Способ коалесценции нерастворимых в воде жидкостей

Изобретение относится к способам фильтрационного разделения водной эмульсии, в частности, к способам очистки воды от нефти, масел, маслонефтепродуктов, жиров (растительного и животного происхождения) и др. органических веществ. Может быть использовано в нефтедобывающей, химической, нефтехимической, пищевой, фармацевтической, машиностроительной и других отраслях промышленности, а также в системах очистки сточных вод. В предложенном способе коалесценции нерастворимых в воде жидкостей путем фильтрации водной эмульсии через слой гранул в качестве коалесцентного улавливателя используется жидкостная сеть, состоящая из дисперсной фазы эмульсии и/или из взаиморастворимой с дисперсной фазой жидкости, жидкостная сеть образована в зазорах между гранулами, вся поверхность или большая часть поверхности которых является несмачиваемой для дисперсной фазы эмульсии и жидкости, из которой образована жидкостная сеть, а эмульсия проходит через фильтрующий слой гранул по каналам, образованным гранулами и жидкостной сетью. Решение исключает закупоривание фильтра по причине загрязнения гранул фильтрующего слоя тяжелыми фракциями дисперсной фазы, поскольку поверхность гранул выполняется (полностью или частично) несмачиваемой для дисперсной фазы. Нити жидкостной сети, расположенные между гранулами, уменьшают размеры каналов и делят каналы на более мелкие, а уменьшение поперечного сечения каналов приводит к повышению скорости движения эмульсии. Технический результат предложенного решения заключается в повышении надежности и эффективности процесса коалесценции нерастворимых в воде жидкостей путем фильтрации водной эмульсии через слой гранул. 7 з.п. ф-лы, 7 пр.

 

Предложенное решение относится к способам фильтрационного разделения водной эмульсии, в частности, к способам очистки воды от нефти, масел, маслонефтепродуктов, жиров (растительного и животного происхождения) и др. органических веществ. Может быть использовано в нефтедобывающей, химической, нефтехимической, пищевой, фармацевтической, машиностроительной и других отраслях промышленности, а также в системах очистки сточных вод.

Известен способ разделения водомасляных эмульсий (патент на изобретение RU №2240854,МПК B01D 17/02, 2003 г.), в котором эмульгированные частицы коалесцируют при взаимодействии с гидрофобным полимерным материалом. Недостатком известного способа является недостаточная надежность процесса из-за постепенного загрязнения гидрофобного полимерного материала тяжелыми вязкими фракциями дисперсной фазы, и недостаточная эффективность коалесценции из-за значительного размера проходных каналов.

Наиболее близким к предлагаемому решению является способ разделения эмульсий типа «масло в воде» (патент на полезную модель RU №198431, МПК B01D 17/04, 2020 г.), в котором разделения эмульсии производится при проходе через фильтрующую загрузку за счет контактной коалесценции на поверхности фторопласта, фильтрации в порах пористого фторопласта и жидкостной коалесценции. Недостатком данного способа является недостаточная надежность процесса из-за постепенного загрязнения фильтрующей загрузки тяжелыми вязкими фракциями дисперсной фазы, и недостаточная эффективность коалесценции из-за значительного размера каналов между гранулами фильтрующей загрузки.

Технический результат предложенного решения заключается в повышении надежности и эффективности процесса коалесценции нерастворимых в воде жидкостей путем фильтрации водной эмульсии через слой гранул.

Указанный технический результат достигается тем, что в способе коалесценции нерастворимых в воде жидкостей путем фильтрации водной эмульсии через слой гранул, в качестве коалесцентного улавливателя используется жидкостная сеть, состоящая из дисперсной фазы эмульсии и/или из взаиморастворимой с дисперсной фазой жидкости, жидкостная сеть образована в зазорах между гранулами, вся поверхность или большая часть поверхности которых является несмачиваемой для дисперсной фазы эмульсии и жидкости, из которой образована жидкостная сеть, а эмульсия проходит через фильтрующий слой гранул по каналам, образованным гранулами и жидкостной сетью.

