Патенты автора Козлов Сергей Николаевич (RU)

Использование: для сборки электронных компонентов в электронный модуль. Сущность изобретения заключается в том, что способ изготовления трехмерного электронного модуля включает следующие этапы: создают функциональные блоки, осуществляя монтаж электронных компонентов на технологические подложки с контактными площадками на боковых гранях, проводят тестирование сформированного на подложке функционального блока, при положительном результате которого осуществляют дальнейшие этапы, производят подготовку технологической заливочной оснастки путем ее очистки от посторонних веществ, загрязнений, сушки и нанесения разделительной смазки, которая имеет антиадгезионные свойства, осуществляют позиционирование функциональных блоков в технологической заливочной оснастке, располагая их параллельно один над другим, совмещая контактные площадки, осуществляют приготовление теплопроводящего электроизоляционного компаунда и заливают компаунд в технологическую заливочную оснастку, при приготовлении и заливке теплопроводящего электроизоляционного компаунда применяют операцию двойной дегазаци, осуществляют полимеризацию теплопроводящего электроизоляционного компаунда, обрезают боковые грани сформированного трехмерного электронного модуля для открытия контактных площадок технологических подложек, обрезку осуществляют посредством оборудования, позволяющего обеспечить минимальную шероховатость поверхности боковых торцов трехмерного электронного модуля, проводят процедуру очистки трехмерного электронного модуля от возможных загрязнений, формируют сплошную поверхностную металлизацию методом трафаретной печати, при помощи лазерного пучка локально удаляют участки поверхностной металлизации на боковых гранях, тем самым образуя отдельные дорожки металлизации, коммутирующие необходимые контактные площадки согласно электрической схеме трехмерного электронного модуля. Технический результат: обеспечение возможности повышения надежности изготавливаемых трехмерных электронных модулей. 6 н. и 24 з.п. ф-лы, 7 ил.

Изобретение относится к устройствам для гальванического получения наноструктур. Аппарат для автоматизированного получения слоистых металлических нанопроводов с контролируемым составом вдоль их длинной оси включает набор емкостей с растворами электролитов и промывочными растворами, электроды, источник постоянного тока и устройство для управления режимом электроосаждения, при этом аппарат содержит моторизованное устройство для перемещения электродов относительно основания, на котором размещены емкости с растворами, обеспечивая формирование металлических слоев различного состава, при этом рабочий электрод представляет собой пористую пленку с цилиндрическими каналами, обеспечивающую условия для роста нанопроводов за счет ограничения направлений роста металла стенками пор. Предложенный аппарат позволяет получать нанопровода с четкой границей между соседними слоями. Процесс электроосаждения автоматизирован, обеспечивая возможность воспроизводимого получения слоев заданной толщины, причем их количество в единичном нанопроводе может превышать 1000 шт. 11 з.п. ф-лы, 5 ил.

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке диэлектрического слоя, формирование маски для травления диэлектрического слоя и электропроводящей подложки, формирование матрицы отверстий в диэлектрическом слое и углублений в подложке, формирование слоя катализатора для выращивания углеродных нанотрубок, удаление маски, формирование маски для травления слоя катализатора, жидкостное химическое травление слоя катализатора с образованием областей катализатора внутри углублений в электропроводящей подложке для последующего выращивания углеродных нанотрубок, удаление маски, плазмохимическое осаждение второго диэлектрического слоя, магнетронное осаждение вытягивающего слоя, формирование маски для травления структуры, состоящей из вытягивающего и второго диэлектрического слоев, над ранее сформированными областями катализатора внутри углублений в подложке для последующего выращивания углеродных нанотрубок, плазмохимическое анизотропное травление с образованием отверстий в вытягивающем и диэлектрическом слоях до формирования сквозного отверстия, удаление маски, изотропное газофазное травление второго диэлектрического слоя до вскрытия катализатора, парофазный синтез углеродных нанотрубок на катализаторе. Технический результат - предотвращение замыкания между УНТ и вытягивающим электродом, уменьшение токов утечки, повышение тока эмиссии, повышение теплоотвода с углеродных нанотрубок, повышение технологичности изготовления, надежности и увеличение выхода годных. 4 ил.

