Сопряженный полимер на основе бензодитиофена, тиофена и бензотиадиазола и его применение в перовскитных солнечных батареях



H10K30/40 -
H10K30/40 -
H01L51/0036 - Приборы на твердом теле, предназначенные для выпрямления, усиления, генерирования или переключения или конденсаторы или резисторы по меньшей мере с одним потенциальным барьером или поверхностным барьером; с использованием органических материалов в качестве активной части или с использованием комбинации органических материалов с другими материалами в качестве активной части; способы или устройства специально предназначенные для производства или обработки таких приборов или их частей (способы или устройства для обработки неорганических полупроводниковых тел, включающей в себя образование или обработку органических слоев на них H01L 21/00,H01L 21/312,H01L 21/47)

Владельцы патента RU 2789131:

Федеральное государственное бюджетное учреждение науки Институт проблем химической физики Российской академии наук (ИПХФ РАН) (RU)
Автономная некоммерческая образовательная организация высшего образования "Сколковский институт науки и технологий" ("Сколтех") (RU)

Изобретение может быть использовано при изготовлении солнечных батарей. Сопряженный полимер на основе замещенного бензодитиофена, бензотиадиазола и тиофена имеет следующее строение:

где n=5-200. Предложено также применение сопряженного полимера в качестве дырочно-транспортного материала в перовскитных солнечных батареях. Технический результат заключается в увеличении преобразования солнечной энергии. 2 н.п. ф-лы, 6 ил., 2 пр.

 

Изобретение относится к новым органическим соединениям, полупроводниковым материалам на основе этих соединений и их использованию в перовскитных солнечных батареях. Перовскитные солнечные батареи (ПСБ) интенсивно исследуются во всем мире в последние годы и рассматриваются как перспективная технология преобразования солнечной энергии в электрическую. Менее чем за 10 лет эффективность преобразования солнечного света в ПСБ выросла до 25,5%, что близко к параметрам солнечных батарей на основе кристаллического кремния (26,7%).

При изготовлении перовскитных солнечных батарей особое внимание уделяется слоям, находящимся между фотоактивным слоем и электродами, поскольку они во многом определяют эффективность и стабильность работы устройств [T.-W. Lee et al., Energy Environ. Sci., 2016, 9, 12-30; C.-Z. Li et al., Chin. Chem. Lett., 2017, 28, 503-511]. Эти буферные слои представлены электрон-транспортными и дырочно-транспортными материалами, способными селективно извлекать из перовскитного слоя, соответственно, отрицательные и положительные носители зарядов, и обеспечивать их эффективный транспорт к соответствующим электродам в устройстве.

В большинстве случаев в качестве дырочно-транспортного материала используют соединение spiro-OMeTAD, 2.2',7,7'-тетракис[N,N-di(4-метоксифенил)амино]-9,9'-спиробифлуорен (Фиг. 1) [Y. Qi et al., Adv. Mater. Interfaces, 2018, 5, 1700623]. Однако spiro-OMeTAD обладает плохими зарядово-транспортными свойствами и потому требует легирования (допирования) с помощью, например, кислорода и дополнительных реагентов, таких как LiTFSI (бис(трифторсульфон)имид лития) и tBuPy (4-трет-бутилпиридина) [A. Sellinger et al., Chem. Sci., 2019, 10, 1904]. Как сам процесс допирования, так и использование LiTFSI и tBuPy, отрицательным образом влияют на стабильность перовскитных солнечных батарей; в частности, катион-радикалы spiro-OMeTAD способны окислять анионы I- в активном слое, приводя к его разложению [Т. Miyasaka et al, J. Mater. Chem. A, 2018, 6, 2219; C. Adachi et al., Sol. RRL, 2020, 4, 2000305; G. Chen et al., J. Renew. Sust. Energy, 2018, 10, 043702]. Кроме того, spiro-OMeTAD является низкомолекулярным соединением, способным к кристаллизации при повышенных температурах, что приводит к потере целостности его пленок и выходу солнечных элементов из строя.

