Способ получения мезитилена

Настоящее изобретение относится к способу получения мезитилена каталитической конденсацией ацетона. Способ характеризуется тем, что в качестве катализатора используется мезопористый аморфный титаносиликат, реакцию проводят при температуре 250÷400°С, объемной скорости подачи ацетона 0,5÷10 ч-1, атмосферном давлении в среде азота. Предлагаемый способ позволяет получить мезитилен с селективностью 54,6÷72,0 мас. % и выходом 38,2÷49,6 мас. %. 1 табл., 10 пр.

 

Изобретение относится к области органического синтеза, а именно к способу получения мезитилена.

Мезитилен служит сырьем для производства тримезиновой кислоты (алкидные смолы, пластификаторы, модификаторы синтетических волокон и пленок), мезидина (антрахиноновые и фталоцианиновые красители, азокрасители), мезитола (антиоксиданты) [Патент РФ №2624730].

Производство мезитилена подразделяют на две большие группы. В первой группе рассматривают способы выделения мезитилена из сырья природного происхождения (нефтяные и коксохимические фракции С9-углеводородов) путем очистки технических фракций углеводородного сырья ректификацией, кристаллизацией, а также методами химической, каталитической и термической очистки [И.Я. Петров и др. / Вестник Кузбасского государственного технического университета - 2003, №2, с. 85-95]. Общими недостатками представленных способов являются дефицит сырья, значительная энергоемкость, высокая сложность аппаратурного оформления процесса, агрессивность реакционной среды, образование трудноутилизируемых отходов (минеральные кислоты).

Ко второй группе относят синтетические методы получения мезитилена, в которых в качестве сырья используют доступные и относительно дешевые реагенты (ацетон, алкилбензолы). Процесс осуществляется в газовой или жидкой фазах на гетерогенных катализаторах.

В литературе имеются работы, посвященные конденсации ацетона на гетерогенных катализаторах, содержащих металлы переменной валентности: оксиды V4+ [Patent WO №028422А2]; Ta5+ [Patent US №2917561]; Nb5+ [M. Paulis et al. Applied Catalysis A: General, 1999, 180, P. 411-420]. Из недостатков перечисленных способов можно отметить дороговизну используемых катализаторов, высокие значения температуры (400-900°С) и давления (5-15 атм) в реакторе, быстрая дезактивация катализатора.

Конденсацию ацетона в мезитилен осуществляли в присутствии оксидов титана (II), промотированных катионами Li+, Na+, K+, Rb+, Cs+ [Μ. Zamora et al. Catalysis Today, 2006, 116, Ρ 234-238; Μ. Zamora et al. Applied Surface Science, 2005, 252 Ρ 828-832; Μ. Zamora et al. Catalysis Today, 2005,107-108, Ρ 289-293]. Катализаторы получают при помощи золь-гель метода. Газофазную конденсацию ацетона проводят в интервале температур 300-600°С. Максимальное значение конверсии ацетона в 59 мас. % удалось достичь при температуре 400°С. При этом селективность образования мезитилена составляет 48%. Ключевым недостатком указанного метода являются низкие значения селективности мезитилена относительно других компонентов, а также высокая температура проведения эксперимента.

Задачей настоящего изобретения является разработка более селективного способа получения мезитилена конденсацией ацетона под действием титаносиликатного катализатора.

Решение поставленной задачи достигается тем, что процесс синтеза мезитилена осуществляют конденсацией ацетона под действием мезопористого аморфного титаносиликата. Реакцию проводят в реакторе с неподвижным слоем катализатора в газовой фазе при температуре 250÷400°С, объемной скорости подачи ацетона 0,5÷10 ч-1 и атмосферном давлении.

Катализатор - мезопористый аморфный титаносиликат - синтезируют золь-гель методом без использования темплатов по методике, приведенной в патентах [Патент РФ №2420455; Патент РФ №2422361].

Проведение конденсации ацетона в присутствии мезопористого аморфного титаносиликата в обозначенных условиях позволяет синтезировать мезитилен с селективностью 54,6-72,0 мас. %.

