Способ очистки растворителя, предназначенного для отделения стирола посредством экстракционной дистилляции, и отделения стирола

Изобретение относится к способу очистки растворителя для отделения стирола посредством экстракционной дистилляции. Способ включает стадии, на которых: (1) стиролсодержащий исходный материал вводят в экстракционную дистилляционную колонну (301) из средней части, и растворитель для экстракционной дистилляции вводят в экстракционную дистилляционную колонну из верхней части; после экстракционной дистилляции рафинатное масло выпускают из верхней части экстракционной дистилляционной колонны, и обогащенный стиролом растворитель выпускают из нижней части колонны; (2) обогащенный растворитель, описанный на стадии (1), вводят в колонну (302) регенерации растворителя из средней части; после вакуумной дистилляции неочищенный стирол выпускают из верхней части колонны регенерации растворителя, и обедненный растворитель выпускают из нижней части колонны регенерации растворителя и возвращают в верхнюю часть экстракционной дистилляционной колонны; (3) часть обогащенного растворителя, описанного на стадии (1), отделяют и направляют в зону (303) очистки растворителя, в которую вводят воду; после жидкость-жидкостной экстракции смесь стирольного полимера и стирола выпускают из верхней части зоны очистки растворителя, и очищенный растворитель, содержащий воду, выпускают из нижней части зоны очистки растворителя, отличается тем, что очищающий агент для растворителя вводят в зону очистки растворителя, описанную на стадии (3), причем указанный очищающий агент для растворителя содержит стирол и необязательные алкилароматические соединения, и при этом содержание стирола составляет не менее чем 98 мас.%. Также изобретение относится к способу отделения стирола. Способ может эффективно удалять стирольный полимер в растворителе для экстракционной дистилляции, упрощать стадии обработки очищающего агента для растворителя, обеспечивать эксплуатационные характеристики растворителя в экстракционной дистилляции и увеличивать продолжительность устойчивой эксплуатации устройства. 2 н. и 20 з.п. ф-лы, 4 табл., 3 пр., 3 ил.

 

Область техники настоящего изобретения

Настоящее изобретение относится к способу очистки растворителя для экстракционной дистилляции, в частности, к способу очистки растворителя, предназначенного для отделения стирола посредством экстракционной дистилляции, и отделения стирола.

Уровень техники настоящего изобретения

Стирольные мономеры представляют собой важные органические химические исходные материалы, которые широко применяют в производстве пластмасс, покрытий, пестицидов, лекарственных средств и т.д. Извлечение стирольных продуктов из стиролсодержащих исходных масел с применением процесса экстракционной дистилляции обеспечивает хорошие экономические выгоды. Стирольные мономеры легко полимеризуются. В практических приложениях, несмотря на добавление ингибитора полимеризации, этот ингибитор полимеризации может лишь уменьшать степень полимеризации стирола, и оказывается невозможным полное предотвращение полимеризации стирола. Температура кипения стирольного полимера превышает 300°С, что значительно превышает температуры кипения компонентов в исходных маслах. В процессе экстракционной дистилляции полимер растворяется в системе растворителей. Таким образом, проблема предотвращения накопления стирольного полимера в растворителе и его последующего воздействия на эксплуатационные характеристики растворителя является ключевой в целях обеспечения долгосрочной эксплуатации устройства для регенерации стирола. Стирольный полимер содержит разнообразные компоненты с широким диапазоном температуры дистилляции. Способом отпарной регенерации в традиционном процессе экстракционной дистилляции ароматических соединений можно лишь удалять полимеры, имеющие значительно более высокие температуры кипения, чем растворитель. Низкомолекулярный полимер, имеющий температуру кипения, близкую к температуре кипения растворителя, не может быть эффективно удален посредством вакуумного отпаривания.

В документе CN 101875592 В раскрыт способ регенерации экстрагирующего растворителя для экстракционной дистилляции стирола. Согласно этому способу обедненный растворитель подвергают обратной экстракции с применением очищающего агента и воды для удаления стирольного полимера в растворителе. Указанный используемый очищающий агент содержит алканы С59 или ароматические соединения С69. После очистки очищающий агент, обогащенный стирольным полимером, должен поступать в отдельную колонну регенерации очищающего агента для разделения очищающего агента и стирольного полимера. Отделенный очищающий агент возвращают, а стирольный полимер выпускают из системы.

В документе CN 101955410 A раскрыты способ и система регенерации стирола из стиролсодержащего исходного материала. Согласно этому способу часть потока обедненного растворителя обрабатывают органическим растворителем. Предпочтительно поток обедненного растворителя промывают водой и обрабатывают в равновесной системе из двух жидкостей по меньшей мере на одной равновесной ступени. Стирольный полимер в обедненном растворителе подвергают обратной экстракции с применением органического растворителя. Таким образом, очищают систему растворителей и выпускают полимерсодержащий органический растворитель.

Согласно вышеупомянутым способам углеводородная фаза очищающего агента, содержащая полимер, нуждается в дополнительной обработке. Разделение очищающего агента и полимера увеличивает число технологических стадий и разделительных устройств. Эффективность очистки растворителя и трудность последующей обработки также различаются в зависимости от эксплуатационных характеристик очищающего агента.

Краткое раскрытие настоящего изобретения

Задача настоящего изобретения заключается в том, чтобы предложить способ очистки растворителя для отделения стирола посредством экстракционной дистилляции и использующий его способ отделения стирола посредством экстракционной дистилляции. Указанным способом может эффективно удалять стирольный полимер в растворителе для экстракционной дистилляции, упрощать стадии обработки очищающего агента для растворителя, обеспечивать эксплуатационные характеристики растворителя в экстракционной дистилляции и увеличивать продолжительность устойчивой эксплуатации устройства.

Предложенный согласно настоящему изобретению способ очистки растворителя для отделения стирола посредством экстракционной дистилляции включает стадии, на которых:

(1) стиролсодержащий исходный материал вводят в экстракционную дистилляционную колонну из средней части, и растворитель для экстракционной дистилляции вводят в экстракционную дистилляционную колонну из верхней части; после экстракционной дистилляции рафинатное масло выпускают из верхней части экстракционной дистилляционной колонны, и обогащенный стиролом растворитель выпускают из нижней части колонны;

(2) обогащенный растворитель, описанный на стадии (1), вводят в колонну регенерации растворителя из средней части; после вакуумной дистилляции неочищенный стирол выпускают из верхней части колонны регенерации растворителя, и обедненный растворитель выпускают из нижней части колонны регенерации растворителя и возвращают в верхнюю часть экстракционной дистилляционной колонны;

(3) часть обогащенного растворителя, описанного на стадии (1), отделяют и направляют в зону очистки растворителя, в которую вводят воду; после жидкость-жидкостной экстракции смесь стирольного полимера и стирола выпускают из верхней части зоны очистки растворителя, и очищенный растворитель, содержащий воду, выпускают из нижней части зоны очистки растворителя.

Способом согласно настоящему изобретению можно эффективно удалять стирольный полимер в растворителе посредством очистки обогащенного растворителя, выпускаемого из нижней части экстракционной дистилляционной колонны, с применением стирола в качестве очищающего агента. Это может быть объединено с последующей системой рафинирования стирола для разделения стирольного полимера и очищающего агента в процессе рафинирования стирола, чтобы в результате этого исключать дополнительные устройства и упрощать технологические стадии.

Краткое описание фигур

На фиг. 1 представлена технологическая схема очищающей обработки части обогащенного растворителя в процессе отделения стирола посредством экстракционной дистилляции согласно настоящему изобретению.

На фиг. 2 представлена технологическая схема очищающей обработки части обогащенного растворителя и одновременной отпарной дистилляционной обработки части обедненного растворителя в процессе отделения стирола посредством экстракционной дистилляции согласно настоящему изобретению.

На фиг. 3 представлена технологическая схема очищающей обработки части обогащенного растворителя и одновременной отпарной дистилляционной обработки части обедненного растворителя с применением испарителя с падающей пленкой в качестве нагревателя колонны регенерации растворителя в процессе отделения стирола посредством экстракционной дистилляции согласно настоящему изобретению.

