Способ изготовления радиационно-стойкого полупроводникового прибора


H01L21/00 - Способы и устройства для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей (способы и устройства, специально предназначенные для изготовления и обработки приборов, относящихся к группам H01L 31/00- H01L 49/00, или их частей, см. эти группы; одноступенчатые способы изготовления, содержащиеся в других подклассах, см. соответствующие подклассы, например C23C,C30B; фотомеханическое изготовление текстурированных поверхностей или поверхностей с рисунком, материалы или оригиналы для этой цели; устройства, специально предназначенные для этой цели вообще G03F)[2]

Владельцы патента RU 2785122:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Чеченский государственный университет имени Ахмата Абдулхамидовича Кадырова" (RU)

Изобретение относится к области технологии производства полупроводниковых приборов. Способ состоит в следующем: на кремниевых пластинах после создания тонкого затворного оксида по стандартной технологии поверх нее над канальной областью формируют слой нитрида кремния Si3N4 толщиной 40-80 нм при расходе газовой смеси SiH4-N2 35-40 см3/мин в реакторе, давлении газовой смеси 0,4 мм рт.ст., ВЧ-мощности 100 Вт, концентрации силана в смеси 1 мол.%, температуре подложки 400°С и скорости осаждения нитрида кремния Si3N4 0,3 нм/с. Нанесение слоя нитрида кремния поверх слоя оксида улучшает рабочие характеристики полупроводниковых приборов, т.к. при облучении в двухслойных системах SiO2-Si3N4 происходит уменьшение встроенного заряда за счет компенсации положительного заряда в диоксиде кремния отрицательным зарядом, накопленным в нитриде кремния, и повышается радиационная стойкость. 1 табл.

 

Изобретение относится к области технологии производства полупроводниковых приборов, в частности к технологии изготовления транзистора с низким значением плотности встроенного заряда и повышенной радиационной стойкостью.

Известен способ изготовления полупроводникового прибора [Патент 5093700 США, МКИ H01L 27/01] с многослойным затвором из поликремния, в которых слои поликремния разделяются слоями кремния толщиной 0,1-0,5 нм; используются 3 слоя поликремния и 2 слоя оксида кремния. Осаждения поликремния осуществляется с использованием силана при давлении 53 Па и температуре 650°С. Слой оксида формируется при 1% кислорода и 99% аргона при температуре 800°С. Использование многослойных структур при изготовлении затвора прибора повышает дефектность структуры и ухудшают электрические параметры изделий.

Известен способ изготовления радиационно-стойкого полупроводникового прибора [Заявка 2667442 Франция, МКИ H01L 23/552]. На поверхности сильно легированной полупроводниковой подложки р+ или n+ - типа проводимости наращивается слаболегированный активный слой толщиной 150 нм, который затем имплантируется ионами кислорода с целью формирования скрытого изолирующего слоя диоксида кремния толщиной 350 нм. Таким образом активный слой располагается на поверхности изолирующего слоя. Использование сильно легированной полупроводниковой подложки обеспечивает сток генерируемых облучением зарядов, а также быстрой рекомбинации.

Недостатками способа являются: высокие значения встроенного заряда; высокая дефектность; низкая технологичность.

Задача, решаемая изобретением: снижения значений плотности встроенного заряда и повышения радиационной стойкости, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличение процента выхода годных приборов.

Задача решается путем нанесения слоя нитрида кремния Si3N4 толщиной 40-80 нм поверх слоя диоксида кремния при расходе газовой смеси SiH4-N2 35-40 см3/мин в реакторе, давлении газовой смеси 0,4 мм рт.ст., ВЧ-мощности 100 Вт, концентрации силана в смеси 1 мол %, температуре подложки 400°С и скорости осаждения нитрида кремния Si3N4 0,3 нм/с.

По предлагаемому способу были изготовлены и исследованы приборы. Результаты обработки представлены в таблице:

Экспериментальные исследования показали, что выход годных полупроводниковых приборов на партии пластин, сформированных в оптимальном режиме, увеличился на 19,8%.

Технический результат: снижения значений встроенного заряда и повышения радиационной стойкости, обеспечение технологичности, улучшение параметров приборов, повышение качества и увеличения процента выхода годных приборов.

Стабильность параметров во всем эксплуатационном интервале температур была нормальной и соответствовала требованиям.

Предложенный способ изготовления радиационно-стойкого полупроводникового прибора путем нанесения поверх слоя диоксида кремния над канальной областью нитрида кремния Si3N4 толщиной 40-80 нм при расходе газовой смеси SiH4-N2 35-40 см3/мин в реакторе, давлении газовой смеси 0,4 мм рт.ст., ВЧ-мощности 100 Вт, концентрации силана в смеси 1 мол %, температуре подложки 400°С и скорости осаждения нитрида кремния Si3N4 0,3 нм/с, позволяет повысить процент выхода годных приборов и улучшить их надежность.