С учетом вышесказанного, остро встает проблема разработки принципиально новых дырочно-транспортных материалов, причем на основе аморфных полимерных соединений. Эта задача отчасти решается использованием полимерных ароматических аминов, таких как РТАА - поли[бис(4-фенил)(2,4,6-триметилфенил)амина (Фиг. 2). Однако этот полимер имеет несопряженную структуру, потому отличается низкой подвижностью носителей зарядов и плохо работает в перовскитных солнечных батареях без допирования: КПД преобразования света обычно не превышает 13% [С. Jia et al., Energy Environ. Sci., 2018, 11, 2035]. Более высокие КПД достигаются путем допирования полимера, например, кислородом воздуха [J. Fang et al., Adv. Sci, 2018, 5, 1800159], что также плохо влияет на стабильность работы устройств. Таким образом, использование полимерных ароматических аминов, таких как РТАА, не решает проблему создания эффективных и стабильных перовскитных солнечных элементов. Решение этой проблемы требует получения и использования сопряженных полимерных структур, обладающих хорошими дырочно-транспортными свойствами без дополнительного допирования.

В данном изобретении предлагается применение нового сопряженного полимера Р1 на основе бензодитиофена, тиофена и бензотиадиазола, имеющего следующее строение:

где n=5-200,

в качестве дырочно-транспортного материала в перовскитных солнечных батареях.

Повторяющееся звено полимера Р1 состоит из следующих блоков: электронодонорного 4,8-бис(4,5-бис(децилтио)тиофен-2-ил)-2,6-бис(3'-(2-гексилдецил)-[2,2'-битиофен]-5-ил)бензо [1,2-b:4,5-b']дитиофена чередующегося с электроноакцепторным 2,5-бис(бензо[с][1,2,5]тиадиазол-4-ил)тиофеном, связанных по положениям 7 и 7' бензотиадиазольных фрагментов и положениям 5 и 5' периферийных тиофеновых звеньев битиофеновых фрагментов (Фиг. 3). Длина полимерной цепи может варьироваться в пределах от 5 до 200 звеньев.

Использование полимера Р1 в составе перовскитных солнечных батарей в качестве дырочно-транспортного слоя позволяет:

• сформировать сплошные изолирующие дырочно-транспортные покрытия поверх зернистого фотоактивного материала, предотвращая его реакцию с металлом верхнего электрода;

• обеспечить эффективный транспорт положительных носителей зарядов (дырок) к верхнему дырочно-собирающему электроду устройства;

• Обеспечить высокую эффективность перовскитных солнечных элементов (КПД>15%) без допирования дырочно-транспортного слоя.

Полимер Р1 был получен по стандартной реакции поликонденсации Стилле в соответствии со схемой, представленной на Фиг. 4. Реакция поликонденсации Стилле широко используется для синтеза материалов для органической электроники, в частности, сопряженных полимеров для органических солнечных батарей [Н. Mori, R. Takahashi, K. Hyodo, S. Nishinaga, Y. Sawanaka, and Y. Nishihara, Macromolecules 2018, 51, 1357-1369; C. Gu, D. Liu, J. Wang, Q. Niu, C. Gu, B. Shahid, B. Yu, H. Cong and R. Yang, J. Mater. Chem. A, 2018, 6, 2371-2378].

Полимер был очищен от низкомолекулярных соединений в аппарате Сокслета последовательной промывкой ацетоном, гептаном, хлористым метиленом и хлорбензолом. Высокомолекулярная фракция, полученная из хлорбензола, использовалась для дальнейших исследований. Средневесовая молекулярная масса полимера составила 246000 г/моль, а коэффициент полидисперсности - 2.7. Полимер Р1 хорошо растворим во многих органических растворителях, таких как хлорбензол, толуол и 1,2-дихлорбензол, что указывает на перспективы его дальнейшего использования.