Конкретные варианты осуществления

Способом согласно настоящему изобретению можно эффективно удалять стирольный полимер в растворителе, в частности, стирольные олигомеры (низкомолекулярные полимеры) посредством очистки части обогащенного растворителя, выпускаемого из нижней части экстракционной дистилляционной колонны, с применением стирола в качестве очищающего агента. По сравнению со способом очищающей обработки обедненного растворителя с применением рафинатного масла в качестве очищающего агента, посредством применения стирола в качестве очищающего агента можно увеличивать растворимость стирольного полимера, уменьшать эмульгирование в процессе очистки и повышать эффективность удаления стирольного полимера в растворителе. Кроме того, обогащенный растворитель, подлежащий очистке, может быть очищен без поступления в колонну регенерации растворителя, что может предотвращать дальнейшую полимеризацию стирольного полимера при повышенной температуре в колонне регенерации растворителя. Важнее то, что не является обязательной отдельная регенерация очищающего агента. Вместо этого регенерация очищающего агента и рафинирование стирола могут быть объединены в одной стадии, где стирол и стирольный полимер разделяют в процессе рафинирования стирола. Таким образом, технологические стадии упрощаются без дополнительных устройств для регенерации очищающего агента, и уменьшается энергопотребление в процессе очистки растворителя. Способом согласно настоящему изобретению можно эффективно удалять стирольный полимер, образующийся в процессе отделения стирола посредством экстракционной дистилляции, сохранять эксплуатационные характеристики растворителя и поддерживать долгосрочную эксплуатацию устройства.

В способе согласно настоящему изобретению оказывается предпочтительным введение очищающего агента для растворителя в зону очистки растворителя, описанного на стадии (3). Очищающий агент для растворителя содержит стирол и необязательные алкилароматические соединения, причем содержание стирола составляет не менее чем 98 мас. %, предпочтительно не менее чем 99 мас. %. В качестве очищающего агента для растворителя может быть выбран неочищенный стирол, выпускаемый из верхней части колонны регенерации растворителя, или очищенный стирол, выпускаемый из верхней части колонны рафинирования стирола.

В зоне очистки растворителя, описанного на стадии (3), стирольный полимер в обогащенном растворителе, который подлежит очистке, растворяют в стироле. Растворитель растворяют в воде с образованием масляной фазы и водной фазы. Стирольный полимер может быть отделен от растворителя при разделении масляной фазы и водной фазы. На стадии (3), температуру зоны очистки растворителя необходимо регулировать, чтобы предотвращать полимеризацию стирола. Температура зоны очистки растворителя должна обеспечивать сокращение до ничтожного уровня потери за счет полимеризации стирола в процессе очистки растворителя. Температура зоны очистки растворителя может составлять от 20 до 65°С, предпочтительно от 30 до 60°С; давление составляет от 0,2 до 0,8 МПа, предпочтительно от 0,3 до 0,7 МПа.

Многоступенчатая обработка с равновесием двух жидких фаз может быть принята для жидкость-жидкостной экстракции, осуществляемой в зоне очистки растворителя, и число теоретических ступеней многоступенчатой обработки с равновесием двух жидких фаз предпочтительно составляет от 2 до 10.

На указанной стадии (3) отделяют часть обогащенного растворителя для очистки. Массовое соотношение отделенного обогащенного растворителя, вводимого в зону очистки растворителя, и полного количества обогащенного растворителя может составлять от 0,5 до 20%, предпочтительно от 1 до 15%. Массовое соотношение воды, вводимой в зону очистки растворителя и обогащенного растворителя, вводимого в зону очистки растворителя, может составлять от 0,2 до 2,0, предпочтительно от 0,5 до 1,5. Массовое соотношение очищающего агента для растворителя, вводимого в зону очистки растворителя, и обогащенного растворителя, вводимого в зону очистки растворителя, может составлять от 0,05 до 0,5, предпочтительно от 0,05 до 0,3.

Предпочтительно смесь стирольного полимера и стирола, выпускаемого из верхней части зоны очистки растворителя, направляют в систему очистки и обработки стирола, чтобы получать рафинированный стирольный продукт, очищенный стирол и обогащенную полимером смолу.

Предпочтительно часть обедненного растворителя, выпускаемого из нижней части колонны регенерации растворителя, отделяют и направляют в колонну регенерации растворителя для отпарной регенерации. Регенерированный растворитель, получаемый после отпаривания, повторно используют, в то время как смолу, которая не может быть подвергнута отпариванию, выпускают из системы. Ребойлер колонны регенерации растворителя предпочтительно представляет собой испаритель с падающей пленкой, находящийся снаружи колонны.

Кроме того, согласно настоящему изобретению предложен способ отделения стирола посредством экстракционной дистилляции от стиролсодержащего исходного материала, причем способ включает стадии, на которых:

(1) стиролсодержащий исходный материал вводят из средней части экстракционной дистилляционной колонны; растворитель для экстракционной дистилляции вводят из верхней части экстракционной дистилляционной колонны; после экстракционной дистилляции рафинатное масло выпускают из верхней части экстракционной дистилляционной колонны, и обогащенный стиролом растворитель выпускают из нижней части колонны;

(2) обогащенный растворитель, описанный на стадии (1), вводят в колонну регенерации растворителя для вакуумной дистилляции; неочищенный стирол, который выпускают из верхней части колонны регенерации растворителя, поступает в систему рафинирования стирола; после высушивающей и обесцвечивающей обработки неочищенный стирол поступает в колонну рафинирования стирола; обедненный растворитель выпускают из нижней части колонны регенерации растворителя;

(3) часть обогащенного растворителя, описанного на стадии (1), отделяют и направляют в нижнюю часть зоны очистки растворителя, и воду вводят в верхнюю часть зоны очистки растворителя; после жидкость-жидкостной экстракции смесь стирольного полимера и стирола выпускают из верхней части зоны очистки растворителя; очищенный растворитель, содержащий воду, выпускают из нижней части зоны очистки растворителя;

(4) поток, выпускаемый из верхней части зоны очистки растворителя, вводят в систему рафинирования стирола и затем в колонну рафинирования стирола после высушивания и обесцвечивания;

(5) в колонне рафинирования стирола очищенный стирол получают в верхней части колонны после дистилляции; рафинированный стирольный продукт выпускают из верхней части колонны, и обогащенную полимером смолу выпускают из нижней части колонны.

На описанной выше стадии (3) температуру зоны очистки растворителя необходимо регулировать, чтобы предотвращать полимеризацию стирола. Температура зоны очистки растворителя должна обеспечивать сокращение до ничтожного уровня потери за счет полимеризации стирола в процессе очистки растворителя. Температура зоны очистки растворителя может составлять от 20 до 65°С, предпочтительно от 30 до 60°С; давление составляет от 0,2 до 0,8 МПа, предпочтительно от 0,3 до 0,7 МПа.

На описанной выше стадии (3) оказывается предпочтительным введение очищающего агента для растворителя в зону очистки растворителя. Указанный очищающий агент для растворителя предпочтительно представляет собой неочищенный стирол или очищенный стирол, выпускаемый из верхней части колонны рафинирования стирола.

Массовое соотношение отделенного обогащенного растворителя, направляемого в зону очистки растворителя на стадии (3), и полного количества обогащенного растворителя может составлять от 0,5 до 20%, предпочтительно от 1 до 15%. Массовое соотношение воды, вводимой в зону очистки растворителя, и обогащенного растворителя, поступающего в зону очистки растворителя, может составлять от 0,2 до 2,0, предпочтительно от 0,5 до 1,5. Массовое соотношение очищающего агента для растворителя, вводимого в зону очистки растворителя, и обогащенного растворителя, вводимого в зону очистки растворителя, может составлять от 0,05 до 0,5, предпочтительно от 0,05 до 0,3.

