Способ обработки перед напылением титан-германий (ti-ge)


H01L21/30604 - Способы и устройства для изготовления или обработки полупроводниковых приборов или приборов на твердом теле или их частей (способы и устройства, специально предназначенные для изготовления и обработки приборов, относящихся к группам H01L 31/00- H01L 49/00, или их частей, см. эти группы; одноступенчатые способы изготовления, содержащиеся в других подклассах, см. соответствующие подклассы, например C23C,C30B; фотомеханическое изготовление текстурированных поверхностей или поверхностей с рисунком, материалы или оригиналы для этой цели; устройства, специально предназначенные для этой цели вообще G03F)[2]

Владельцы патента RU 2786369:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Дагестанский государственный технический университет" (RU)

Изобретение относится к технологии изготовления кремниевых транзисторов, в частности к способам обработки обратной стороны перед напылением. Способ обработки поверхности пластин перед напылением титан-германий (Ti-Ge) включает обработку поверхности кремниевых пластин перед напылением на обратную сторону пластины, проводят обработку травлением, при этом в качестве травителя используют раствор, в состав которого входят: азотная кислота - HNO3, фтористоводородная кислота - HF, деионизованная вода - Н2О следующих соотношениях: HNO3:HF:H2O - 1:10:35, а время обработки поверхности кремниевых пластин при комнатной температуре не более 25±5 с. Изобретение обеспечивает полное удаление остатков окисла с поверхности обратной стороны кремниевых пластин перед напылением и уменьшение температуры обработки.

 

Изобретение относится к технологии изготовления кремниевых транзисторов, в частности к способам обработки обратной стороны перед напылением.

Известны способы обработки кремниевых пластин: в кислотах, щелочных растворах и др. [1-3].

Основным недостатком этих способов является неполное удаление окислов, остатки окислов, высокотемпературная обработка.

Целью изобретения является полное удаление остатков окисла с поверхности обратной стороны кремниевых пластин перед напылением и уменьшение температуры обработки.

Поставленная цель достигается тем, что удаление окисла перед напылением происходит за счет использования раствора, в состав которого входят: азотная кислота - HNO3, фтористоводородная кислота - HF, деионизованная вода - Н2О в следующих соотношениях:

HNO3:HF:H2O

1:10:35

Сущность способа заключается в том, что с поверхности пластин происходит полное удаление окисла в растворе состоящей из азотной кислоты - HNO3, фтористоводородной кислоты - HF и деионизованной воды - Н2О. Процесс удаления окисла считается законченным в том случае, когда раствор скатывается с поверхности обратной стороны кремниевых пластин. Реакция обработки поверхности кремниевой пластин протекает с большой скоростью, длительность процесса составляет не более 25±5 секунд. При этом не происходит ухудшения качества поверхности кремния.

Таким образом, предполагаемый способ по сравнению с прототипом обеспечивает удаление остатков окисла с поверхности обратной стороны перед напылением и способствует улучшению адгезии, благодаря которой увеличивается процент выхода годных кристаллов - 98%.

Сущность изобретения подтверждается следующими примерами:

ПРИМЕР 1. Процесс проводят на установке химической обработки в одной ванне с последующей отмывкой в деионизованной воде при соотношении компонентов:

HNO3:HF:H2O

1:10:45

Температура раствора комнатная. Время обработки 45±5 секунд. Процент выхода годных кристаллов составляет 93%.

ПРИМЕР 2. Способ осуществляют аналогично примеру 1. Процесс проводят на установке химической обработки в одной ванне с последующей отмывкой в деионизованной воде при соотношении компонентов:

HNO3:HF:H2O

1:10:40

Температура раствора комнатная. Время обработки равно 35±5 секунд. Процент выхода годных кристаллов составляет 95%.

ПРИМЕР 3. Способ осуществляют аналогично примеру 1. Процесс проводят на установке химической обработки в одной ванне с последующей отмывкой в деионизованной воде при соотношении компонентов:

HNO3:HF:H2O

1:10:35

Температура раствора комнатная. Время обработки равно 25±5 секунд. Процент выхода годных кристаллов составляет 98%.

Таким образом, предлагаемый способ по сравнению с прототипом обеспечивает полное удаление остатков окисла с поверхности обратной стороны кремниевой пластины перед напылением и способствует улучшению адгезии, благодаря которой увеличивается процент выхода годных кристаллов с 93 до 98%.

ЛИТЕРАТУРА

1. Пат. РФ №2359357 «Способ обработки поверхности пластин перед нанесением полиимида» / Т.А. Исмаилов, Б.А. Шангереева, А.Р. Шахмаева.

2. Пат. РФ №2352021 «Способ обработки кремниевых пластин» / Т.А. Исмаилов, Б.А. Шангереева, А.Р. Шахмаева.

3. Шахмаева А.Р., Шангереева Б.А., Шангереев Ю.П. Поверхностная обработка полупроводниковых кремниевых структур (тезисы докладов). Сборник материалов XXXIX итоговой научно-технической конференции преподавателей, сотрудников, аспирантов и студентов ДГТУ. технические науки. - Махачкала: ДГТУ, 2018. - с. 247-248.

Способ обработки поверхности пластин перед напылением титан-германий (Ti-Ge), включающий обработку поверхности кремниевых пластин перед напылением обратной стороны, отличающийся тем, что в качестве травителя используется раствор, в состав которого входят: азотная кислота - HNO3, фтористоводородная кислота - HF, деионизованная вода - Н2О в следующих соотношениях:

HNO3:HF:H2O

1:10:35,

время обработки поверхности кремниевых пластин равно не более 25±5 с, при комнатной температуре.