Изобретение относится к электронной технике, в частности к суперконденсаторам. Изобретение может быть использовано в энергетике, при создании высокоэффективных генераторов и накопителей электрической энергии, в автономных мобильных миниатюрных слаботочных источниках питания, применяемых в системах микроэлектроники. Электрод выполнен в виде подложки, на которой сформирована матрица структур, образованных массивами вертикально ориентированных углеродных нанотрубок, покрытых полианилином, содержащим атомы изотопа углерода С-14. Изобретение позволяет улучшить электрические характеристики суперконденсатора и продлить срок его службы. 6 з.п. ф-лы, 1 ил.
Изобретение относится к области сварки и наплавки и может быть использовано при ремонте изношенных или поврежденных бандажных полок лопаток турбомашин, выполненных из жаропрочных никелевых сплавов. Способ восстановления бандажных полок лопаток турбомашин из жаропрочных никелевых сплавов включает удаление с бандажной полки покрытия с поврежденным слоем, наплавку на бандажную полку до заданных размеров жаропрочного никелевого сплава и механическую обработку наплавленного участка, последующее проведение отжига лопатки и нанесение износостойкого покрытия на наплавленный участок бандажной полки. Наплавку бандажной полки осуществляют жаропрочным никелевым сплавом с более высоким температурным коэффициентом линейного расширения, чем у жаропрочного никелевого сплава бандажных полок лопаток. В качестве износостойкого покрытия используют износостойкий материал на карбидной основе с кобальтовым связующим с более низким температурным коэффициентом линейного расширения, чем у жаропрочного никелевого сплава бандажных полок лопаток. В частных случаях осуществления изобретения наплавку бандажной полки осуществляют жаропрочным никелевым сплавом ЖС32 с температурным коэффициентом линейного расширения 17,6⋅10-6 K-1 в интервале температур от 800 до 900°С с характеристиками жаропрочности не ниже, чем у жаропрочного никелевого сплава бандажных полок лопаток турбомашин, представляющего собой жаропрочный никелевый сплав ЖС26 с температурным коэффициентом линейного расширения 15,2⋅10-6 К-1 в упомянутом интервале температур. В качестве износостойкого материала на карбидной основе с кобальтовым связующим используют СМ-64, ХТН-61, ХТН-62 с коэффициентом линейного расширения αt=(7,2-7,8)⋅10-6 K-1. Удаление с бандажной полки лопатки покрытия с поврежденным слоем осуществляют алмазным шлифованием. Отжиг лопатки осуществляют в среде нейтрального газа или в вакууме 10-3-10-4 мм рт.ст. при температуре не выше 1050°С. Обеспечивается повышение надежности, ресурса лопаток турбин, работоспособности бандажной полки лопатки при высокой температуре нагрева 1000-1060°C и качество наплавленных участков, при этом достигается высокая точность восстановления геометрических размеров и формы бандажных полок и обеспечивается высокое качество ремонта. 4 з.п. ф-лы.

Использование: для создания элементов и приборов радиоприемной аппаратуры. Сущность изобретения заключается в том, что радиоприемное устройство, содержащее подложку с нанесенным на нее, по меньшей мере одним, диэлектрическим слоем, в диэлектрическом слое и подложке выполнено углубление, на поверхности диэлектрического слоя с примыканием к углублению на его сторонах выполнены катод, анод, радиоэлектрод и управляющий электрод с отсутствием электрического контакта между ними, на боковой поверхности катода, примыкающей к углублению, сформирован массив из углеродных нанотрубок, область с углублением закрыта герметизирующей пластиной. Технический результат: обеспечение возможности увеличения амплитуды выходного низкочастотного сигнала посредством увеличения автоэмиссионного тока, повышения стабильности работы и срока службы радиоприемного устройства. 9 з.п. ф-лы, 5 ил.