Предпочтительно часть обедненного растворителя, получаемого из нижней части колонны регенерации растворителя на стадии (2), отделяют и направляют в колонну регенерации растворителя для отпарной дистилляционной регенерации. Таким образом, тяжелые компоненты в растворителе удаляют посредством отпаривания. Паровая фаза, выпускаемая из верхней части регенерационной колонны, возвращается в нижнюю часть колонны регенерации растворителя, и смолу выпускают из нижней части колонны регенерации растворителя.

Температура отпаривания для регенерации части обедненного растворителя, который отделяют способом согласно настоящему изобретению, может составлять от 110 до 150°С, и давление может составлять от 10 до 30 кПа. В частности, давление колонны регенерации обедненного растворителя может составлять от 10 до 30 кПа; температура составляет от 110 до 150°С, предпочтительно от 130 до 150°С. Массовое соотношение пара и обедненного растворителя предпочтительно составляет от 3 до 8.

Массовое соотношение обедненного растворителя для регенерации и полного количества обедненного растворителя в этом способе может составлять от 0,5 до 10%, предпочтительно от 0,5 до 5%.

После регенерации обедненного растворителя посредством отпаривания он возвращается в нижнюю часть колонны регенерации растворителя в форме паровой фазы и выступает в качестве пара для отпарной регенерационной колонны. В процессе регенерации не происходит конденсация, и не возникает никакого дополнительного энергопотребления.

Предпочтительно ребойлер колонны регенерации растворителя представляет собой испаритель с падающей пленкой, находящийся снаружи колонны регенерации растворителя. Испаритель с падающей пленкой содержит оболочку и теплообменные трубы, помещенные в оболочку. Верхний конец или одна сторона оболочки имеет головку, которая равномерно распределяет материалы, текущие в теплообменные трубы. В процессе применения нагревательная среда нагревает теплообменные трубы в оболочке посредством прохождения через оболочку испарителя с падающей пленкой, т.е. через сторону оболочки. Обедненный растворитель, подлежащий регенерации, поступает в теплообменные трубы испарителя с падающей пленкой (через трубную сторону) для испарения падающей пленки. В теплообменных трубах испарителя с падающей пленкой, обедненный растворитель течет вдоль стенки трубы с образованием жидкой пленки. Обедненный растворитель, который испаряется на жидкой пленке, превращается в паровую фазу, в то время как жидкая пленка падает вниз под действием силы тяжести. Таким образом, осуществляется испарение падающей пленки.

Согласно настоящему изобретению предпочтительно принят способ регенерации, представляющий собой сочетание очищающей обработки обогащенного растворителя и отпарной дистилляции обедненного растворителя. По сравнению со способом очищающей обработки только обогащенного растворителя, данный способ обеспечивает относительное уменьшение обрабатываемого количества с одновременным поддержанием такого же содержания полимера в растворителе. Таким образом, может быть уменьшено энергопотребление. Кроме того, два способа регенерации дополняют друг друга. Посредством отпарной дистилляционной регенерации обедненного растворителя можно удалять высокомолекулярный стирольный полимер (полимер, имеющий высокую молекулярную массу) и продукты разложения растворителя, но нельзя эффективно удалять стирольные олигомеры. В то же время, посредством очищающей обработки обогащенного растворителя можно эффективно удалять стирольный полимер, но нельзя удалять растворимые в воде продукты разложения растворителя. В практическом применении присутствие активного кислорода в системе может ускорять разложение растворителя. Таким образом, объединенным способом регенерации растворителя можно эффективно удалять примеси в растворителе, сохранять эксплуатационные характеристики растворителя для экстракционной дистилляции и поддерживать долгосрочную эксплуатацию устройства.

В способе согласно настоящему изобретению давление в верхней части экстракционной дистилляционной колонны, колонны регенерации растворителя и колонны рафинирования стирола может составлять от 8 до 20 кПа; температура в нижней части экстракционной дистилляционной колонны может составлять от 110 до 145°С, и число теоретических тарелок предпочтительно составляет от 30 до 60. Температура в нижней части колонны регенерации растворителя может составлять от 120 до 150°С, и число теоретических тарелок предпочтительно составляет от 20 до 30. Температура в нижней части колонны рафинирования стирола может составлять от 80 до 110°С, и число теоретических тарелок предпочтительно составляет от 15 до 30.

Согласно настоящему изобретению коэффициент дефлегмации в верхней части каждой из указанных колонн представляет собой массовое соотношение количества дефлегмационного материала, выпускаемого из верхней части колонны в верхнюю часть колонны, и материала, выпускаемого из верхней части колонны. Коэффициент дефлегмации экстракционной дистилляционной колонны может составлять от 1 до 3; коэффициент дефлегмации колонны регенерации растворителя может составлять от 0,4 до 1,5; и коэффициент дефлегмации колонны рафинирования стирола может составлять от 1 до 3.

В способе согласно настоящему изобретению массовое соотношение растворителя, используемого для экстракционной дистилляции, и исходного материала может составлять от 3 до 8, предпочтительно от 4 до 6. Растворитель для экстракционной дистилляции предпочтительно представляет собой по меньшей мере одно вещество, выбранное из группы, которую составляют сульфолан, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль, N,N-диметилацетамид и N-формилморфолин, предпочтительнее сульфолан.

Исходный материал согласно настоящему изобретению предпочтительно представляет собой стиролсодержащую фракцию C8, такую как фракция C8 пиролизного бензина, где содержание стирола составляет от 20 до 70 мас. %, а остальную массу составляют ароматические соединения C8 и неароматические соединения.

Настоящее изобретение дополнительно проиллюстрировано с применением фигур. На этих фигурах не представлены вспомогательные устройства, такие как теплообменники, дефлегмационные резервуары и насосы. Специалист в данной области техники сможет понять настоящее изобретение, рассматривая фигуры. Отсутствие не влияет на исполнение в натуре.

На фиг. 1 стиролсодержащий исходный материал вводят в экстракционную дистилляционную колонну 301 из средней части через трубопровод 1; растворитель для экстракционной дистилляции вводят в верхнюю часть экстракционной дистилляционной колонны 301 через трубопровод 2. После экстракционной дистилляции рафинатное масло, в котором отсутствует стирол, выпускают из трубопровода 3 в верхней части экстракционной дистилляционной колонны. Обогащенный стиролом растворитель выпускают из нижней части экстракционной дистилляционной колонны 301 через трубопровод 4 и разделяют на две части, причем основная масса обогащенного растворителя поступает в среднюю часть колонны 302 извлечения растворителя через трубопровод 5. Стирол отделяют от растворителя для экстракционной дистилляции посредством вакуумной дистилляции. Неочищенный стирол выпускают из трубопровода 6 в верхней части колонны регенерации растворителя. Обедненный растворитель, выпускаемый из нижней части колонны регенерации растворителя, практически не содержит стирола. После ряда теплообменов обедненный растворитель возвращают в верхнюю часть экстракционной дистилляционной колонны 301 через трубопровод 2. Меньшую часть обогащенного растворителя после отделения направляют в зону 303 очистки растворителя через трубопровод 7 для обработки. В зоне очистки растворителя может быть осуществлена многоступенчатого операция равновесия двух жидкостей, например, посредством многоступенчатой жидкость-жидкостной экстракционной колонны. Предпочтительно очищающий агент поступает в зону очистки растворителя. Указанный очищающий агент поступает через трубопровод 8, смешивается с обогащенным растворителем в трубопроводе 7, а затем его направляют в нижнюю часть зоны очистки растворителя. Воду вводят в зону 303 очистки растворителя из верхней части через трубопровод 9. После жидкость-жидкостной экстракции стирольный полимер растворяют в стироле и выпускают из трубопровода 10 в верхней части зоны очистки растворителя. Растворитель для экстракционной дистилляции растворяют в воде и выпускают из трубопровода 11 в нижней части зоны очистки растворителя, и он представляет собой очищенный растворитель. Очищенный растворитель возвращают в нижнюю часть колонны регенерации растворителя. Неочищенный стирол, выпускаемый из трубопровода 6, и содержащий полимер очищающий агент, выпускаемый из трубопровода 10, смешивают и затем направляют в систему 400 рафинировочной обработки стирола. Система 400 рафинировочной обработки стирола включает обезвоживание, обесцвечивание и колонну рафинирования стирола. Материал, поступающий в систему рафинировочной обработки стирола, высушивают и обесцвечивают перед направлением в колонну рафинирования стирола. Рафинированный стирольный продукт выпускают из трубопровода 12 в верхней части колонны рафинирования стирола, обогащенную полимером смолу непрерывно выпускают из трубопровода 13 в нижней части колонны рафинирования стирола, и небольшое количество очищенного стирола нерегулярно выпускают из трубопровода 14 в верхней части колонны рафинирования стирола таким образом, чтобы обеспечивать достижение требуемой чистоты рафинированный стирольный продукт.