Важной особенностью нового полимера Р1 являются его хорошие оптоэлектронные характеристики. Из данных циклической вольтамперометрии был определен потенциал подъема волны окисления полимера (отн. пары Fc/Fc+, EFc/Fc+=-4,8 эВ), из которого оценена энергия высшей занятой молекулярной орбитали ВЗМО полимера Р1 как -5,26 эВ. Энергия низшей свободной молекулярной орбитали (НСМО) была рассчитана как (эВ) и составила -3,65 эВ. Энергия ВЗМО для Р1 хорошо соответствует положению валентной зоны перовскитного материала (-5,4 эВ) [Q. Chen, N. Ре Marco, Y. Yang, Т.-В. Song, C.-C. Chen, H. Zhao, Z. Hong. H. Zhou, Y. Yang Nano Today 2015, 10, 355], что должно обеспечивать эффективную экстракцию положительных носителей заряда. Материалы с подобными характеристиками являются оптимальными для использования в перовскитных солнечных батареях в качестве дырочно-транспортных слоев.

Конструкция перовскитной солнечной батареи классического типа (n-i-p структура) с применением полимера Р1 в качестве дырочно-транспортного слоя представлена на Фиг. 5. Она состоит из прозрачной электропроводящей подложки на основе оксида индия, легированного оловом (ITO), которая также является электрон-собирающим электродом 0, электрон-селективного слоя 1, фотоактивного слоя 2, дырочно-транспортного слоя 3, представленного пленкой полимера Р1, электрон-блокирующего слоя 4 и верхнего дырочно-собирающего электрода 5.

Электрон-селективный слой, предназначенный для блокирования дырок и переноса электронов из активного слоя солнечной батареи на электродный слой 0. В состав электрон-селективного слоя могут входить оксиды металлов TiO2, SnO2, ZnO, In2O3, WO3, CeO2, Zn2SnO4, Nb2O5, Zn2Ti3O8, BaSnO3, BaTiO3, SrSnO3 и др., халькогениды металлов CdS, CdSe, PbS, PbSe, PbTe, ZnS, ZnSe, Sb2S3, Bi2S3, In2S3, MnS, SnS, SnS2, органические соединения из ряда карбоновых и фосфоновых кислот, производные фуллеренов, производные перилендиимида, нафталиндиимида, аценов, оксидиазолов, и любых органических полупроводников n-типа. Толщина электрон-селективного слоя может составлять от 1 до 200 нм.

Фотоактивный слой 2 представляет собой любой перовскитный полупроводниковый материал общей формулы АВХ3, где А - одновалентный катион, В - Sn2+, Pb2+, X - атом галогена (Br, I-). Предпочтительными органическими катионами А являются метиламмоний (MA) - CH3NH3+ и формамидиний (FA) - [H2NCHNH2]+. Предпочтительным неорганическим катионом является Cs+. Возможны также варианты состава фотоактивного слоя, где используются комбинации органических катионов и атомов галогена. Например, MAxFA1-xPbIyBr3-y, где х=0÷4, у=0÷3. Изменение индексов х и у может оказывать влияние на эффективность и стабильность устройств. Наиболее предпочтительным составом фотоактивного слоя является Cs0.12FA0.88PbI3. Толщина фотоактивного слоя может составлять от 100 до 1000 нм.

Дырочно-транспортный слой 3 представлен пленкой сопряженного полимера Р1 толщиной от 5 до 100 нм.

Электрон-блокирующий слой 4 представлен оксидами металлов р-типа, такими как MoO3 или МоОх (х~3), V2O5 или VOx (х-2.5), CuOx (х=0.5-1.0) толщиной от 1 до 100 нм.