Преимущества предлагаемого способа:

1. Высокий выход мезитилена - 38,2-50,4 мас. %;

2. Высокая селективность образования мезитилена - 54,6-72,0 мас. %;

3. Легкость выделения мезитилена из реакционной массы с помощью вакуумной перегонки;

4. Используется высокоактивный и селективный катализатор -мезопористый аморфный титаносиликат;

5. Простой синтез катализатора и его низкая стоимость, отсутствует необходимость использования дорогостоящего темплата.

6. Снижается экологическая нагрузка на окружающую среду за счет отказа от солей металлов.

Способ поясняется примерами:

Пример 1. Получение мезитилена.

В проточный реактор, представляющий собой трубку из нержавеющей стали, длинной 300 мм с внутренним диаметром 20 мм загружают 2 г катализатора мезопористого аморфного титаносиликата и инертную насадку. В течение 1 ч прямотоком с инертным газом (азот) подают ацетон при температуре 250°С, атмосферном давлении с объемной скоростью 0,5 ч-1. Конверсия ацетона составляет 37,3 мас. % с селективность процесса по мезитилену в 71,0 мас. %. Выход мезитилена - 49,6 мас. %.

Примеры 2-10. Проводят аналогично примеру 1. Условия и результаты примеров представлены в таблице.

Способ получения мезитилена каталитической конденсацией ацетона, отличающийся тем, что в качестве катализатора используется мезопористый аморфный титаносиликат, реакцию проводят при температуре 250÷400°С, объемной скорости подачи ацетона 0,5÷10 ч-1, атмосферном давлении в среде азота.



 

Похожие патенты:

Изобретение относится к способу катализируемого кислотой алкилирования. Способ включает взаимодействие олефина и изопарафина или ароматического соединения в присутствии жидкокислотного катализатора и поверхностно-активного вещества в зоне реакции алкилирования, работающей в условиях реакции алкилирования, с образованием реакционной смеси, содержащей продукт алкилирования, при этом поверхностно-активное вещество имеет растворимость при 25°C, равную 0,5 мас.% или меньше, в олефине, изопарафине, жидкокислотном катализаторе и продукте алкилирования, причем реакционная смесь содержит фазовую систему типа Winsor III.
Изобретение относится к способу получения пара-трет-бутилкумола (ПТБК), который находит применение для получения полимеров и сополимеров для создания композиций красок, покрытий и термореактивных смол. Способ заключается в алкилировании кумола трет-бутиловым спиртом (ТБС).

Изобретение относится к способу получения углеводородов из источника жирных кислот, включающему (a) нагревание источника жирных кислот с получением первой композиции, содержащей углеводороды и по меньшей мере одну свободную короткоцепочечную жирную кислоту; и (b) отделение по меньшей мере одной свободной короткоцепочечной жирной кислоты из первой композиции посредством процесса адсорбции или процесса ионного обмена.

Предложен катализатор для синтеза ароматических углеводородов, способ его получения и способ синтеза ароматических углеводородов непосредственно из синтез-газа путем применения указанного катализатора. Предложенный катализатор содержит частицы кислотного молекулярного сита и частицы соосаждённого сложного оксида цинка-алюминия, в котором указанные частицы соосаждённого сложного оксида цинка-алюминия дополнительно содержат другие металлы; где указанные другие металлы включают по меньшей мере один металл, выбранный из группы, состоящей из циркония, меди, платины, палладия и хрома; где указанные другие металлы добавлены в указанные частицы соосаждённого сложного оксида цинка-алюминия для модификации путём пропитывания.

Предложен способ получения ароматических углеводородов, включающий пропускание метанола и монооксида углерода через реактор, нагруженный катализатором на основе кислотного молекулярного сита ZSM-5, не содержащим металлическую добавку, с получением ароматических углеводородов при следующих условиях реакции: температура реакции составляет от 350 до 550°С, давление реакции составляет от 0,5 до 10,0 МПа и объемная скорость метанола на единицу массы составляет от 0,01 до 20 ч-1, и при этом молярное отношение метанола к монооксиду углерода меньше или равно 1:20 и больше или равно 1:100.