Система регенерации стирола, представленная на фиг. 2, в основном является такой же, как система, представленная на фиг. 1, за исключением добавления колонны 304 регенерации растворителя. Способ эксплуатации заключается в том, чтобы разделять обедненный растворитель, выпускаемый из нижней части колонны 302 извлечения растворителя на две части, причем основную часть обедненного растворителя возвращают в верхнюю часть экстракционной дистилляционной колонны 301 через трубопровод 2, в то время как меньшую часть обедненного растворителя вводят в среднюю часть колонны 304 регенерации растворителя через трубопровод 16. Пар вводят в нижнюю часть колонны 304 регенерации растворителя через трубопровод 15. Ребойлер (не представленный на иллюстрации) расположен в нижней части колонны регенерации растворителя. После отпаривания регенерированный растворитель, из которого удалены тяжелые компоненты, выпускают вместе с паром из трубопровода 17 в верхней части колонны и направляют в нижнюю часть колонны 302 извлечения растворителя, где он выступает в качестве пара для колонны отпарной регенерации растворителя. Примеси тяжелых компонентов, включая высокомолекулярный стирольный полимер и продукты разложения растворителя, в нижней части регенерационной колонны выпускают через трубопровод 18.

Система регенерации стирола, представленная на фиг. 3, в основном является такой же, как система, представленная на фиг. 2, за исключением применения испарителя 305 с падающей пленкой, который присутствует снаружи колонны 304 регенерации растворителя в качестве нагревателя регенерационной колонны 304. Способ эксплуатации заключается в том, чтобы разделять обедненный растворитель, выпускаемый из нижней части колонны 302 извлечения растворителя, на две части, причем основную часть обедненного растворителя возвращают в верхнюю часть экстракционной дистилляционной колонны 301 через трубопровод 2, в то время как меньшую часть обедненного растворителя вводят в испаритель 305 с падающей пленкой через трубопровод 16. Пар вводят в испаритель 305 с падающей пленкой из верхней части через трубопровод 15. В испарителе с падающей пленкой нисходящий поток обедненного растворителя и пара проходит через теплообменные трубы испарителя с падающей пленкой для испарения падающей пленки. Сторона оболочки снаружи теплообменных труб испарителя с падающей пленкой представляет собой нагревательную среду. Нагретая парожидкостная смесь течет в нижнюю часть колонны 304 регенерации растворителя под действием силы тяжести через трубопровод 19. После испарения в вакууме регенерированный растворитель выпускают вместе с паром из трубопровода 17 в верхней части колонны и направляют в нижнюю часть колонны 302 извлечения растворителя, где он выступает в качестве пара для отпарной колонны регенерации растворителя. Примеси тяжелых компонентов, включая высокомолекулярный стирольный полимер и продукты разложения растворителя, в нижней части регенерационной колонны выпускают из трубопровода 18.

Традиционный вставной ребойлер, находящийся в колонне регенерации обедненного растворителя, заменяют испарителем с падающей пленкой, что устраняет гидростатическое давление в течение процесса нагревания. Здесь отсутствует секция перегрева в теплообменных трубах испарителя с падающей пленкой, и температура эксплуатации нагревателя может быть уменьшена на 5-10°С при таком же давлении эксплуатации регенерационной колонны, что может эффективно предотвращать высокую температуру полимеризации стирола и ингибировать образование отложений на стенках теплообменных труб, в результате чего увеличивается продолжительность эксплуатации устройства.

Далее настоящее изобретение подробно разъясняется с представлением примеров. Однако настоящее изобретение не ограничено указанными примерами.

Пример 1

Фракция C8 пиролизного бензина, имеющая состав, который представлен в таблице 1, была использована в качестве исходного материала. Исходный материал подвергали экстракционной дистилляции согласно процедуре, проиллюстрированной на фиг. 1. Содержащийся в ней стирол отделяли и извлекали, и меньшую часть обогащенного растворителя очищали. Растворитель, используемый для экстракционной дистилляции, представлял собой сульфолан. Очищающий агент представлял собой неочищенный стирол, выпускаемый из верхней части колонны регенерации растворителя, в котором содержание стирола составляло 99,5 мас. %.

Число теоретических тарелок экстракционной дистилляционной колонны 301 составляло 55; коэффициент дефлегмации в верхней части колонны составлял 2; давление в верхней части колонны составляло 13 кПа; температура в нижней части колонны составляла 130°С, и массовое соотношение растворителя и исходного материала составляло 4,5.

Число теоретических тарелок колонны 302 извлечения растворителя составляло 25; давление в верхней части колонны составляло 13 кПа; коэффициент дефлегмации в верхней части колонны составлял 0,8, и температура в нижней части колонны составляла 140°С.

Обогащенный растворитель, выпускаемый из нижней части экстракционной дистилляционной колонны разделяли на две части, причем основную часть направляли в колонну регенерации растворителя, в то время как меньшую часть направляли в нижнюю часть колонны 303 очистки растворителя. Число теоретических тарелок колонны 303 очистки растворителя составляло 4; давление в верхней части колонны составляло 0,5 МПа; и температура эксплуатации составляла 50°С. Массовое соотношение обогащенного растворителя, направляемого в колонну очистки растворителя, и полного количества обогащенного растворителя составляло 10%; массовое соотношение очищающего агента и обогащенного растворителя, направляемого в колонну очистки растворителя, составляло 0,2, и массовое соотношение воды и обогащенного растворителя, направляемого в колонну очистки растворителя, составляло 1,0.

Материал, выпускаемый из колонна очистки растворителя, направляли в систему 400 рафинировочной обработки стирола, высушивали и обесцвечивали перед направлением в колонну рафинирования стирола. Число теоретических тарелок колонны рафинирования стирола составляло 20, давление в верхней части колонны составляло 10 кПа, коэффициент дефлегмации в верхней части колонны составлял 2,0, и температура в нижней части колонны составляла 90°С. После дистилляции рафинированный стирол выпускали из верхней части колонны рафинирования стирола, смолу, обогащенную стирольным полимером, выпускали из нижней части колонны, и очищенный стирол нерегулярно выпускали из верхней части колонны.

В описанных выше условиях эксплуатации содержание стирольного полимера в растворителе для экстракционной дистилляции поддерживали на уровне 1,0 мас. %. Устройство работало непрерывно и устойчиво. Чистота полученного в результате рафинированного стирольного продукта составляла 99,86 мас. %, и выход составлял 94 мас. %. В таблице 3 представлены основные условия эксплуатации и относительное энергопотребление в расчете на единицу массы рафинированного стирольного продукта, производимого всем устройством.

Сравнительный пример 1

Здесь рафинатное масло использовали в качестве очищающего агента для очистки обедненного растворителя.