Изобретение относится к электронной технике, в частности к способам изготовления суперконденсаторов. Способ изготовления электрода суперконденсатора заключается в нанесении на проводящую подложку буферного слоя, каталитического слоя, затем диэлектрического слоя, вскрытии в диэлектрическом слое матрицы окон до каталитического слоя с поперечным размером 40-60 мкм, осаждении в окнах массивов вертикально ориентированных углеродных нанотрубок, функционализации поверхности углеродных нанотрубок кислородсодержащими группами, формировании слоя полианилина, содержащего изотоп С-14, на вертикально ориентированных углеродных нанотрубках электрохимическим осаждением, отжиге. Изобретение обеспечивает функцию самозарядки в суперконденсаторе. 12 з.п. ф-лы, 2 ил.

Изобретение относится к способу изготовления радиоприемного устройства с применением углеродных нанотрубок. Технический результат заключается в повышении стабильности работы и срока службы радиоприемного устройства с применением углеродных нанотрубок. Способ изготовления радиоприемного устройства с углеродными нанотрубками включает формирование диэлектрического слоя 2 на поверхности подложки 1, формирование электрически развязанных между собой катода 3, анода 4, радиоэлектрода и управляющего электрода с контактными площадками и с расположением их торцов по сторонам прямоугольника, формирование области каталитического слоя 7 на поверхности катода 3, примыкающей к его торцу, покрытие защитным слоем 8 каталитического слоя 7, за исключением боковой грани, примыкающей к торцу катода 3, формирование углубления в диэлектрическом слое и подложке с примыканием торцов электродов к нему проекционной фотолитографией и реактивным ионным плазменным травлением, выращивание массива углеродных нанотрубок 9 путем плазмо-химического осаждения из газовой фазы на боковой грани каталитического слоя 7, нанесенного на катод 3, обращенной к углублению, сращивание полученной структуры и герметизирующей пластины с помощью стеклянного припоя. 10 з.п. ф-лы, 11 ил.

Изобретение относится к электронной технике, в частности к полевым эмиссионным элементам, содержащим углеродные нанотрубки, используемые в качестве катодов, а также способу их изготовления. Полевой эмиссионный элемент содержит электропроводящую подложку 1, расположенный на ней диэлектрический слой 3, над которым расположен вытягивающий слой 5, в структуре, состоящей из вытягивающего 5 и диэлектрического 3 слоев, выполнена матрица сквозных отверстий 7, на стенках которых расположен изолирующий слой 6, а на дне отверстий расположен слой катализатора 4, на котором сформирован массив углеродных нанотрубок 2. Способ изготовления полевого эмиссионного элемента включает формирование на электропроводящей подложке слоя катализатора для выращивания углеродных нанотрубок, формирование маски для травления слоя катализатора, жидкостное химическое травление слоя катализатора с образованием областей катализатора для последующего выращивания углеродных нанотрубок, удаление маски, плазмохимическое осаждение диэлектрического слоя, магнетронное осаждение вытягивающего слоя, формирование маски для травления структуры, состоящей из вытягивающего и диэлектрического слоев, над ранее сформированными областями катализатора для последующего выращивания углеродных нанотрубок, плазмохимическое анизотропное травление с образованием отверстий в вытягивающем и диэлектрическом слоях до слоя катализатора, удаление маски, изотропное осаждение изоляционного слоя, анизотропное плазмохимическое травление изоляционного слоя на вытягивающем слое и в на дне отверстий до слоя катализатора с формированием изоляционного слоя на боковых поверхностях отверстий, парофазный синтез углеродных нанотрубок на катализаторе. Технический результат - предотвращение замыканий, уменьшение токов утечки, повышение тока эмиссии, надежности и увеличение выхода годных. 2 н. и 10 з.п. ф-лы, 12 ил.

Изобретение относится к способам изготовления автоэмиссионных катодов с применением углеродных нанотрубок и может быть использовано для изготовления элементов и приборов вакуумной микро- и наноэлектроники. Способ включает осаждение на подложку электропроводящего буферного слоя, осаждение каталитического слоя, формирование вертикально ориентированного массива углеродных нанотрубок путем плазмохимического осаждения из газовой фазы с отношением длины углеродных нанотрубок к их диаметру в интервале от 25 до 75, термическую обработку массива углеродных нанотрубок в вакууме и обработку массива углеродных нанотрубок плазмой на основе водорода. Техническим результатом является увеличение максимальной плотности тока автоэмиссионных катодов на основе вертикально ориентированных массивов УНТ в совокупности с повышением стабильности тока эмиссии и срока службы катода. 15 з.п. ф-лы, 5 ил.