Дырочно-собирающий электрод 5 толщиной от 30 до 300 нм может быть полупрозрачным или непрозрачным для излучения видимого спектрального диапазона. Полупрозрачный дырочно-собирающий электрод может быть изготовлен с использованием прозрачных электропроводящих оксидов: оксида индия, легированного оловом, оксида олова, легированного фтором, оксида цинка, легированного алюминием и других проводящих оксидов. В качестве полупрозрачных электродных материалов могут также быть использованы пленки электропроводящих полимеров, таких как PEDOT:PSS полиэтилендиокситиофен : полистиролсульфонат, полианилины и полипирролы. Кроме того, полупрозрачные электроды могут формироваться на основе металлов, т.е. использоваться металлические микросетки, нанопроволоки и ультратонкие пленки золота, серебра, меди, никеля, алюминия или других металлов. Полупрозрачный электрод также может быть изготовлен на основе углеродных материалов: графена, углеродных нанотрубок, нановолокон и др. В качестве полупрозрачного электродного слоя могут быть использованы как индивидуальные материалы из перечисленных выше, так и любые их комбинации. Для формирования непрозрачного дырочно-собирающего электрода могут быть использованы пленки металлов (например, Ag, Cu, Ni, Cr, Al, Au, Pt, и др.) или их сплавов (нихром, хромель и др.), а также другие материалы, обладающие свойствами металлов или полуметаллов (например, нитрид титана, графит, разные варианты сажи).

Перовскитная солнечная батарея с использованием полимера Р1 в качестве дырочно-транспортного слоя показала следующие характеристики:

Напряжение холостого хода: 979 мВ;

Плотность тока короткого замыкания: 22,5 мА/см2;

Факторы заполнения: 70%;

Эффективность (КПД) преобразования света: 15,4%

Референсное устройство, изготовленное с использованием РТАА в качестве материала дырочно-транспортного слоя в тех же условиях, показало худшие характеристики:

Напряжение холостого хода: 911 мВ;

Плотность тока короткого замыкания: 21,5 мА/см2;

Факторы заполнения: 67%;

Эффективность (КПД) преобразования света: 13,1%

Вольтамперная характеристика для перовскитной солнечной батареи с использованием полимера Р1 представлены на Фиг. 6.

Данное изобретение иллюстрируется следующими примерами.

Пример 1. Синтез полимера Р1 В трехгорлую колбу на 50 мл помещали мономеры Ml (200 мг; 0,155 ммоль), М2 (213 мг; 0,155 ммоль), катализатор Pd2(dba)3, где dba - дибензилиденацетон (5 мг; 0,005 ммоль), дополнительный лиганд три(о-толил)фосфин (5 мг; 0,015 ммоль) и толуол (20 мл). Трижды дегазировали реакционную массу и заполняли аргоном. Колбу погружали в масляную баню и нагревали до 110°С, после чего начинали контролировать реакцию методом гель-проникающей хроматографии (ГПХ) каждый 30 минут. При достижении MW~250000 г/моль (требуется обычно 4-5 ч) останавливали реакцию путем последовательного введения в реакционную смесь триметил(тиофен-2-ил)станнана и бромтиофена с промежутком в 30 минут. Затем реакционную массу выливали в метанол (50 мл), выпавший в осадок полимер отфильтровывали на воронке Бюхнера и сушили в вакуумном эксикаторе. После этого растворяли полимер в 1,2-дихлорбензоле (40 мл) при перемешивании в течение 3-х часов при 90°С. Далее выливали раствор полимера в изопропанол (300 мл) и фильтровали выпавший в осадок полимер через гильзу для экстракции. Затем гильзу с полимером помещали в аппарат Сокслета и последовательно промывали ацетоном, хлористым метиленом и хлорбензолом. Хлорбензольную фракцию упаривали до объема 20 мл и высаживали изопропанолом (150 мл). Осадок отделяли на воронке Бюхнера и сушили в вакуумном эксикаторе. Масса хлорбензольной фракции составила 260 мг, выход полимера Р1 - 77%. Анализ очищенного полимера проводили на ГПХ колонке в сравнении с серией стандартов F8BT (поли[(9,9-ди-n-октилфлуоренил-2,7-диил)@(бензо[2,1,3]тиадиазол-4,8-диил)]). Средневесовая молекулярная масса составила Mw=246000 г/моль, индекс полидисперсности PDI=2.7.

Пример 2. Изготовление перовскитной солнечной батареи с применением полимера Р1 в качестве дырочно-транспортного слоя.