Фракция C8 пиролизного бензина, имеющая состав, который представлен в таблице 1, была использована в качестве исходного материала. Фракцию C8 пиролизного бензина подвергали экстракционной дистилляции согласно процедуре, проиллюстрированной на фиг. 1, чтобы отделить и выделить стирол. Растворитель для экстракционной дистилляции и условия эксплуатации для экстракционной дистилляционной колонны, колонны регенерации растворителя, колонны очистки растворителя и системы рафинировочной обработки стирола были такими же, как условия в примере 1, за исключением того, что обогащенный растворитель, выпускаемый из нижней части экстракционной дистилляционной колонны 301 полностью направляли в колонну 302 извлечения растворителя, и затем обедненный растворитель, выпускаемый из нижней части колонны регенерации растворителя разделяли на две части, причем основную часть возвращали в верхнюю часть экстракционной дистилляционной колонны через трубопровод 2, в то время как меньшую часть обедненного растворителя направляли в нижнюю часть колонны 303 очистки растворителя для очистки. Место, в которое направляли обедненный растворитель, было таким же, как место, в которое обогащенный растворитель направляли для очистки в примере 1. Очищающий агент представлял собой рафинатное масло, выпускаемое из верхней части экстракционной дистилляционной колонны; его состав представлен в таблице 2. Кроме того, дополнительно присутствовала еще одна колонна регенерации очищающего агента, причем эта колонна была соединена с трубопроводом в верхней части колонны очистки растворителя.

Обедненный растворитель после очищающей обработки содержал большое количество воды и следы ароматических соединений C8. После отпаривания части воды и ароматических соединений C8 посредством нагревания обедненный растворитель возвращали в нижнюю часть колонны 302 извлечения растворителя. Смесь очищающего агента и стирольного полимера, выпускаемого из верхней части колонны 303 очистки растворителя, повторно поступала в новую дополнительную колонну регенерации очищающего агента (не представленную на иллюстрации). Число теоретических тарелок этой колонны регенерации очищающего агента составляло 15; давление в верхней части колонны составляло 15 кПа; коэффициент дефлегмации в верхней части колонны составлял 0,3, и температура в нижней части колонны составляла 120°С. Очищающий агент, дистиллированный из колонны регенерации очищающего агента можно было повторно использовать или добавлять в производимое рафинатное масло, в то время как содержащую стирольный полимер смолу выпускали из нижней части колонны.

В описанном выше процессе эксплуатации массовое соотношение обедненного растворителя, который был подвергнут очистке, и полного количества обедненного растворителя составляло 10%; и массовое соотношение воды и обедненного растворителя, который был подвергнут очистке, составляло 1,0. Для достижения такого же эффекта удаления стирольного полимера, как в примере 1, содержание стирольного полимера в обедненном растворителе поддерживали на уровне 1,0 мас. %, и массовое соотношение очищающего агента и обедненного растворителя, который был подвергнут очистке, увеличивалось до 0,5

В описанных выше условиях эксплуатации устройство работало непрерывно и устойчиво. Чистота полученного в результате рафинированного стирольного продукта составляла 99,86 мас. %, и выход составлял 94 мас. %. В таблице 3 представлены основные условия эксплуатации и относительное значение энергопотребления в расчете на единицу массы продукта.

По сравнению с примером 1, в сравнительном примере 1 необходима дополнительная колонна регенерации очищающего агента. При этом одновременно увеличиваются число технологических стадий и стоимость устройства, а количество очищающего агента в сравнительном примере 1 увеличивается в 1,5 раза по сравнению с его количеством в примере 1. Энергопотребление для части очистки растворителя в сравнительном примере 1 увеличивается приблизительно на 150% по сравнению с примером 1. Энергопотребление в расчете на единицу массы продукта, производимого всем устройством, увеличивается приблизительно на 3% по сравнению с примером 1.

Пример 2

Фракция C8 пиролизного бензина, имеющая состав, который представлен в таблице 1, была использована в качестве исходного материала. Фракцию C8 пиролизного бензина подвергали экстракционной дистилляции согласно процедуре, проиллюстрированной на фиг. 2, чтобы отделить и выделить стирол. В процессе эксплуатации меньшую часть обогащенного растворителя очищали, а меньшую часть обедненного растворителя в то же самое время регенерировали посредством отпаривания. Используемый растворитель для экстракционной дистилляции, очищающий агент и все условия эксплуатации для экстракционной дистилляционной колонны, колонны регенерации растворителя, колонны очистки растворителя и системы рафинировочной обработки стирола были такими же, как условия в примере 1.

Обедненный растворитель, выпускаемый из нижней части колонны регенерации растворителя, разделяли на две части, причем основную часть возвращали в верхнюю часть экстракционной дистилляционной колонны через трубопровод 2, в то время как меньшую часть обедненного растворителя направляли в колонну 304 регенерации растворителя для регенерации посредством отпарной дистилляция. Массовое соотношение меньшей части обедненного растворителя для регенерации и полного количества обедненного растворителя составляло 1%, и массовое соотношение пара и обедненного растворителя для регенерации составляло 5. В колонне 304 регенерации растворителя давление составляло 20 кПа, и температура составляла 145°С. Ребойлер колонны регенерации растворителя, который находился в котле колонны, представлял собой вставной ребойлер.

Меньшую часть обогащенного растворителя, выпускаемого из нижней части экстракционной дистилляционной колонны, направляли в нижнюю часть колонны 303 очистки растворителя. Массовое соотношение очищающего агента и обогащенного растворителя, который подлежал очистке, составляло 0,2, и массовое соотношение воды и обогащенного растворителя, который подлежал очистке, составляло 1,0. Поскольку колонна 304 регенерации растворителя выполняла функцию удаления высокомолекулярного стирольного полимера в растворителе, содержание стирольного полимера в обедненном растворителе поддерживали на уровне 1,0 мас. %, обрабатываемое количество обогащенного растворителя, который подлежал очистке, соответствующим образом уменьшалось, и массовое соотношение обогащенного растворителя, который подлежал очистке, и полного количества обогащенного растворителя составляло 9% для достижения такого же эффекта удаления стирольного полимера, как в примере 1.

В описанных выше условиях эксплуатации содержание стирольного полимера в растворителе для экстракционной дистилляции поддерживали на уровне 1,0 мас. %. Устройство работало непрерывно и устойчиво. Чистота полученного в результате рафинированного стирольного продукта составляла 99,86 мас. %, и выход составлял 94 мас. %. В таблице 3 представлены основные условия эксплуатации и относительное энергопотребление в расчете на единицу массы рафинированного стирольного продукта, производимого всем устройством. В таблице 4 представлены температура и продолжительность эксплуатации ребойлера колонны регенерации растворителя.

Сравнительный пример 2

Фракция C8 пиролизного бензина, имеющая состав, который представлен в таблице 1, была использована в качестве исходного материала. Фракцию C8 пиролизного бензина подвергали экстракционной дистилляции согласно процедуре, проиллюстрированной на фиг. 2, чтобы отделить и выделить стирол, за исключением того, что обедненный растворитель, выпускаемый из нижней части колонны регенерации растворителя разделяли на две части, причем основную часть возвращали в верхнюю часть экстракционной дистилляционной колонны через трубопровод 2, в то время как меньшую часть обедненного растворителя направляли в нижнюю часть колонны 303 очистки растворителя для очистки. Место, в которое направляли обедненный растворитель, было таким же, как место, в которое обогащенный растворитель направляли для очистки в примере 2.

Поскольку в обедненном растворителе практически отсутствовал стирол, для достижения такого же эффекта удаления стирольный полимер, как в примере 1, содержание стирольного полимера в обедненном растворителе поддерживали на уровне 1,0 мас. %; массовое соотношение очищающего агента и растворителя, который подлежал очистке, увеличивалось до 0,3. Растворитель для экстракционной дистилляции, очищающий агент и все условия эксплуатации для экстракционной дистилляционной колонны, колонны регенерации растворителя, колонны очистки растворителя и системы рафинировочной обработки стирола были таким же, как условия в примере 2.

В описанных выше условиях эксплуатации содержание стирольного полимера в растворителе для экстракционной дистилляции поддерживали на уровне 1,0 мас. %. Устройство работало непрерывно и устойчиво. Чистота полученного в результате рафинированного стирольного продукта составляла 99,86 мас. %, и выход составлял 94 мас. %. В таблице 3 представлены основные условия эксплуатации и относительное энергопотребление в расчете на единицу массы рафинированного стирольного продукта, производимого всем устройством.