Изобретение относится к двум вариантам системы для получения ароматических углеводородов и двум вариантам способа. Один из вариантов системы включает: (а) ароматизатор, сконфигурированный для (i) приема заданного количества ≥1 миллиона стандартных кубических футов в сутки [MSCFD] (29000 NM3D) сырья для ароматизации, где сырье для ароматизации включает углеводороды С2 и неароматические углеводороды С3+ и имеет заданную концентрацию неароматических углеводородов C2+ в диапазоне от 15 до 90 мол.% на моль сырья для ароматизации, и (ii) ароматизации (A) по меньшей мере части неароматических углеводородов С3+ сырья для ароматизации и (B) по меньшей мере части углеводородов С2 сырья для ароматизации с получением выходящего реакционного потока, содержащего молекулярный водород, неароматические углеводороды и ароматические углеводороды; (b) рекуператор продукта в жидкостном сообщении с ароматизатором, сконфигурированный для извлечения по крайней мере первого и второго продуктов из выходящего реакционного потока, где первый продукт включает по меньшей мере часть ароматических углеводородов выходящего реакционного потока и второй продукт включает хвостовой газ, содержащий (i) по меньшей мере часть молекулярного водорода выходящего реакционного потока и (ii) по меньшей мере часть неароматических углеводородов выходящего реакционного потока; и (с) установку для предварительной обработки сырья, сконфигурированную для (A) приема ≥2 MSCFD (57000 NM3D) газообразного сырья и (B) получения сырья для ароматизации из газообразного сырья, где газообразное сырье включает от 0 до 98 мол.% метана, от 1 до 50 мол.% углеводородов C2 и от 1 до 40 мол.% неароматических углеводородов С3+, где установка для предварительной обработки сырья включает (i) по меньшей мере один этап теплопередачи, имеющий (A) вход в жидкостном сообщении с трубопроводом для сырья и (B) выход, этап теплопередачи сконфигурирован для переноса тепла от газообразного сырья в целях конденсации части газообразного сырья при установленной точке росы, и (ii) по меньшей мере один парожидкостной сепаратор, где парожидкостной сепаратор имеет вход в жидкостном сообщении с этапом теплопередачи, по меньшей мере один барабан-сепаратор и первый и второй выходы, где: (A) вход сепаратора сконфигурирован для приема газообразного сырья и конденсированных порций с этапа теплопередачи, (B) барабан-сепаратор сконфигурирован для разделения газообразного сырья и конденсированных порций с получением кубового потока, включающего сырье для ароматизации, и верхнего потока, включающего отделенные газообразные углеводороды, (C) первый выход сепаратора сконфигурирован для передачи отделенной газообразной части из установки для предварительной обработки, и (D) второй выход сепаратора сконфигурирован для передачи заданного количества сырья для ароматизации в ароматизатор, и где (iii) первый этап теплопередачи установки для предварительной обработки включает по меньшей мере один теплообменник в косвенном тепловом контакте с потоком хладагента, (iv) первый теплообменник адаптирован к косвенной передаче первой, второй и третьей частей тепла, передаваемого от газообразного сырья, где первая часть передается хладагенту, вторая часть передается отделенным газообразным углеводородам и третья часть передается сырью для ароматизации, и (v) второй этап теплопередачи сконфигурирован для отведения некоторого количества тепла от потока хладагента, где количество тепла изменяется не более чем на +/-50%, тогда как конденсированная часть, сконденсированная из газообразного сырья, имеет изменение объема ≤ +/-10%.

Изобретение относится к способу получения мезитилена путём конденсации. Способ характеризуется тем, что ацетон находится в состоянии сверхкритического флюида (при повышенной температуре и избыточном давлении), а плотность ацетона составляет не менее 5 моль/л.

Изобретение относится к способу циклизации нормальных н-алканов, заключающемуся в том, что газосырьевую смесь, состоящую из водородсодержащего газа и прямогонной бензиновой фракции, выкипающей в пределах 85-180°С, или фракции синтетических углеводородов С7-С12, или смеси индивидуальных н-алканов С7-С10, при температуре 400-520°С, давлении процесса 0,1-3,5 МПа, объемной скорости подачи сырья в интервале 0,5-2,54 ч-1, отношении водородсодержащего газа к сырью 800:1-1500:1 нм3/м3 пропускают через слой катализатора, содержащего, мас.%: платина 0,20-0,85, цеолит KL 40,0-80,0, оксид алюминия - остальное.