Жидкостная сеть перекрывает поперечное сечение фильтрующего слоя с сохранением водопроницаемости. Жидкостная сеть для коалесценции нерастворимых в воде жидкостей формируется, по крайней мере, на выходе из фильтрующего слоя, а отведение уловленной дисперсной фазы производится в виде укрупненных капель, являющихся продуктом разрушения жидкостной сети, покидающей фильтрующий слой.

Жидкостную сеть в фильтрующем слое гранул создают путем подачи в фильтрующий слой взаиморастворимой с дисперсной фазой эмульсии жидкости, в частности, жидкостную сеть в фильтрующем слое гранул создают путем подачи в фильтрующий слой дисперсной фазы эмульсии.

Жидкостную сеть в фильтрующем слое гранул создают путем пропускания через фильтрующий слой эмульсии.

В качестве гранул фильтрующего слоя используются пропитанные водой открытопористые гранулы со средним размером пор, не превышающим 100 нм. Гранулы фильтрующего слоя содержат частицы материала с хорошей адгезией к веществу, из которого образована жидкостная сеть.

Повышение надежности обеспечивается за счет исключения закупоривания фильтра при загрязнении гранул фильтрующего слоя тяжелыми вязкими фракциями дисперсной фазы, поскольку вся поверхность или большая часть поверхности гранул выполняется несмачиваемой для дисперсной фазы эмульсии и жидкости, из которой образована жидкостная сеть.

Повышение эффективности обеспечивается за счет создания в зазорах между гранулами жидкостной сети, нити (жгуты) которой, расположенные между гранулами, уменьшают размеры каналов и делят каналы на более мелкие, что увеличивает эффективность улавливания (защемления) более мелких капель. Кроме того, уменьшение поперечного сечения каналов между гранулами нитями (жгутам) жидкостной сети приводит к повышению скорости движения эмульсии, что также увеличивает коалесценцию. Теоретические расчеты с модельными материалами (гранулы сферической формы и одинакового размера) показывают, что поперечное сечение каналов между гранулами после формирования стабильной жидкостной сети уменьшается в 6,8 раза.

Наибольший эффект достигается, когда жидкостная сеть перекрывает поперечное сечение фильтрующего слоя с сохранением водопроницаемости.

Жидкостная сеть для коалесценции нерастворимых в воде жидкостей формируется, по крайней мере, на выходе из фильтрующего слоя, а отведение укрупненных капель дисперсной фазы, являющихся продуктом разрушения жидкостной сети, покидающей фильтрующий слой, производится эмульсией, как правило, в непрерывном режиме.

Жидкостную сеть в фильтрующем слое гранул создают путем:

подачи в фильтрующий слой взаиморастворимой с дисперсной фазой эмульсии жидкости;

подачи в фильтрующий слой дисперсной фазы эмульсии;

пропускания через фильтрующий слой эмульсии.

Таким образом, жидкостная сеть может быть образована из дисперсной фазы эмульсии (за счет подачи в фильтрующий слой «чистой» дисперсной фазы эмульсии или за счет пропускания через фильтрующий слой эмульсии до набора в слое необходимого объема уловленной дисперсной фазы) или из взаиморастворимой с дисперсной фазой эмульсии жидкости (за счет ее подачи в фильтрующий слой).

Для оперативного образования и гарантированного существования жидкостной сети в эмульсию добавляется дисперсная фаза эмульсии или взаиморастворимая с дисперсной фазой жидкость. Это производится в следующих случаях: при низкой концентрации в воде нерастворимых в ней жидкостей, при низкой вязкости дисперсной фазы, при высокой дисперсности, при высокой скорости эмульсии.