Из таблицы 3 можно видеть, что по сравнению с примером 2, расход очищающего агента в сравнительном примере 2 увеличивается на 50%; энергопотребление для части очистки и регенерации растворителя увеличивается на 50% по сравнению с примером 2; и энергопотребление в расчете на единицу массы продукта всего устройства увеличивается на 1,2% по сравнению с примером 2.

Пример 3

Фракция C8 пиролизного бензина, имеющая состав, который представлен в таблице 1, была использована в качестве исходного материала. Фракцию C8 пиролизного бензина подвергали экстракционной дистилляции согласно процедуре, проиллюстрированной на фиг. 3, чтобы отделить и выделить стирол, причем обогащенный растворитель, выпускаемый из нижней части экстракционной дистилляционной колонны разделяли на две части, и при этом основную часть направляли в колонну регенерации растворителя, в то время как меньшую часть направляли в нижнюю часть колонны 303 очистки растворителя.

Обедненный растворитель, выпускаемый из нижней части колонны регенерации растворителя разделяли на две части, причем основную часть возвращали в верхнюю часть экстракционной дистилляционной колонны через трубопровод 2, в то время как меньшую часть обедненного растворителя направляли в верхнюю часть испарителя 305 с падающей пленкой. Пар вводили из верхней части испарителя 305 с падающей пленкой. Нисходящий поток обедненного растворителя и пар пропускали через теплообменные трубы испарителя с падающей пленкой для испарения падающей пленки. Нагревательная среда на стороне оболочки снаружи теплообменных труб испарителя с падающей пленкой представляла собой пар. Материал, подвергнутый испарению падающей пленки, вытекал в нижнюю часть колонны 304 регенерации растворителя под действием силы тяжести. После испарения в вакууме регенерированный растворитель вместе с паром выпускали из трубопровода 17 в верхней части колонны и направляли в нижнюю часть колонны 302 извлечения растворителя, где он выступает в качестве пара для отпаривания колонны регенерации растворителя. Примеси тяжелых компонентов, включая высокомолекулярный стирольный полимер и продукты разложения растворителя в нижней части регенерационной колонны, выпускали из трубопровода 18. Массовое соотношение регенерированного обедненного растворителя и полного количества обедненного растворителя составляло 1%; массовое соотношение пара и регенерированного обедненного растворителя составляло 5. Давление колонны 304 регенерации растворителя составляло 20 кПа. Температура эксплуатации испарителя с падающей пленкой составляла 135°С. Все остальные условия эксплуатации для каждой из колонн, растворитель для экстракционной дистилляции и очищающий агент были такими же, как условия в примере 2.

В описанных выше условиях эксплуатации содержание стирольного полимера в растворителе для экстракционной дистилляции поддерживали на уровне 1,0 мас. %. Устройство работало непрерывно и устойчиво. Чистота полученного в результате рафинированного стирольного продукта составляла 99,86 мас. %, и выход составлял 94 мас. %. В таблице 3 представлены основные условия эксплуатации и относительное энергопотребление в расчете на единицу массы рафинированного стирольного продукта, производимого всем устройством. В таблице 4 представлены температура и продолжительность эксплуатации испарителя с падающей пленкой.

Из таблицы 4 можно видеть, что испаритель с падающей пленкой был использован в колонне регенерации обедненного растворителя в примере 3 в качестве ребойлера. Поскольку отсутствовало гидростатическое давление в испарителе с падающей пленкой, температура эксплуатации составляла на 10°С ниже, чем температура эксплуатации в примере 2, что могло уменьшать полимеризацию стирола и тем самым эффективно уменьшать образование отложений, возникающих в результате полимеризации стирола на стенках труб ребойлера. Продолжительность эксплуатации увеличилась в 5 раз.

Из таблицы 3 можно видеть, что в сопоставлении со сравнительным примером 1, поскольку в примере 1 использован лучший очищающий агент и очищенный обогащенный растворитель таким образом, что в течение процесса очистка, одновременно извлекали стирол в обогащенном растворителе, добавляемое количество очищающего агента уменьшается на 60%, энергопотребление для части очистки растворителя уменьшается приблизительно на 60%, и энергопотребление в расчете на единицу массы продукта, производимого всем устройством, уменьшается приблизительно на 3%. Кроме того, в примере 1 не требуется отдельная установка системы регенерации очищающего агента, поскольку упрощаются технологические стадии, и уменьшается стоимость оборудования.

Как показывает сопоставление между примером 2 и сравнительным примером 2 в таблице 3, в примере 2 выбрана меньшая часть обогащенного растворителя для очищающей обработки. В условиях одинакового эффекта удаления полимера из растворителя для экстракционной дистилляции расход очищающего агента в примере 2 уменьшается на 33% в сопоставлении со сравнительным примером 2, энергопотребление для части очистки и регенерации растворителя уменьшается приблизительно на 33%, и энергопотребление в расчете на единицу массы продукта для всего устройства уменьшается приблизительно на 1%. В примере 2 присутствуют лучшие технические и экономические показатели, чем в сравнительном примере 2.

Из таблицы 3 можно видеть, что по сравнению с примером 1 в примере 2 использовано сочетание очистки обогащенного растворителя и регенерации обедненного растворителя посредством отпаривания для поддержания качества растворителя для экстракционной дистилляции. С точки зрения энергопотребления, в примере 2 энергопотребление незначительно уменьшается. Кроме того, в примере 2 является возможным эффективное удаление растворимых в воде продуктов разложения растворителя посредством отпаривания. В практическом применении присутствие активного кислорода в системе будет ускорять разложение растворителя. Таким образом, применение объединенного способа в примере 2 допускает синергетический эффект между очисткой обогащенного растворителя и регенерацией обедненного растворителя посредством отпаривания, а также их взаимное дополнение. Пример 2 является более показательным в отношении сохранения эксплуатационных характеристик растворителя для экстракционной дистилляции и поддержания долгосрочной эксплуатации устройства.

Из таблицы 4 можно видеть, что продолжительность непрерывной эксплуатации в часть регенерации растворителя в примере 3 значительно увеличивается вследствие применения испарителя с падающей пленкой. Таким образом, это представляет собой лучший вариант осуществления.

1. Способ очистки растворителя для отделения стирола посредством экстракционной дистилляции, включающий стадии, на которых:

(1) стиролсодержащий исходный материал вводят в экстракционную дистилляционную колонну (301) из средней части, и растворитель для экстракционной дистилляции вводят в экстракционную дистилляционную колонну из верхней части; после экстракционной дистилляции рафинатное масло выпускают из верхней части экстракционной дистилляционной колонны, и обогащенный стиролом растворитель выпускают из нижней части колонны;

(2) обогащенный растворитель, описанный на стадии (1), вводят в колонну (302) регенерации растворителя из средней части; после вакуумной дистилляции неочищенный стирол выпускают из верхней части колонны регенерации растворителя, и обедненный растворитель выпускают из нижней части колонны регенерации растворителя и возвращают в верхнюю часть экстракционной дистилляционной колонны;

(3) часть обогащенного растворителя, описанного на стадии (1), отделяют и направляют в зону (303) очистки растворителя, в которую вводят воду; после жидкость-жидкостной экстракции смесь стирольного полимера и стирола выпускают из верхней части зоны очистки растворителя, и очищенный растворитель, содержащий воду, выпускают из нижней части зоны очистки растворителя, отличающийся тем, что очищающий агент для растворителя вводят в зону очистки растворителя, описанную на стадии (3), причем указанный очищающий агент для растворителя содержит стирол и необязательные алкилароматические соединения, и при этом содержание стирола составляет не менее чем 98 мас.%.

2. Способ по п. 1, отличающийся тем, что в качестве указанного очищающего агента для растворителя выбирают неочищенный стирол, выпускаемый из верхней части колонны регенерации растворителя, или очищенный стирол, выпускаемый из верхней части колонны рафинирования неочищенного стирола.