Перовскитная солнечная батарея имеет конструкцию, представленную на Фиг. 5. Для изготовления солнечной батареи были использованы стекла (25×25 мм) с нанесенной пленкой проводящего оксида индия, легированного оксидом олова (ITO) с сопротивлением 10-12 Ом/ и толщиной проводящего слоя до 125 нм. Подложки были отмыты последовательно в дистиллированной воде, толуоле (осч) и ацетоне (осч), а затем очищены в воде, ацетоне (осч) и изопропаноле (осч) с помощью ультразвука. Непосредственно перед нанесением зарядово-транспортных слоев, подложки были дополнительно выдержаны в плазме воздуха в течение 5 мин. На очищенные подложки был нанесен раствор прекурсора SnO2 (50 мкл), приготовленный разбавлением 15% водной коллоидной дисперсии SnO2 (Alfa-Aesar) в 1,5 раза дистиллированной водой, при скорости вращения подложки 4000 об/мин в течение 40 секунд. Далее пленки были прогреты при 175°С на воздухе в течение 15 мин и затем еще 10 мин при 120°С в инертной атмосфере азота в перчаточном боксе. Пленки SnO2 пассивировали нанесением раствора фенил-С61-масляной кислоты (0,1 мг/мл) в хлорбензоле (3500 об/мин, 30 с) с последующим отжигом при 100°С в течение 10 мин. Пленки перовскита MAPbI3 были нанесены методом центрифугирования из 1,4 М раствора предшественника (йодид метиламмония и PbI3 в эквимолярных соотношениях, 60 мкл) в смеси N,N-диметилацетамида и N-метил пирролидона в соотношении 4:1 по объему при 4000 об/мин. Через 10 секунд после нанесения указанного раствора на вращающуюся подложку выливали 120 мкл толуола, что вызывало ускоренную кристаллизацию перовскита. Затем пленки выкладывали на притку при 50°С, нагревали до 100°С и выдерживали при этой температуре в течение 5 мин в инертной атмосфере азота. Раствор полимера Р1 (6 мг/мл в хлорбензоле), наносили центрифугированием на пленки MAPbI3 при 3000 об/мин. Электрон-блокирующий слой (30 нм V2O5) и дырочно-собирающий электрод (120 нм Ag) наносили испарением исходных веществ в вакууме (106 мм рт.ст).

Перовскитная солнечная батарея с использованием полимера Р1 в качестве дырочно-транспортного слоя показала следующие характеристики:

Напряжение холостого хода: 979 мВ;

Плотность тока короткого замыкания: 22,5 мА/см2;

Факторы заполнения: 70%;

Эффективность (КПД) преобразования света: 15,4%

Референсное устройство, изготовленное с использованием РТАА в качестве материала дырочно-транспортного слоя в тех же условиях, показало худшие характеристики:

Напряжение холостого хода: 911 мВ;

Плотность тока короткого замыкания: 21,5 мА/см2;

Факторы заполнения: 67%;

Эффективность (КПД) преобразования света: 13,1%

Вольтамперная характеристика для перовскитной солнечной батареи с использованием полимера Р1 представлена на Фиг. 6.

1. Сопряженный полимер на основе бензодитиофена, бензотиадиазола и тиофена, имеющий следующее строение:

где n=5-200.

2. Применение сопряженного полимера на основе замещенного бензодитиофена, бензотиадиазола и тиофена по п. 1 в качестве дырочно-транспортного материала в перовскитных солнечных батареях.



 

Похожие патенты:

Ректенна // 2786634
Изобретение относится к радиотехнике и может быть использовано в системах беспроводной передачи энергии на расстояние для повышения эффективности ректенн в микроволновом диапазоне, ТГц и видимом диапазоне. Техническим результатом является разработка ректенны, имеющей малые потери энергии в приемной антенне.

Изобретение относится к области солнечной энергетики, а именно к фотоэлектрическим преобразователям на основе полупроводниковых материалов перовскитного типа. Фотовольтаическое устройство содержит следующие слои: 0 - подложка и/или барьерный слой, защищающий остальные слои от механических воздействий, влияния влаги и кислорода воздуха; 1 - полупрозрачный дырочно-собирающий электрод; 2 - дырочно-селективный слой; 3 - фотоактивный перовскитный слой; 4 - электрон-селективный слой; 5 - электрон-собирающий электрод; 6 - подложка и/или барьерный слой, защищающий остальные слои от механических воздействий, влияния влаги и кислорода воздуха.