Изобретение относится к области сварки и может быть использовано при производстве или ремонте бандажированных лопаток турбин турбомашин, выполненных из жаропрочных никелевых сплавов. Выполняют бандажную полку лопатки турбины. Наносят на подготовленную к наплавке контактную поверхность бандажной полки износостойкое покрытие и удаляют излишки упомянутого покрытия до получения требуемого размера бандажной полки. Бандажную полку выполняют с припуском, компенсирующим последующую ее усадку при нанесении износостойкого покрытия, а после наплавки упомянутого покрытия выполняют отжиг лопатки в вакууме 10-3-10-4 мм рт.ст. при температуре не выше 1050°C. При этом наплавку износостойкого покрытия на контактную поверхность бандажной полки осуществляют за один проход без разрыва электрической дуги на минимальном токе 30-40 А. Припуск бандажной полки превышает величину последующей ее усадки не более чем на 5-10%. Изобретение позволяет повысить надежность и ресурс работы лопаток турбины. 1 з.п. ф-лы, 5 ил., 2 пр.

Изобретение относится к авиационной промышленности и может быть использовано для изготовления моноколес турбомашин. Способ включает последовательную черновую обработку концевыми фрезами верхних, средних и концевых участков лопаток и дальнейшую их чистовую обработку. При этом после проведения черновой обработки верхних и средних участков лопаток выявляют дефекты на их поверхности. Удаляют участки лопаток с выявленными дефектами. Восстанавливают верхние и средние участки лопаток. Для восстановления верхних и средних участков лопаток по месту их удаления формируют выступ под корневые участки лопаток на кольцевой заготовке. Изготавливают технологическую накладку в виде платика со сквозным вырезом, совпадающим с контуром выступа под корневые участки лопаток. Также изготавливают конструктивную деталь, контактная плоскость которой соразмерна с контактной плоскостью платика, а ее объем соответствует объему удаленных верхних и средних участков лопаток. С помощью электронно-лучевой сварки соединяют между собой выступ под корневые участки лопаток, платик и конструктивную деталь. Далее проводят черновую обработку восстановленных участков лопаток. Изобретение позволяет расширить технологические возможности изготовления моноколеса газотурбинного двигателя за счет устранения дефектов в процессе его изготовления. 5 ил.

Изобретение относится к ракетно-космической технике и может быть использовано для защиты хвостовых отсеков ракет-носителей от газодинамического воздействия струй работающих жидкостных ракетных двигателей (ЖРД). Донная защита хвостового отсека ракеты-носителя содержит подвижный кольцевой экран с буртиком и сферической поверхностью, установленный на поворотной камере сгорания двигателя ракеты-носителя, неподвижный сферический экран с буртиком, промежуточный сферический экран с буртиком. Промежуточный экран перекрывает зазор между подвижным и неподвижным экранами при повороте камеры. Сферические поверхности подвижного, неподвижного и промежуточного экранов имеют один центр сфер, совпадающий с центром качания камеры. Изобретение позволяет повысить эффективность тепловой защиты агрегатов хвостового отсека ракеты-носителя при работе ЖРД, снизить массогабаритные характеристики. 1 з.п. ф-лы, 1 ил.

Баллон предназначен для использования в установках гидроабразивной резки. Баллон состоит из лейнера (1) и внешней силовой композиционной оболочки (2). Лейнер (1) содержит верхнее днище (4) с удлиненной горловиной (5), среднюю цилиндрическую часть (6) и нижнее днище (7) с элементом (8) для обеспечения симметричной укладки спиральных слоев при армировании баллона. Внутренний диаметр d1 удлиненной горловины (5) имеет увеличенный размер, равный не менее половины внутреннего диаметра d2 средней цилиндрической части (6) лейнера (1). Элемент (8) для обеспечения симметричной укладки спиральных слоев при армировании баллона выполнен в виде горловины с несквозным отверстием (12), причем диаметр d3 отверстия (12) равен внутреннему диаметру d1 горловины (5). На торцах элемента (8) в нижней части выполнены пазы (13). Технический результат - расширение функциональных возможностей баллона при обеспечении повышенного уровня безопасности. 4 з.п. ф-лы, 2 ил.