3. Способ по п. 1 или 2, отличающийся тем, что температура зоны очистки растворителя, описанного на стадии (3), составляет от 20 до 65°C и давление составляет от 0,2 до 0,8 МПа.

4. Способ по п. 3, отличающийся тем, что температура зоны очистки растворителя, описанного на стадии (3), составляет от 30 до 60°C, и число теоретических тарелок жидкость-жидкостной экстракции, осуществляемой в зоне очистки растворителя составляет от 2 до 10.

5. Способ по п. 1, отличающийся тем, что массовое соотношение отделенного обогащенного растворителя, вводимого в зону очистки растворителя, описанного на стадии (3), и полного количества обогащенного растворителя составляет от 0,5 до 20%.

6. Способ по п. 1, отличающийся тем, что массовое соотношение воды, вводимой в зону очистки растворителя на стадии (3), и обогащенного растворителя, вводимого в зону очистки растворителя, составляет от 0,2 до 2,0.

7. Способ по п. 1, отличающийся тем, что массовое соотношение очищающего агента для растворителя, вводимого в зону очистки растворителя, и обогащенного растворителя составляет от 0,05 до 0,5, и массовое соотношение воды и обогащенного растворителя составляет от 0,2 до 2,0.

8. Способ по п. 1, отличающийся тем, что смесь стирольного полимера и стирола, выпускаемого из верхней части зоны очистки растворителя, направляют в систему очистки и обработки стирола, чтобы получать рафинированный стирольный продукт, очищенный стирол и обогащенную полимером смолу.

9. Способ по п. 1, отличающийся тем, что часть обедненного растворителя, выпускаемого из нижней части колонны регенерации растворителя, отделяют и направляют в колонну регенерации растворителя для отпарной регенерации; регенерированный растворитель, получаемый после отпаривания, повторно используют, в то время как смолу, которая не может быть подвергнута отпариванию, выпускают из системы.

10. Способ по п. 9, отличающийся тем, что массовое соотношение отделяемого обедненного растворителя для отпарной регенерации и полного количества обедненного растворителя составляет от 0,5 до 10%.

11. Способ по п. 9, отличающийся тем, что ребойлер колонны регенерации растворителя представляет собой испаритель с падающей пленкой, находящийся снаружи колонны.

12. Способ отделения стирола посредством экстракционной дистилляции, включающий стадии, на которых:

(1) стиролсодержащий исходный материал вводят из средней части экстракционной дистилляционной колонны (301); растворитель для экстракционной дистилляции вводят из верхней части экстракционной дистилляционной колонны; после экстракционной дистилляции рафинатное масло выпускают из верхней части экстракционной дистилляционной колонны, и обогащенный стиролом растворитель выпускают из нижней части колонны;

(2) обогащенный растворитель, описанный на стадии (1), вводят в колонну (302) извлечения растворителя для вакуумной дистилляции; неочищенный стирол, который выпускают из верхней части колонны регенерации растворителя, поступает в систему рафинирования стирола; после высушивающей и обесцвечивающей обработки неочищенный стирол поступает в колонну рафинирования стирола; обедненный растворитель выпускают из нижней части колонны регенерации растворителя;

(3) часть обогащенного растворителя, описанного на стадии (1), отделяют и направляют в нижнюю часть зоны (303) очистки растворителя, и воду вводят в верхнюю часть зоны очистки растворителя; после жидкость-жидкостной экстракции смесь стирольного полимера и стирола выпускают из верхней части зоны очистки растворителя, и очищенный растворитель, содержащий воду, выпускают из нижней части зоны очистки растворителя;

(4) поток, выпускаемый из верхней части зоны очистки растворителя, вводят в систему рафинирования стирола и затем в колонну рафинирования стирола после высушивания и обесцвечивания;

(5) в колонне рафинирования стирола, очищенный стирол получают в верхней части колонны после дистилляции, рафинированный стирольный продукт выпускают из верхней части колонны, и обогащенную полимером смолу выпускают из нижней части колонны, отличающийся тем, что очищающий агент для растворителя вводят в зону очистки растворителя, описанную на стадии (3), причем указанный очищающий агент для растворителя содержит стирол и необязательные алкилароматические соединения, и при этом содержание стирола составляет не менее чем 98 мас.%.

13. Способ по п. 12, отличающийся тем, что указанный очищающий агент для растворителя представляет собой неочищенный стирол или очищенный стирол, выпускаемый из верхней части колонны рафинирования стирола.

14. Способ по п. 12, отличающийся тем, что температура зоны очистки растворителя, описанного на стадии (3), составляет от 20 до 65°C и давление составляет от 0,2 до 0,8 МПа.

15. Способ по п. 12, отличающийся тем, что массовое соотношение отделенного обогащенного растворителя, направляемого в зону очистки растворителя на стадии (3), и полного количества обогащенного растворителя составляет от 0,5 до 20%.

16. Способ по п. 12, отличающийся тем, что массовое соотношение воды, вводимой в зону очистки растворителя на стадии (3), и обогащенного растворителя составляет от 0,2 до 2,0.

17. Способ по п. 13, отличающийся тем, что массовое соотношение очищающего агента для растворителя, вводимого в зону очистки растворителя, и обогащенного растворителя составляет от 0,05 до 0,5, и массовое соотношение воды и обогащенного растворителя составляет от 0,2 до 2,0.

18. Способ по п. 12 или 13, отличающийся тем, что часть обедненного растворителя на стадии (2) отделяют и направляют в колонну регенерации растворителя (304) для отпарной дистилляции; паровая фаза, выпускаемая из верхней части регенерационной колонны, возвращается в нижнюю часть колонны регенерации растворителя, и смолу выпускают из нижней части колонны регенерации растворителя; давление колонны регенерации растворителя составляет от 10 до 30 кПа, температура составляет от 110 до 150°C, и массовое соотношение пара и обедненного растворителя составляет от 3 до 8.

19. Способ по п. 18, отличающийся тем, что массовое соотношение отделяемого обедненного растворителя, направляемого в колонну (304) регенерации растворителя, и полного количества обедненного растворителя составляет от 0,5 до 10%.

20. Способ по п. 18, отличающийся тем, что ребойлер колонны регенерации растворителя представляет собой испаритель с падающей пленкой, находящийся снаружи колонны регенерации растворителя.

21. Способ по п. 1 или 12, отличающийся тем, что растворитель для экстракционной дистилляции представляет собой по меньшей мере одно вещество, выбранное из группы, которую составляют сульфолан, диэтиленгликоль, триэтиленгликоль, тетраэтиленгликоль, N,N-диметилацетамид и N-формилморфолин.

22. Способ по п. 1 или 12, отличающийся тем, что стиролсодержащий исходный материал представляет собой стиролсодержащую фракцию C8.



 

Похожие патенты:

Изобретения относятся к экстракционной дисилляции. Описан способ экстракционой дистилляции, включающий (а) дистилляцию жидкой смеси, содержащей этилбензол, по меньшей мере одно другое ароматическое соединение С8 и экстрагент, при этом экстрагент включает карбоциклическую кольцевую структуру и представляет собой ароматическое соединение формулы (I): ,где Ra и Rb независимо друг от друга выбраны из группы, состоящей из кислородного радикала, водородного радикала и гидрокарбильного радикала, включающего от 1 до 20 атомов углерода, и где R2-R6 независимо друг от друга выбраны из группы, состоящей из галогена, водородного радикала и гидрокарбильного радикала, включающего от 1 до 20 атомов углерода, при этом по меньшей мере два из R2-R6 являются галогеном.

Изобретение относится к вариантам способа совместного производства изобутилена и высокочистого метанола и к системе для производства изобутилена. Один из вариантов способ совместного производства изобутилена и высокочистого метанола включает следующие стадии: а.