В качестве гранул фильтрующего слоя используются пропитанные водой открытопористые гранулы со средним размером пор, не превышающим 100 нм, а гранулы фильтрующего слоя могут содержать частицы материала с хорошей адгезией к веществу, из которого образована жидкостная сеть (дисперсная фаза разделяемой эмульсии или взаиморастворимая с дисперсной фазой жидкость).

Применение гранул, поверхность которых не смачивается дисперсной фазой, исключает загрязнение гранул фильтрующего слоя и предотвращает закупоривания фильтра.

Вся поверхность или большая часть поверхности гранул фильтрующего слоя выполняется несмачиваемой для дисперсной фазы эмульсии и жидкости, из которой образована жидкостная сеть (в случае, когда жидкостная сеть образована из взаиморастворимой с дисперсной фазой эмульсии жидкости). Это предотвращает или значительно сокращает загрязнение гранул фильтрующего слоя, и, следовательно, исключает необходимость замены и/или регенерации фильтрующего слоя, что повышает надежность процесса коалесценции нерастворимых в воде жидкостей.

Жидкостная сеть формируется в зазорах между гранулами фильтрующего слоя, а эмульсия проходит через фильтрующий слой гранул по каналам, образованным гранулами и жидкостной сетью, не загрязняя дисперсной фазой гранулы (поскольку вся поверхность или большая часть поверхности гранул выполнена несмачиваемой для дисперсной фазы). При прохождении эмульсия через фильтрующий слой гранул по каналам, образованным гранулами и жидкостной сетью, дисперсная фаза имеет длительный контакт с материалом жидкостной сети, что приводит к ее эффективной коалесценции.

Обеспечить несмачиваемость поверхности гранул фильтрующего слоя дисперсной фазой эмульсии (и жидкости, из которой образована жидкостная сеть) можно путем использования в качестве гранул фильтрующего слоя гранул из олеофобного материала (патенты на полезную модель RU №115349, 2011 г. и RU №187839, 2018 г.) или открытопористых гранул (описанных, например, в патенте на изобретение RU №2652695, 2017 г., где «несмачиваемость поверхности гранулы дисперсной фазой обеспечивается путем предварительной пропитки поверхности дисперсионной средой»). Применение открытопористых гранул со средним размером пор, не превышающим 100 нм, обеспечивает надежное удержание воды на поверхности гранул за счет капиллярного эффекта, что, соответственно, предотвращает загрязнение гранул дисперсной фазой.

При использовании гранул, вся поверхность которых является несмачиваемой для дисперсной фазы эмульсии, формирование протяженной жидкостной сети становится затруднительным из-за отсутствия мест фиксации удерживаемой жидкой фазы на гранулах. Для увеличения удерживающих свойств фильтрующего слоя гранул по отношению к жидкостной сети меньшую часть поверхности гранул делают смачиваемой для дисперсной фазы, например, за счет добавления в гранулы частиц материала с хорошей адгезией к дисперсной фазе.

Заявленный технический результат в предложенном решении обеспечивается за счет:

формирования с помощью жидкостной сети более узких каналов в зазорах между гранулами;

увеличения скорости движения эмульсии в каналах между гранулами и жидкостной сетью;

сохранения в процессе эксплуатации большей части поверхности гранул в чистом (незагрязненном) виде;

исключения загрязнения и «забивки» фильтрующей загрузки уловленными частицами (каплями) дисперсной фазы, поскольку всегда остаются зазоры у несмачиваемой поверхности.

Исследование работы предложенного способа коалесценции нерастворимых в воде жидкостей путем фильтрации водной эмульсии через слой гранул проводилось в лабораторных условиях. Эмульсию, полученную путем разбивания капель нерастворимых в воде жидкостей быстроходным центробежным эмульгатором, подавали шестеренчатым насосом в фильтр на слой гранул. В процессе работы фильтра контролировали температуру эмульсии, дисперсность эмульсии на входе и выходе, падение давления на фильтре, скорость потока, концентрацию нерастворимых в воде жидкостей на входе и выходе фильтра.