Изобретение относится к области технологии полупроводниковых приборов, а именно к светоизлучающим устройствам на основе перовскита, и может быть использовано для создания светоизлучающих устройств, генерирующих излучение в синем диапазоне длин волн, для применения в RGB-дисплеях, приборах освещения и индикации.

Изобретение может быть использовано для формирования однородного слоя углеродных нанотрубок (УНТ) на подложках различных материалов, в том числе поверх тонких полимерных слоев; может быть использовано в качестве верхнего или нижнего электрода (в том числе прозрачного) при формировании структур оптоэлектроники и солнечных элементов.

Изобретение относится к области материаловедения, а именно, к технологии получения плёнок кристаллических материалов на основе комплексных галогенидов с перовскитоподобной структурой, которые могут быть использованы для производства полупроводниковых (солнечные элементы) и оптоэлектронных (светоизлучающих) устройств.

Изобретение относится к области материаловедения, а именно к способу получения плёнки органо-неорганического комплексного галогенида с перовскитоподобной структурой. Указанная пленка может быть использована для производства полупроводниковых устройств.

Изобретение относится к изготовлению на основе графеноподобных структур, в частности структур из одно- или многослойного графена, или оксида графена, или их модификаций, в полимере гибких и прозрачных компонентов электроники и микроэлектроники: печатных плат, интегральных микросхем, компонентов радиоэлектроники, например радиочастотных идентифицирующих микросхем, гибких прозрачных антенн и других электронных компонентов.

Изобретение относится к технологии полупроводниковых тонкопленочных гибридных фотопреобразователей и может быть использовано при создании солнечных элементов и батареи на основе галогенидных перовскитов. Способ получения полупроводниковых тонкопленочных фотопреобразователей на основе галогенидных перовскитов заключается в том, что в фотопреобразователе, содержащем последовательно размещенные на подложке анодный электрод, селективно-транспортный слой p-типа проводимости, фотопоглощающий слой, селективно-транспортный слой n-типа проводимости и катодный электрод, жидкофазным методом наносят между селективно-транспортным слоем n-типа проводимости и катодным электродом буферный слой, выполненный в виде композита, изготовленного путем диспергирования максенов Ti3C2Tx, где Тх - смесь функциональных групп F-, Cl-, О-, ОН-, при их концентрации от 0,50 мг/мл до 0,75 мг/мл в разбавленных растворах низкомолекулярных органических полупроводников в органических обезвоженных растворителях с концентрацией 0,5 мг/мл.

Изобретение относится к тонкопленочной инкапсулирующей структуре и дисплейной панели. Тонкопленочная инкапсулирующая структура содержит: первый неорганический инкапсулирующий слой, используемый для покрытия инкапсулируемого устройства; органический инкапсулирующий слой, сформированный на одной стороне первого неорганического инкапсулирующего слоя; второй неорганический инкапсулирующий слой, сформированный на стороне органического инкапсулирующего слоя, обращенной от первого неорганического инкапсулирующего слоя; и по меньшей мере один первый неорганический корректирующий слой, сформированный на стороне первого неорганического инкапсулирующего слоя, обращенной от инкапсулируемого устройства; уровень содержания кислорода в указанном по меньшей мере одном первом неорганическом корректирующем слое больше уровня содержания кислорода в первом неорганическом инкапсулирующем слое и/или втором неорганическом инкапсулирующем слое.

Изобретение относится к области солнечной энергетики, а именно к фотоэлектрическим преобразователям на основе полупроводниковых материалов перовскитного типа. В общем случае, изобретение относится к фотовольтаическим устройствам - солнечным батареям и фотодетекторам.

Изобретение относится к химии высокомолекулярных соединений, конкретно к термостойкому карборансодержащему полидифенилен-N-фенилфталимидину формулы I, где значение n таково, что приведенная вязкость ηпр полимера I составляет 0,40 дл/г. Также предложен способ получения полимера формулы I.
Наверх