 

Похожие патенты:

Изобретение относится к области технологии производства полупроводниковых приборов. Способ состоит в следующем: на кремниевых пластинах после создания тонкого затворного оксида по стандартной технологии поверх нее над канальной областью формируют слой нитрида кремния Si3N4 толщиной 40-80 нм при расходе газовой смеси SiH4-N2 35-40 см3/мин в реакторе, давлении газовой смеси 0,4 мм рт.ст., ВЧ-мощности 100 Вт, концентрации силана в смеси 1 мол.%, температуре подложки 400°С и скорости осаждения нитрида кремния Si3N4 0,3 нм/с.

Изобретение относится к области технологии производства полупроводниковых приборов. Согласно изобретению предложен способ формирования полупроводниковых приборов, включающий формирование на кремниевой пластине тонкого затворного оксида толщиной 13 нм термическим окислением при 1000°С в течение 40 мин в сухом О2 с добавкой 3% HCl, отжиг в аргоне 15 мин, нанесение поверх слоя оксида кремния над канальной областью слоя поликремния толщиной 300 нм пиролитическим разложением силана SiH4 при температуре 670°С в аргоне, после чего поликремний легируют ионами бора с дозой 1013 см-2 энергией 90 кэВ и полученную полупроводниковую структуру отжигают под действием сканирующего аргонного лазера мощностью 10-15 Вт.

Изобретение относится к области приборостроения и может применяться при изготовлении микрогироскопов. Способ изготовления микрогироскопа включает изготовление структурных элементов - крышки с откачной трубкой и газопоглощающим элементом, основания корпуса, и чувствительного элемента, установку чувствительного элемента на основание корпуса.

Изобретение относится к области электронной техники, а именно к способам изготовления гибридных интегральных схем, например, генераторного модуля СВЧ-диапазона. Техническим результатом изобретения является повышение технологичности, улучшение электрических и массогабаритных характеристик гибридной интегральной схемы.

Изобретение относится к способу получения триалкилиндия. Согласно предложенному способу триалкилиндий получают в реакционной смеси, которая содержит по меньшей мере один галогенид алкилиндия, триалкилалюминий, карбоксилат и растворитель, состоящий из углеводородов, при этом алкильные остатки независимо друг от друга выбраны из С1-С4алкила.

Изобретение относится к технологии изготовления кремниевых полупроводниковых приборов и интегральных схем, в частности к области технологий получения контактов золото-кремний с помощью электрохимических методов осаждения металла. Предлагается способ электрохимического осаждения золота на кремниевые полупроводниковые структуры, включающий химическую обработку кремниевой полупроводниковой пластины в растворах и последующее электрохимическое осаждение золота из электролитов золочения с рН=6÷7, при этом перед электрохимическим осаждением золота проводят химическую обработку в растворе смеси, состоящей из алифатического спирта и плавиковой кислоты в соотношении от 1:0 до 1:8.

Изобретение относится к способу получения эпитаксиальных тонкопленочных материалов в вакууме и может быть использовано для производства кремнийсодержащих логических компонентов приборов наноэлектроники, композитных материалов для реального сектора экономики. Способ получения монослойного силицена состоит из трех этапов.

Предлагаемое изобретение относится к технологии изготовления полупроводниковых диодных структур с барьером Шоттки. Способ изготовления поверхностно-барьерного детектора на кремнии n-типа проводимости включает химическое травление кремниевой пластины, прогрев на воздухе после травления, защиту края перехода диэлектрическим покрытием, в качестве которого используют кремнийорганический компаунд марки КЭН-2 с добавлением пиридина в весовом соотношении 20-25:1 соответственно и микро- или нанопорошок графита в весовом соотношении 10-15:1 соответственно и термическое напыление выпрямляющего контакта.

Изобретение относится к технологии эпитаксии легированных слоёв германия, основанной на сочетании в одной вакуумной камере одновременных осаждения на легированной бором кремниевой подложке германия из германа и диффузии бора в растущий слой германия из приповерхностной области этой подложки, и может быть использовано для производства полупроводниковых структур.

Изобретение относится к области нанотехнологии и может быть использовано при получении покрытий с наноразмерной толщиной на поверхности широкого круга подложек при создании различного типа функциональных наноматериалов, находящих применение в электрохимической энергетике, электронной и оптической промышленности, различного рода сенсоров для мониторинга окружающей среды.

Изобретение относится к наноэлектронике, а именно к способам изготовления элементов и структур приборов с квантовыми эффектами. Предлагается способ изготовления проводящей наноячейки с квантовыми точками, включающий нанесение на непроводящую подложку нанопленки металла ванадия, активированного алюминием в объемной доле 1-5%, в виде полоски-проводника наноразмерной ширины; поверх нее – защитной маски с нанощелью поперек полоски-проводника; плазмохимическое травление через нанощель маски тетрафторидом углерода в проточной среде очищенного аргона при охлаждении реактивной зоны в интервале температур не ниже точки росы в камере-реакторе; при этом скорость травления регулируется и подбирается экспериментально для обеспечения высокого аспектного числа наноячейки; адресное осаждение квантовых точек проводится электрофоретически из матрицы, выполненной в виде мономолекулярной пленки, нанесенной методом Ленгмюра-Блоджетт; при этом адресность расположения квантовых точек в нанозазоре между наноэлектродами наноячейки обеспечивается поочередной подачей постоянного или переменного напряжения между одним из наноэлектродов и электродом электрофоретического устройства.
Наверх