Концентрация нерастворимых в воде жидкостей измерялась методом флуориметрии по ПНД Ф 14.1:2:4.128-98. Анализ распределения капель эмульсии по размерам осуществлялся на модифицированном динамическом анализаторе изображений «CamsizerX2», Retch.Распределение по размерам пор используемых гранулированных загрузок фильтра определялось методом низкотемпературной адсорбции азота (БЭТ, Quantachrome NOVA 1200e) и методом ртутной порометрии (Micrometrics AutoPore V).

Способ коалесценции нерастворимых в воде жидкостей путем фильтрации водной эмульсии через слой гранул реализуется следующим образом.

Примеры конкретного выполнения.

Пример 1. Водонефтяная эмульсия подавалась в фильтр со скоростью 7,5 м/ч до установления динамического равновесия, когда концентрация нефти на входе и выходе становилась одинаковой. Концентрация нефти на входе в фильтр равнялась 40 г/л, размер капель эмульсии находился в диапазоне от 8 до 95 мкм с максимальным содержанием капель размером от 20 до 35 мкм. Плотность используемой нефти составляла 984 г/л. Фильтр был наполнен гранулированной загрузкой из обожженного трепела фракции 0,7-1,7 мм с диаметром пор от 3 до 100 нм, предварительно пропитанного водой. Толщина фильтровального слоя составляла 200 мм. После фильтра отфильтрованная жидкость поступала в отстойник объемом 3 л и диаметром 200 мм, в котором происходило разделение нефти и воды. Было проведено испытание фильтра при температурах 34°С и 81°С.После установления равновесия размер капель исходящей эмульсии в обоих случаях составлял более 1 мм, что приводило к быстрому расслоению двух фаз и отделению их в отстойнике. После отстойника нефти в воде обнаружено не было. Однако при повышенной температуре разделение происходило быстрее в соответствии с уменьшением вязкости жидких фаз. Межгранульное пространство в процессе фильтрации было заполнено нефтяной фазой. Проходное сечение для водной фазы обеспечивалось узкими каналами между гранулами фильтрующего слоя и нефтью.

Пример 2. Водонефтяная эмульсия подавалась в фильтр со скоростью 7,5 м/ч до установления динамического равновесия, когда концентрация нефти на входе и выходе становилась одинаковой. Концентрация нефти на входе в фильтр равнялась 200 мг/л, размер капель эмульсии находился в диапазоне от 1 до 50 мкм с максимальным содержанием капель размером от 18 до 22 мкм. Плотность используемой нефти составляла 984 г/л. Толщина фильтровального слоя составляла 200 мм. В процессе фильтрации перед коалесцирующим фильтром дозировалась такая же нефть с концентрацией 1 г/л, чтобы поддерживать жидкостную сеть в фильтре. Параметры гранулированной загрузки фильтра были аналогичными Примеру 1. В равновесных условиях фильтрации (коалесценции) размер капель исходящей эмульсии нефтепродуктов составлял также более 1 мм, что позволяло осуществлять быстрое разделение нефтяной и водной фаз. Межгранульное пространство в процессе фильтрации было заполнено нефтью, образовавшей жидкостную сеть. В отсутствие добавления дополнительного количества нефти перед коалесцирующим фильтром на выходе отстойника наблюдалось присутствие остаточной нефтяной эмульсии с дисперсностью 1 - 15 мкм с концентрацией 55 мг/л по нефтепродуктам.

