этом погрешность измерения не будет превышать 2 мс, т.к. фронты изменения сигналов в этих точках после усиления становится существенно круче, чем фронт изменения пикового значения ультразвукового сигнала при традиционном способе измерения индекса ИПМ. Более того, если традиционное измерение ИПМ требует того, чтобы эксперт поставил калипер (маркер) ультразвукового прибора в определенную точку пика допплеровского сигнала сложной формы, что связано с возможной субъективной ошибкой. Автоматическое определение момента обнуления сигнала сводит задачу к бинарному решению - «да-нет» и полностью исключает влияние эксперта.

Сущность заявляемого технического решения поясняется графическими материалами, где на фиг. 1 представлена зарегистрированная временная диаграмма ультразвукового сигнала, отраженного от сердечных структур и сердечных клапанов, на фиг.2 представлена структурная схема предлагаемого устройства.

Устройство точной регистрации кардиоинтервалов человека содержит последовательно соединенные ультразвуковой датчик 1 с излучателем и приемником отраженного сигнала, устанавливаемых на груди обследуемого или на передней стенке живота беременной, фазочувствительный выпрямитель 2 и высокочастотный фильтр 3, с установленным усилителем 4 с коэффициентом усиления в 10-20 раз. Выход усилителя 4 соединен с первым входом блока разрешения 5 и первым входом устройства сравнения сигналов 6, второй вход устройства сравнения сигналов 6 соединен с выходом блока памяти эталонов 7, выход устройства сравнения 6 подключен ко второму входу блока разрешения 5, выход блока разрешения 5 соединен с входом блока измерения интервалов 8. Первый выход блока измерения интервалов 8, на котором формируются данные об интервале времени нулевого значения ультразвукового сигнала длительностью 20-40 мс, соединен с первым входом сумматора 9. Второй выход блока измерения интервалов 8, на котором формируются данные об интервале времени нулевого значения ультразвукового сигнала длительностью 70-100 и более мс, соединен со вторым входом сумматора 9, выход которого соединен с первым входом блока деления 10, а третий выход блока измерения интервалов 8, на котором формируются данные о длительности периода изгнания, соответствующего максимальному значению усиленного ультразвукового сигнала, соединен со вторым входом блока деления 10, на выходе которого формируется сигнал индекса производительности миокарда.

Устройство работает следующим образом.

Оператор устанавливает ультразвуковой датчик 1 (фиг. 2) на левой части груди пациента или передней стенке живота беременной таким образом, что отраженный от движущихся сердечных структур плода допплеровский сигнал, проходя через блоки 2, 3, 4 после многократного усиления становится похожим на две трапеции с разной длительностью. Сигнал в устройстве сравнения 6 сравнивается с эталонным сигналом, находящимся в памяти блока памяти эталонов 7. Совпадение измеренного сигнала и эталона свидетельствует о том, что излучатель направлен на сердце пациента или плода, и блок разрешения 5 дает возможность реализовать режим расчета индекса Теи, при котором в блоке измерения интервалов нулевых значения ультразвукового сигнала 8 вычисляют длительности коротких пауз, соответствующие периодам изоволюмического напряжения (интервалы С11 на фиг.1), длительности длинных пауз, соответствующих длительностям изоволюмического расслабления (А11 на фиг. 1) и длительности между паузами, соответствующие периодам изгнания, (интервалы В11 на фиг. 1). Значения этих трех временных интервалов формируются соответственно на трех выходах блока измерения интервалов 8. На первом выходе - период изволюмического напряжения, на втором - расслабления, на третьем - период изгнания. Первый и второй выходы блока 8 соединены с первым и вторым входами сумматора 9, на выходе которого автоматически формируется сигнал суммы изволюмических интервалов. Этот сигнал поступает на первый вход блока деления 10 (как делимое), второй вход блока 10 (делитель) соединен с третьим выходом блока 8, на котором формируются сигналы периода изгнания. На выходе блока деления 10 формируется сигнал «индекса Теи».

По измеренным значениям интервалов изоволюмического напряжения и периодов изоволюмического расслабления производится расчет ИПМ в динамике и с точностью определяемой точностью приборов, т.е. объективной и высокой.

Таким образом, предлагаемое устройство позволяет решить проблему неинвазивной, мониторной оценки функционального состояния миокарда и сократительной способности сердца как взрослого человека, ребенка, так и внутриутробного плода путем расчета индекса производительности миокарда.

ЛИТЕРАТУРА

1. Tei С. New noninvasive index for combined systolic and diastolic ventricular function. J. Cardiol. 1995; 26: 135-136.

2. Lind L., Andren В., Arnlov J. The Doppler-derived myocardial performance index is determined by both left ventricular systolic and diastolic function as well as by afterload and left ventricular mass. Echocardiography 2005; 22(3): 211-216.