Изобретение относится к способу повышения концентрации диметилциклопентана в обогащенном ароматическими соединениями потоке, имеющем исходную концентрацию ароматических соединений 60% мас. Способ включает в себя подачу обогащенного ароматическими соединениями потока в реактор; насыщение в зоне насыщения реактора ароматических соединений, содержащихся в обогащенном ароматическими соединениями потоке, водородом и над некислотным катализатором с образованием алкилциклогексана; изомеризацию в зоне изомеризации реактора более чем около 30% мас.
Изобретение относится к катализаторам процесса получения ароматических углеводородов из углеводородного сырья. Катализатор окислительной ароматизации низших алканов содержит в мас.%: оксид цинка (в пересчете на металл) 3,00-7,00; оксид галлия (в пересчете на металл) 1,00-3,00; оксид германия (в пересчете на металл) 0,01-0,10; оксид платины (в пересчете на металл) 0,05-0,2; γ-окись алюминия 5,00-20,00; цеолит типа пентасила в водородной форме остальное до 100.

Изобретение относится к способу получения бутадиена из этанольного сырья, содержащего по меньшей мере 80 мас.% этанола. Способ включает, по меньшей мере, A) стадию превращения этанола в бутадиен, содержащую, по меньшей мере, реакционную секцию, на которую подают, по меньшей мере, этанольный поток и часть потока ацетальдегида со стадии E), работающую при давлении от 0,1 до 1,0 МПа и температуре от 300 до 400°C в присутствии катализатора, и секцию разделения, позволяющую разделить поток, выходящий с указанной реакционной секции, на по меньшей мере один газообразный поток и по меньшей мере один жидкий поток, причем часть потока ацетальдегида со стадии E), которую не подают в указанную реакционную секцию, образует промывочный поток; B) стадию экстракции бутадиена, содержащую, по меньшей мере, секцию сжатия, сжимающую указанный газообразный поток, выходящий со стадии A), до давления в интервале от 0,1 до 1,0 МПа, секцию газожидкостной промывки, на которую подают этанольный поток, состоящий из указанного этанольного технологического сырья, и/или часть этанольного потока, выходящего со стадии E), а также подают указанный сжатый газообразный поток, причем подачу газов осуществляют при температуре в интервале от 10 до 60°C, а подачу жидкостей при температуре от 20 до -30°C, и получают по меньшей мере этанольный поток, обогащенный бутадиеном, и поток газообразных побочных продуктов, и секцию перегонки, в которую подают указанный этанольный поток, обогащенный бутадиеном, и получают поток неочищенного бутадиена и остаток этанол/ацетальдегид/вода, причем указанная секции перегонки работает при давлении от 0,1 до 1 МПа; C) стадию промывки водой газообразных побочных продуктов, на которую подают поток газообразных побочных продуктов со стадии B), а также часть обогащенного водой потока с указанной стадии E) и на которой получают, по меньшей мере, поток водно-спиртовой смеси; D) стадию удаления примесей и коричневых масел, на которую подают, по меньшей мере, поток этанол/ацетальдегид/вода, выходящий со стадии B), и часть водного потока со стадии E) и получают, по меньшей мере, рафинат вода/этанол/ацетальдегид, поток легких коричневых масел и поток тяжелых коричневых масел; E) стадию обработки сточных вод, на которую подают, по меньшей мере, рафинат вода/этанол/ацетальдегид, выходящий со стадии D), и получают, по меньшей мере, этанольный поток, поток ацетальдегида и водный поток; F) стадию первой очистки бутадиена, содержащую, по меньшей мере, секцию газожидкостной промывки, в которую снизу подают поток неочищенного бутадиена со стадии B), а сверху водный поток, который может представлять собой поток воды из источника, внешнего по отношению к процессу получения бутадиена, и/или часть водного потока, выходящего со стадии E), причем в указанной секции промывки получают сверху предварительно очищенный поток бутадиена, а снизу поток отработавшей воды; G) стадию дальнейшей очистки бутадиена, на которую подают, по меньшей мере, указанный предварительно очищенный поток бутадиена, выходящий с указанной стадии F), и получают по меньшей мере очищенный поток бутадиена.
Наверх