Пример 3. Водонефтяная эмульсия с температурой 30°С подавалась в коалесцирующий фильтр со скоростью 7,5 м/ч до установления динамического равновесия, когда концентрация нефти на входе и выходе становилась одинаковой. Концентрация нефти на входе в фильтр равнялась 40 г/л, размер капель эмульсии находился в диапазоне от 8 до 90 мкм с максимальным содержанием капель размером от 25 до 35 мкм. Плотность используемой нефти составляла 984 г/л. Коалесцирующий фильтр был наполнен в одном случае округлой гранулированной загрузкой из цеолита марки NaX фракции 0,7-1,7 мм с размером пор 0,8 - 1,2 нм, а в другом - алюминиевыми анодированными шариками такого же фракционного состава с размером пор поверхностного оксидного слоя 14,5 - 25 нм, предварительно пропитанными водой. Толщина фильтровального слоя составляла 200 мм. После установления равновесия размер капель исходящей эмульсии в обоих случаях составлял более 1 мм, что приводило быстрому расслоению двух фаз, как и в приведенных ранее примерах. В силу большей сферичности гранулированная загрузка из анодированного алюминия показала меньшее гидравлическое сопротивление (падение давления 14 мБар, против 22 мБар в случае применения цеолитовых гранул).

Пример 4. Водонефтяная эмульсия подавалась в коалесцирующий фильтр, заполненный фракцией керамзита 1 - 2 мм с высотой слоя 200 мм. Размер пор указанной фракции керамзита находился в интервале от 40 до 200 мкм с максимальным количеством пор диаметром 115 мкм. Скорость фильтрации составляла 7,5 м/ч, температура эмульсии - 35°С, концентрация нефти на входе в фильтр равнялась 40 г/л, размер капель эмульсии находился в диапазоне от 8 до 100 мкм с максимальным содержанием капель размером от 25 до 30 мкм. Плотность используемой нефти составляла 984 г/л. После установления динамического равновесия (равенство концентраций нефти на входе и выходе фильтра), размер большего количества капель исходящей эмульсии составлял более 1 мм, однако, в водной фазе после отстаивания в течение 15 минут все еще присутствовала нефтяная эмульсия с концентрацией по нефтепродуктам 75 мг/л и размером капель от 5 до 25 мкм.

С указанной фильтровальной загрузкой также было проведено испытание эффективности ее регенерации. Через фильтр с высотой загрузки 1100 мм и внутренним диаметром 200 мм в течение 60 минут пропускалась эмульсия с перечисленными выше параметрами. После исчерпания емкости фильтра (концентрация нефти на выходе более 5% от входящей или 2 г/л) осуществлялась промывка коалесцирующе-накопительного слоя обратным током воды со скоростью 40 м/ч. Циклы накопления и промывки повторялись еще три раза. В течение каждого цикла наблюдалось уменьшение емкости фильтровального слоя:

1 цикл - 60 минут до достижения концентрации нефти на выходе 2 г/л.

2 цикл - 26 минут

3 цикл - 22 минут

4 цикл - 16 минут.

Таким образом, применение фильтровальной загрузки с диаметром пор более 100 мкм нецелесообразно по причине смачивания гранул материала нефтью, что приводит к уменьшению эффективности регенерации загрузки.

Пример 5. Для удаления легких нефтепродуктов из водной фазы эмульсии использовалась эмульсия керосина с размером капель от 1 мкм до 20 мкм с максимальным содержанием капель размером 5 мкм. В процессе фильтрации перед коалесцирующим фильтром дозировалось трансмиссионное масло вязкостью 85W-140 с концентрацией 1 г/л, чтобы поддерживать коалесцирующий слой в фильтре. Скорость фильтрации составляла 5 м/ч. Параметры гранулированной загрузки фильтра были аналогичными Примеру 1. Концентрация керосина на входе в фильтр равнялась 5 г/л. В равновесных условиях фильтрации (коалесценции) размер капель исходящей эмульсии нефтепродуктов составлял также более 1 мм. Соотношение керосина и трансмиссионного масла в отделяемой на выходе водонерастворимой жидкой фазе составляло 5 к 1 (по массе). Межгранульное пространство в процессе фильтрации было заполнено неводной фазой с образованием жидкостной сети. В отсутствие добавления трансмиссионного масла перед коалесцирующим фильтром на выходе отстойника наблюдалось присутствие остаточной керосиновой эмульсии с дисперсностью 1 - 9 мкм с концентрацией 2,3 г/л по нефтепродуктам.