Изобретение относится к энергетике. Теплообменный аппарат содержит теплообменник с корпусом и цилиндрической оболочкой, образующими каналы, входной и выходной коллекторы, дополнительный теплообменник, расположенный последовательно с первым, содержащий входной и выходной коллекторы. Кроме того, внутри теплообменников расположен трубчатый теплообменник, содержащий входной и выходной коллекторы, расположенные между двумя первыми теплообменниками, кроме того, трубчатый теплообменник имеет обобщающие входной и выходной коллекторы, соединенные трубопроводами между собой и с входным и выходным коллекторами, кроме того, внутри трубчатого теплообменника установлен цилиндрический экран с обтекателем, а выходной обобщающий коллектор соединен с корпусом первого теплообменника пилонами, расположенными под углом α к оси теплообменного аппарата. Трубчатый теплообменник содержит также бандаж, установленный между обобщающими коллекторами, а дополнительный теплообменник снабжен соплом. Изобретение позволяет повысить производительность теплообменного аппарата без увеличения его габаритов. 2 з.п. ф-лы, 1 ил.

Изобретение относится к ракетной технике и может быть использовано преимущественно в силовых блоках ракет-носителей (РН) для управления вектором тяги

Изобретение относится к многослойным комбинированным материалам
Изобретение относится к легкой промышленности и касается разработки комбинированного материала - ламината

Изобретение относится к области строительства резервуаров для хранения жидкостей в сейсмически опасных районах

Изобретение относится к производству пластмасс и может быть использовано для изготовления герметичных надувных изделий

Изобретение относится к промышленности пластмасс и касается разработки поливинилхлоридной композиции для получения пленочных материалов

Изобретение относится к способу устранения дефектных углублений, полученных при механической обработке заготовок рабочих колес компрессоров и турбин

Изобретение относится к спецматериалам для пошива одежды и касается комбинированного многослойного материала
Изобретение относится к текстильным материалам и может быть использовано для изготовления медицинской и бытовой одежды
Изобретение относится к многослойным и слоистым материалам и полимерным слоям, используемым в них, и направлено на создание полимерно-текстильного материала для изделия швейной промышленности

Изобретение относится к сварочному производству и может быть использовано для исправления дефектов на деталях в виде тонкостенных отливок из жаропрочных сплавов

Изобретение относится к металлургии и к сварочному производству, и может быть использовано для изготовления сплавов на кобальтовой основе и присадочных металлов из этих сплавов для сварки, наплавки и ремонта сваркой ответственных деталей из высоколегированных жаропрочных никелевых и кобальтовых сплавов деталей горячего тракта авиационных газотурбинных двигателей, работающих при высоких температурах (более 900°С)

Изобретение относится к строительству тоннелей и может быть использовано в дорожном строительстве для прокладки временных подземных дорог, в энергетике и в отраслях связи при прокладке кабелей, в добывающих отраслях при разработках месторождений полезных ископаемых

БЛЕСНА // 2339222
Изобретение относится к области любительского и спортивного рыболовства, а именно к искусственным приманкам

Изобретение относится к области хранения пищевых продуктов, в том числе питьевой воды, и касается резервуаров-хранилищ указанных продуктов

Изобретение относится к креплению грунтов и горных выработок, в частности к анкерной крепи, выполненной из композитов на основе армирующего волокнистого материала и полимерного связующего, и может быть использовано в наземном и подземном строительстве и горном деле

Изобретение относится к технике создания искусственных помех и может быть использовано для подавления сигналов управления приемных устройств радиовзрывателей, запуск которых производится с помощью связных радиостанций
Изобретение относится к области ветеринарной медицины, в частности к составам для борьбы с кожными паразитами млекопитающих

Изобретение относится к изготовлению рабочих колес турбомашин, а именно к ремонту рабочих колес газотурбинных двигателей

Изобретение относится к строительным конструкциям, предназначено для крепления выработки в породе и может быть использовано в качестве элементов силовых конструкций коммуникационных коллекторов, шахтных и вентиляционных каналов и т.д

 


Наверх