Способ изготовления радиационно-стойкого полупроводникового прибора, включающий формирование слоя нитрида кремния, отличающийся тем, что поверх слоя диоксида кремния над канальной областью наносят слой нитрида кремния Si3N4 толщиной 40-80 нм при расходе газовой смеси SiH4-N2 35-40 см3/мин в реакторе, давлении газовой смеси 0,4 мм рт.ст., ВЧ-мощности 100 Вт, концентрации силана в смеси 1 мол.%, температуре подложки 400°С и скорости осаждения нитрида кремния Si3N4 0,3 нм/с.



 

Похожие патенты:

Изобретение относится к области технологии производства полупроводниковых приборов. Согласно изобретению предложен способ формирования полупроводниковых приборов, включающий формирование на кремниевой пластине тонкого затворного оксида толщиной 13 нм термическим окислением при 1000°С в течение 40 мин в сухом О2 с добавкой 3% HCl, отжиг в аргоне 15 мин, нанесение поверх слоя оксида кремния над канальной областью слоя поликремния толщиной 300 нм пиролитическим разложением силана SiH4 при температуре 670°С в аргоне, после чего поликремний легируют ионами бора с дозой 1013 см-2 энергией 90 кэВ и полученную полупроводниковую структуру отжигают под действием сканирующего аргонного лазера мощностью 10-15 Вт.

Изобретение относится к области приборостроения и может применяться при изготовлении микрогироскопов. Способ изготовления микрогироскопа включает изготовление структурных элементов - крышки с откачной трубкой и газопоглощающим элементом, основания корпуса, и чувствительного элемента, установку чувствительного элемента на основание корпуса.

Изобретение относится к области электронной техники, а именно к способам изготовления гибридных интегральных схем, например, генераторного модуля СВЧ-диапазона. Техническим результатом изобретения является повышение технологичности, улучшение электрических и массогабаритных характеристик гибридной интегральной схемы.

Изобретение относится к способу получения триалкилиндия. Согласно предложенному способу триалкилиндий получают в реакционной смеси, которая содержит по меньшей мере один галогенид алкилиндия, триалкилалюминий, карбоксилат и растворитель, состоящий из углеводородов, при этом алкильные остатки независимо друг от друга выбраны из С1-С4алкила.

Изобретение относится к технологии изготовления кремниевых полупроводниковых приборов и интегральных схем, в частности к области технологий получения контактов золото-кремний с помощью электрохимических методов осаждения металла. Предлагается способ электрохимического осаждения золота на кремниевые полупроводниковые структуры, включающий химическую обработку кремниевой полупроводниковой пластины в растворах и последующее электрохимическое осаждение золота из электролитов золочения с рН=6÷7, при этом перед электрохимическим осаждением золота проводят химическую обработку в растворе смеси, состоящей из алифатического спирта и плавиковой кислоты в соотношении от 1:0 до 1:8.

Изобретение относится к способу получения эпитаксиальных тонкопленочных материалов в вакууме и может быть использовано для производства кремнийсодержащих логических компонентов приборов наноэлектроники, композитных материалов для реального сектора экономики. Способ получения монослойного силицена состоит из трех этапов.

Предлагаемое изобретение относится к технологии изготовления полупроводниковых диодных структур с барьером Шоттки. Способ изготовления поверхностно-барьерного детектора на кремнии n-типа проводимости включает химическое травление кремниевой пластины, прогрев на воздухе после травления, защиту края перехода диэлектрическим покрытием, в качестве которого используют кремнийорганический компаунд марки КЭН-2 с добавлением пиридина в весовом соотношении 20-25:1 соответственно и микро- или нанопорошок графита в весовом соотношении 10-15:1 соответственно и термическое напыление выпрямляющего контакта.

Изобретение относится к технологии эпитаксии легированных слоёв германия, основанной на сочетании в одной вакуумной камере одновременных осаждения на легированной бором кремниевой подложке германия из германа и диффузии бора в растущий слой германия из приповерхностной области этой подложки, и может быть использовано для производства полупроводниковых структур.

Изобретение относится к области нанотехнологии и может быть использовано при получении покрытий с наноразмерной толщиной на поверхности широкого круга подложек при создании различного типа функциональных наноматериалов, находящих применение в электрохимической энергетике, электронной и оптической промышленности, различного рода сенсоров для мониторинга окружающей среды.

Изобретение относится к электронной технике, в частности к микроэлектронике, и может быть использовано при изготовлении кристаллов интегральных схем (ИС) и дискретных полупроводниковых приборов, представляющих собой тонкую пластину. Способ временного бондинга пластин для формирования тонких пластин включает нанесение адгезионного слоя на рабочую пластину, нанесение антиадгезионного слоя на пластину-носитель, термокомпрессионное соединение двух пластин, шлифовку или полировку обрабатываемой поверхности рабочей пластины, механическое разъединение рабочей пластины и пластины-носителя, очистку поверхности рабочей пластины органическим растворителем, при этом процесс сушки адгезионного и антиадгезионного слоя выполняют в процессе соединения двух пластин, максимальная температура нагрева пластин не может быть менее температуры перехода адгезионного и антиадгезионного слоев в твердое состояние, и выбирается в зависимости от температурного коэффициента линейного расширения материалов по предложенному соотношению.
Наверх