Пример 6. Для удаления эмульсии растительного масла из водной фазы использовалась эмульсия подсолнечного рафинированного масла (кинематическая вязкость при 20°С 55 мм2/с) с размером капель от 2 мкм до 30 мкм с максимальным содержанием капель размером 9 мкм. Для увеличения скорости фильтрации с сохранением в фильтрующем слое жидкостной сети из масла в качестве фильтрующей загрузки использовались гранулы обожженного трепела с добавлением в их состав 10 масс % дробленого магнетита фракции 0,1 - 0,2 мм. Магнетит значительно лучше смачивается маслами, нефтепродуктами и другими малополярными жидкостями в присутствии воды из-за отсутствия пористой структуры и не ярко выраженной, по сравнению с трепелом, гидрофильностью. Применение такой гранулированной загрузки позволило увеличить скорость фильтрации до 11 м/ч с сохранением заполняющей межгранульном пространство масляной фазы. Остальные параметры гранулированной загрузки фильтра были аналогичными Примеру 1. Концентрация масла на входе в фильтр равнялась 5 г/л (гравиметрическое определение). В равновесных условиях фильтрации (коалесценции) размер капель исходящей эмульсии составлял также более 1 мм. Остаточное содержание масляной эмульсии микронного размера после отстойника обнаружено не было (оптическая микроскопия, гравиметрический анализ). При использовании фильтрующей загрузки без магнетита в составе гранул в схожих условиях наблюдалось присутствие остаточного содержания масла в водной фазе после отстойника с концентрацией 110 мг/л.

Пример 7. Фильтр заполнялся гранулированным силикагелем марки МСКГ выделенной фракции 1,0 - 2,0 мм. Диаметр пор по данным БЭТ находился в диапазоне от 2,3 до 18 нм. Силикагель был предварительно насыщен парами воды при 100% влажности воздуха при 45°С, а затем пропитан водой. Толщина фильтровального слоя составляла 200 мм. Жидкостная (нефтяная) сеть создавалась перед началом коалесцентной фильтрации путем подачи в фильтр совместно с потоком воды (7,5 м/ч) 100 г нефти (плотность 984 г/л.) из перистальтического насоса. В рабочем режиме водонефтяная эмульсия подавалась в коалесцирующий фильтр со скоростью 7,5 м/ч до установления динамического равновесия, когда концентрация нефти на входе и выходе становилась одинаковой. Концентрация нефти на входе в фильтр равнялась 200 мг/л, размер капель эмульсии находился в диапазоне от 1 до 50 мкм с максимальным содержанием капель размером от 18 до 22 мкм. Плотность используемой нефти составляла 984 г/л. В равновесных условиях фильтрации (коалесценции) размер капель исходящей эмульсии нефтепродуктов составлял более 1 мм, что позволяло осуществлять быстрое разделение нефтяной и водной фаз. Межгранульное пространство в процессе фильтрации было заполнено нефтяной фазой, образовавшей жидкостную сеть, а в водной фазе после отстойника свободной нефтяной эмульсии обнаружено не было.

Проведенные исследования показывают, что применение предложенного решения существенно повышает надежность и эффективность процесса коалесценции нерастворимых в воде жидкостей путем фильтрации водной эмульсии через слой гранул. Предложенное решение также может быть использовано для очистки жидких сред (суспензий) от взвешенных веществ (твердых частиц).

1. Способ коалесценции нерастворимых в воде жидкостей путем фильтрации водной эмульсии через слой гранул, отличающийся тем, что в качестве коалесцентного улавливателя используется жидкостная сеть, состоящая из дисперсной фазы эмульсии и/или из взаиморастворимой с дисперсной фазой жидкости, жидкостная сеть образована в зазорах между гранулами, вся поверхность или большая часть поверхности которых является несмачиваемой для дисперсной фазы эмульсии и жидкости, из которой образована жидкостная сеть, а эмульсия проходит через фильтрующий слой гранул по каналам, образованным гранулами и жидкостной сетью.