Изобретение относится к способу выделения из сырой С4-фракции чистого 1,3-бутадиена, характеризующегося заданным максимальным содержанием по меньшей мере одного низкокипящего компонента и заданным максимальным содержанием 1,2-бутадиена соответственно в пересчете на 1,3-бутадиен, причем: а) сырую С4-фракцию направляют в колонну предварительной перегонки, снабженную ориентированной в ее продольном направлении перегородкой, причем из колонны предварительной перегонки отбирают содержащую С3-углеводороды низкокипящую фракцию в качестве головного потока, высококипящую фракцию в качестве кубового потока и очищенную С4-фракцию в качестве бокового потока, причем очищенная С4-фракция имеет содержание указанного по меньшей мере одного низкокипящего компонента в пересчете на 1,3-бутадиен, равное или меньше заданного максимального содержания указанного по меньшей мере одного низкокипящего компонента, а ее заданное максимальное содержание 1,2-бутадиена составляет 25 частей на млн в пересчете на 1,3-бутадиен, b) очищенную С4-фракцию подвергают по меньшей мере одной экстрактивной дистилляции с селективным растворителем, причем получают по меньшей мере одну фракцию, содержащую бутаны и бутены, а также фракцию чистого 1,3-бутадиена.

Изобретение относится к способу получения чистого 1,3-бутадиена из необработанной С4-фракции в результате экстрактивной дистилляции с селективным растворителем, в котором a) жидкую необработанную С4-фракцию подают в зону подачи колонны предварительной дистилляции, которая в средней секции разделена посредством перегородки, ориентированной в основном в продольном направлении колонны предварительной дистилляции, на зону подачи и зону бокового вывода, отводят первую низкокипящую фракцию, содержащую С3-углеводороды в виде головного потока, газообразную С4-фракцию в виде бокового потока из зоны бокового вывода и первую высококипящую фракцию в виде кубового потока, b) по меньшей мере в одной экстракционной колонне газообразную С4-фракцию приводят в контакт с селективным растворителем, причем получают головную фракцию, содержащую бутаны и бутены, и кубовую фракцию, содержащую 1,3-бутадиен и селективный растворитель, c) по меньшей мере в одной дегазирующей колонне из кубовой фракции десорбируют неочищенный 1,3-бутадиен, причем получают дегазированный селективный растворитель и дегазированный селективный растворитель направляют обратно в экстракционную колонну, и d) по меньшей мере часть неочищенного 1,3-бутадиена подают в колонну тонкой дистилляции и отделяют вторую высококипящую фракцию, отводят газообразный выпускной поток, а вторую высококипящую фракцию направляют обратно в нижнюю секцию колонны предварительной дистилляции.

Изобретение относится к двум вариантам способа экстракционной дистилляции 1,3-бутадиена. При этом один из вариантов способа предусматривает: (a) обеспечение дистилляционной колонны, которая содержит продольную стенку, разделяющую дистилляционную колонну на первую область, вторую область и объединенную нижнюю область, первый конденсатор, присоединенный к первой области, второй конденсатор, присоединенный ко второй области, и ребойлер, присоединенный к объединенной нижней области; (b) введение потока C4-углеводородов, содержащего одно или несколько соединений, выбранных из группы, состоящей из C4-алканов, C4-алкенов, C4-алкадиенов, C4-алкинов и их сочетаний, в первую область дистилляционной колонны, причем (i) поток C4-углеводородов разделяют на два или более потоков, и два или более потоков вводят в первую область во множестве точек; или (ii) поток C4-углеводородов содержит по меньшей мере одно соединение, выбранное из группы, состоящей из 1,3-бутадиена, бутана, изобутана, 1-бутена, транс-2-бутена, цис-2-бутена, изобутена, 1,2-бутадиена, винилацетилена, этилацетилена и их сочетаний; (c) введение первого растворителя в первую область дистилляционной колонны; (d) удаление первого потока из первой области дистилляционной колонны; (e) введение второго растворителя во вторую область дистилляционной колонны; (f) удаление второго потока из второй области дистилляционной колонны, причем второй поток содержит 1,3-бутадиен, и где второй поток удаляют из верхней части второй области; и (g) удаление третьего потока из объединенной нижней области дистилляционной колонны; и (h) добавление ингибитора полимеризации в по меньшей мере одну из первой области, второй области и объединенной нижней области дистилляционной колонны.

Изобретение относится к технологии промышленного выделения изопрена и может быть использовано в нефтеперерабатывающей, нефтехимической и химической отраслях промышленности. Изобретение касается способа выделение изопрена из изоамилен-изопреновой фракции, включающего ректификацию с безводным диметилформамидом в качестве разделяющего агента с выделением изоамиленовой фракции и десорбцией изопрена из разделяющего агента, возврата части изопрена в колонну ректификации.

Изобретение предназначено для разделения смеси углеводородов и/или производных углеводородов путем экстракционной дистилляции с селективным растворителем. Описана колонна с разделительными внутренними элементами для разделения смеси углеводородов и/или производных углеводородов путем экстракционной дистилляции с селективным растворителем, с подачей селективного растворителя в верхней части колонны и подачей подлежащей разделению смеси углеводородов и/или производных углеводородов ниже подачи селективного растворителя, причем в колонне селективный растворитель нагружается теми компонентами подлежащей разделению смеси, к которым он обладает более высокой аффинностью, и его отводят из нижней части колонны как нагруженный селективный растворитель, а те компоненты подлежащей разделению смеси, аффинность селективного растворителя к которым ниже, напротив, остаются в паровой фазе, и их отводят как верхний поток, который полностью или частично конденсируется с получением конденсата, частично отводимого в виде потока продукта, а в остальном снова подаваемого в колонну в виде обратного потока.

Предложен способ отделения этилбензола от смеси, которая содержит C8 ароматические соединения, который включает: дистилляцию смеси, которая содержит C8 ароматические соединения, в присутствии экстрагирующего средства; в котором экстрагирующее средство содержит хлорированное ароматическое соединение и органическое соединение, выбранное из производных фурандиона и органических нитрилов.
Изобретение относится к способу дистилляционного отделения этилбензола от смеси, которая содержит этилбензол и по меньшей мере одно другое C8 ароматическое соединение. Способ включает: a) введение сырьевого потока, который содержит указанную смесь, в первую дистилляционную колонну, b) введение первого потока, который содержит тяжелый растворитель, выше сырьевого потока в первую дистилляционную колонну, c) введение водного потока ниже сырьевого потока в первую дистилляционную колонну, причем водный поток содержит воду и по меньшей мере один легкий растворитель, выбранный из Cl-, S-, N- или O-содержащего соединения и их смесей.
Изобретение относится к способу дистилляционного отделения этилбензола от смеси, которая содержит этилбензол и по меньшей мере одно другое C8 ароматическое соединение, который включает дистилляцию указанной смеси в дистилляционной колонне в присутствии экстракционного растворителя. Причем массовое соотношение экстракционного растворителя к смеси, содержащей этилбензол, находится в диапазоне от 1:1 до 10:1.

Изобретение относится к способу получения стирола жидкофазной дегидротацией метилфенилкарбинолсодержащего сырья в присутствии кислотного катализатора и добавок в реакторе-ректификаторе колонного типа, состоящем из кубовой и паровой зон. Способ характеризуется тем, что в качестве метилфенилкарбинолсодержащего сырья берут фракцию метилфенилкарбинола совместно с отходом со стадии парофазной дегидратации метилфенилкарбинола процесса совместного получения оксида пропилена и стирола, содержащего высококипящие простые и сложные ароматические эфиры, кубовая зона реактора-ректификатора оборудована тонкопленочным испарителем, при этом сырье совместно с катализатором и добавками подают на верхнюю распределительную часть пленочного испарителя при температуре 190-220°С, а под испаритель, в слой реакционной массы куба, вводят «острый» водяной пар, пары продуктов реакции, полученные в кубовой зоне, направляют в паровую зону реактора-ректификатора, оборудованного каплеотбойниками, из которой продукты реакции с температурой 92-95°С направляют в систему охлаждения, а затем в систему разделения продуктов реакции.
Наверх