3. Zhang L., Han J., Zhang N., Kagan K.O. Assessment of fetal modified performance index in early-onset and late-onset fetal growth restriction. Echocardiography. 2019; 36: 1159-1164.

4. Bhorat I.E., Bagratee J.S., Pillay M., Reddy T. Determination of the myocardial performance index in deteriorating grades of intrauterine growth restriction and its link to adverse outcomes. Prenat Diagn 2015; 35(3): 266-273.

Устройство измерения кардиоинтервалов человека, в том числе неинвазивно у плода во внутриутробном периоде, и автоматического расчета на их основе индекса производительности миокарда, состоящее из последовательно соединенных ультразвукового датчика с излучателем и приемником отраженного сигнала, устанавливаемых на груди обследуемого или на передней брюшной стенке беременной, фазочувствительного выпрямителя и высокочастотного фильтра, с установленным усилителем с коэффициентом усиления в 10-20 раз, выход усилителя соединен с первым входом блока разрешения и первым входом устройства сравнения сигналов, второй вход устройства сравнения сигналов соединен с выходом блока памяти эталонов, выход устройства сравнения подключен ко второму входу блока разрешения, выход блока разрешения соединен с входом блока измерения интервалов, первый выход блока измерения интервалов, на котором формируются данные об интервале времени нулевого значения ультразвукового сигнала длительностью 20-40 мс, соединен с первым входом сумматора, второй выход блока измерения интервалов, на котором формируются данные об интервале времени нулевого значения ультразвукового сигнала длительностью 70-100 и более мс, соединен со вторым входом сумматора, выход которого соединен с первым входом блока деления, а третий выход блока измерения интервалов, на котором формируются данные о длительности периода изгнания, соответствующего максимальному значению усиленного ультразвукового сигнала, соединен со вторым входом блока деления, на выходе которого формируется сигнал индекса производительности миокарда.



 

Похожие патенты:

Изобретение относится к медицинским принадлежностям, в частности к принадлежностям, необходимым для проведения неинвазивного исследования плода в ходе контроля течения беременности.

Группа изобретений относится к медицине, а именно к определению стадии сна субъекта. Предложена система, содержащая машиночитаемый носитель, для реализации способа определения стадии сна субъекта, причем система содержит блок обеспечения сердечно-дыхательного сигнала для обеспечения сердечно-дыхательного сигнала субъекта, блок обеспечения данных актиграфии для обеспечения данных актиграфии субъекта, первый блок определения стадии сна для определения стадии сна субъекта на основе сердечно-дыхательного сигнала субъекта, второй блок определения стадии сна для определения стадии сна субъекта на основе данных актиграфии субъекта и блок управления определением для определения одного из первого блока определения стадии сна и второго блока определения стадии сна для определения стадии сна субъекта, причем первый блок определения стадии сна выполнен с возможностью определения латентности наступления сна субъекта, а блок управления определением выполнен с возможностью определения стадии сна субъекта с использованием первого блока определения стадии сна субъекта до латентности наступления сна и определения стадии сна субъекта с использованием второго блока определения стадии сна после периода латентности наступления сна.

Устройство (308) сконфигурировано для исследования пульсирующего потока для получения на основе исследуемого потока спектральных характеристик и для определения на основе полученных характеристик, какой один или более сердечных циклов следует выбрать в качестве репрезентативных для исследуемого потока.

Изобретение относится к медицине и может быть использовано для прогнозирования риска интраоперационного развития синдрома «no-reflow» при плановом чрескожном коронарном вмешательстве у больных ишемической болезнью сердца.

Изобретение относится к медицине, а именно к нейрохирургии. Проводят МРТ и ПЭТ обследование и стереотаксическую деструкцию опухоли.

Группа изобретений относится к медицине. Способ суточного мониторинга состояния плода и матери в антенатальном периоде беременности осуществляют с помощью устройства.

Изобретение относится к медицинской технике, в частности к приборам для контроля и оценки состояния системы «мать-плод» в заключительной фазе родов. Устройство контроля и прогнозирования состояния системы «мать-плод» в процессе родовспоможения состоит из электрокардиографического канала (1) плода, электрогистерографического канала (9) матери, эхокардиографического канала (15) плода, электрокардиографического канала (22) матери, электроэнцефалографического канала (28) матери, канала контроля системы дыхания (30) матери, интегрального блока тревожной сигнализации (32) и устройства обработки информации (33).

Изобретение относится к медицинской технике, а именно к средствам распознавания подвижных анатомических структур, в частности, для обнаружения сердечных сокращений плода.

Группа изобретений относится к медицине. Устройство для определения характеристик сердца содержит катетер и первый блок определения характеристик для определения повторяющегося локального сокращения сердца в месте считывания из считанного сигнала сокращения в качестве первой характеристики сердца.

Изобретение относится к области медицины, а также к области измерений параметров состояния человека для диагностических целей, в частности к измерениям параметров, характеризующих сон человека.
Наверх