2. Способ по п. 1, отличающийся тем, что жидкостная сеть перекрывает поперечное сечение фильтрующего слоя с сохранением водопроницаемости.

3. Способ по п. 1, отличающийся тем, что жидкостная сеть для коалесценции нерастворимых в воде жидкостей формируется, по крайней мере, на выходе из фильтрующего слоя, а отведение уловленной дисперсной фазы производится в виде укрупненных капель, являющихся продуктом разрушения жидкостной сети, покидающей фильтрующий слой.

4. Способ по п. 1, отличающийся тем, что жидкостную сеть в фильтрующем слое гранул создают путем подачи в фильтрующий слой взаиморастворимой с дисперсной фазой эмульсии жидкости.

5. Способ по п. 4, отличающийся тем, что жидкостную сеть в фильтрующем слое гранул создают путем подачи в фильтрующий слой дисперсной фазы эмульсии.

6. Способ по п. 1, отличающийся тем, что жидкостную сеть в фильтрующем слое гранул создают путем пропускания через фильтрующий слой эмульсии.

7. Способ по п. 1, отличающийся тем, что в качестве гранул фильтрующего слоя используются пропитанные водой открытопористые гранулы со средним размером пор, не превышающим 100 нм.

8. Способ по п. 1, отличающийся тем, что гранулы фильтрующего слоя содержат частицы материала с хорошей адгезией к веществу, из которого образована жидкостная сеть.



 

Похожие патенты:
Изобретение относится к способам фильтрационного разделения водной эмульсии, в частности к способам очистки воды от нефти, масел, маслонефтепродуктов, жиров (растительного и животного происхождения) и других органических веществ. В предложенном способе фильтрационного разделения водной эмульсии в слое гранул с помощью коалесцентного улавливания нерастворимых в воде жидкостей, в качестве коалесцентного улавливателя используется жидкостная сеть, состоящая из дисперсной фазы разделяемой эмульсии или из взаиморастворимой с дисперсной фазой жидкости.

Изобретение относится к устройствам для удаления поверхностного слоя нефтесодержащих жидкостей и может быть использовано в очистных сооружениях водоснабжения и канализации в химической, металлообрабатывающей и других отраслях промышленности при очистке технологических, смазочно-охлаждающих жидкостей от органических примесей.

Изобретение относится к области подготовки нефти. Устройство для обработки промежуточного слоя в технологическом резервуаре содержит цилиндрический вертикальный корпус, штуцеры для входа эмульсии и выходов газа, нефти и отстойной воды, уровнемеры, трубу Z-образной формы, продольно установленную в корпусе.

Изобретение относится к нефтедобывающей промышленности и может быть использовано в установках сепарации и подготовки нефти. Изобретение касается устройства улавливания и утилизации песка из продукции нефтегазовых скважин, которое включает сепаратор газоотделитель-пескоуловитель, содержащий входной восходящий наклонный трубопровод-стабилизатор потока в виде пучка внутренних труб, соединенный с входной вертикальной камерой в виде газоотводящего колпака, снабженного выводным патрубком газа и центральной трубой с винтовым завихрителем.

Изобретение предназначено для разделения стойких эмульсий и может быть использовано в химической, пищевой и других отраслях промышленности. Устройство содержит патрубок для подачи эмульсии, неподвижный цилиндрическо-конический корпус, расположенную в его внутреннем объеме коническую насадку, снабженную приводом вращательного движения вокруг вертикальной оси, и приемник жидкой фазы, установленный на стыке цилиндрической и конической частей корпуса, на периферийной части конической насадки размещены два разделительных устройства с возможностью регулировки расстояния между ними, причем верхнее разделительное устройство сообщено с приемником жидкой фазы.

Предложен способ комбинированного обезвоживания стойких водонефтяных эмульсий, включающий ультразвуковое воздействие на водонефтяную эмульсию, где частоту ультразвукового воздействия выбирают в зависимости от размера капель воды в водонефтяной эмульсии: для капель, которые попадают в диапазон размером 15-20 мкм – 50-44 кГц; для капель, которые попадают в диапазон размером 30-40 мкм – 32-22 кГц; для капель, которые попадают в диапазон размером 60-80 мкм – 18-12 кГц, после чего частично обезвоженную водонефтяную эмульсию направляют на вход теплообменного устройства, перед входом в который в водонефтяную эмульсию подают реагент-деэмульгатор, где способ содержит магнитную обработку в направленном перпендикулярно потоку водонефтяной эмульсии пульсирующем неоднородном магнитном поле для разрушения бронирующих оболочек, при которой нагретую до температуры 90-95°С смесь водонефтяной эмульсии с деэмульгатором неионогенного типа направляют в аппарат магнитной обработки, обрабатывая ее магнитным полем оптимальной частоты 0-50 Гц с шагом 5 Гц, при этом, в случае, если прошедшая обработку ультразвуком и магнитным полем смесь ВНЭ с деэмульгатором удовлетворяет критериям качества, объемная доля воды в нефти менее 0,5%, ее направляют в отстойник установки промысловой подготовки нефти (УППН), при этом, если обработанная смесь ВНЭ с деэмульгатором не удовлетворяет требованиям качества сдачи продукции скважин, ее направляют в турбулизатор, в котором производят дополнительное перемешивание, после чего ее направляют обратно в трубопровод входа в установку, после чего процесс комбинированного обезвоживания водонефтяной эмульсии повторяют.

Изобретение относится к нефтяной и нефтеперерабатывающей отраслям промышленности и может найти широкое практическое применение при переработке нефтешламов. Изобретение касается способа переработки нефтешлама, включающего его забор из амбара через самоочищающийся фильтр с помощью высокопроизводительного насоса, подогрев в теплообменнике трубчатого или иного типа до 40÷60°С и подачу в аппарат с обогреваемой рубашкой и мешалкой, снабженный мерниками воды и деэмульгатора, с получением термодинамически нестабильной водонефтяной системы.

Изобретение относится к способу разделения водонефтяной эмульсии с помощью электрогидравлического воздействия, устройству, а также системе для осуществления этого способа и может быть использовано в нефтедобывающей промышленности. Способ включает направленное электрогидравлическое воздействие на водонефтяную эмульсию, с помощью системы, которая содержит по меньшей мере одно устройство для разделения водонефтяной эмульсии.

Изобретение относится к области обработки водонефтяных эмульсий, в частности к способам, обеспечивающим разделение водонефтяных эмульсий с использованием диспергирования деэмульгатора ультразвуковым воздействием. Техническим результатом является повышение эффективности диспергации деэмульгатора в водонефтяной эмульсии, что приводит к улучшению и ускорению процесса сепарации водонефтяной эмульсии, а также к экономии количества используемого деэмульгатора.

Группа изобретений относится к нефтяной промышленности, а именно к способу и установке подготовки осложненной нефтяной эмульсии, и может найти применение при подготовке нефти на нефтепромысле, в частности при разделении на нефть, воду и механические примеси стойкой нефтяной эмульсии, образующейся и накапливающейся в резервуарах и отстойных аппаратах установок подготовки нефти.
Изобретение относится к способам фильтрационного разделения водной эмульсии, в частности к способам очистки воды от нефти, масел, маслонефтепродуктов, жиров (растительного и животного происхождения) и других органических веществ. В предложенном способе фильтрационного разделения водной эмульсии в слое гранул с помощью коалесцентного улавливания нерастворимых в воде жидкостей, в качестве коалесцентного улавливателя используется жидкостная сеть, состоящая из дисперсной фазы разделяемой эмульсии или из взаиморастворимой с дисперсной фазой жидкости.
Наверх