Патенты автора Зайцев Александр Иванович (RU)

Изобретение относится к области металлургии, а именно к способам производства высокопрочного холоднокатаного непрерывно отожженного листового проката из IF-сталей, который может быть использован в автомобильной промышленности. Способ производства высокопрочного холоднокатаного и отожженного проката, включающий выплавку стали, непрерывную разливку в слябы, горячую прокатку слитка, холодную прокатку полученного проката и рекристаллизационный отжиг. Выплавляют сталь, содержащую, мас. %: С - 0,003-0,007, Si - 0,01-0,02, Mn - 0,35-0,55, Р - 0,03-0,05, Al - 0,02-0,06, Ti - 0,03-0,05, Nb - 0,03-0,05, Fe и неизбежные примеси - остальное, горячую прокатку заканчивают при температуре 840-920°С, рекристаллизационный отжиг проката из стали проводят при температуре, которую устанавливают в зависимости от класса прочности, численно равного минимально допустимому пределу текучести 180 МПа, 220 МПа и 260 МПа в соответствии с зависимостью: где К - коэффициент, численно равный минимально допустимому пределу текучести 180 МПа, 220 МПа и 260 МПа, 920 и 0,5 - эмпирические коэффициенты, после рекристаллизационного отжига проводят перестаривание при температуре 420-460°С для проката из стали с минимально допустимым пределом текучести 180 МПа или при температуре 360-400°С для проката из стали с минимально допустимыми пределом текучести 220 МПа и 260 МПа. Обеспечивается расширение технологических возможностей способа производства высокопрочного холоднокатаного проката при сохранении высоких показателей пластичности и штампуемости. 3 табл., 5 пр.

Изобретение относится к металлургии, а именно к способам производства холоднокатаного проката из сверхнизкоуглеродистых IF-сталей, который может быть использован в автомобильной промышленности. Способ производства холоднокатаной полосы из IF-стали включает выплавку стали, разливку, горячую прокатку с получением полос, травление, смотку полос в рулоны, холодную прокатку полос, рекристаллизационный отжиг в агрегате непрерывного отжига и дрессировку. Выплавляют сталь, содержащую, мас. %: С 0,002-0,005, Si 0,01-0,020, Mn 0,06-0,15, Al 0,02-0,05, Ti 0,04-0,07, Fe и неизбежные примеси остальное, горячую прокатку заканчивают при температуре 900-920°С, а рекристаллизационный отжиг холоднокатаной полосы проводят при температуре 850-870°С, причем скорость движения полосы в агрегате непрерывного отжига составляет не более 90 м/мин. Обеспечивается повышение пластичности холоднокатаного проката, стабильности его прочностных характеристик, а также коррозионной стойкости при сохранении высоких показателей штампуемости. 3 табл., 2 пр.

Изобретение относится к области металлургии, а именно к производству холоднокатаного проката из IF-сталей, который используют в автомобильной промышленности. Для обеспечения уровня свойств, соответствующих сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при сохранении высоких показателей пластичности и штампуемости осуществляют выплавку стали, содержащей, мас. %: С 0,002-0,006, Si 0,005-0,020, Mn - 0,08-0,13, Al - 0,03-0,06, Ti - 0,03-0,08, Fe и неизбежные примеси - остальное, разливку, горячую прокатку с температурой конца прокатки 900-930°С, травление, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в агрегате непрерывного отжига, при этом рекристаллизационный отжиг ведут путем нагрева до 830-840°С для проката с минимальным значением относительного удлинения 39-40% и до 850-860°С для проката с минимальным значением относительного удлинения 42-44%, выдержки и охлаждения до температуры перестаривания, причем температуру начала перестаривания назначают в соответствии с зависимостью Тп.н.≤[920-12,5хδтр..], где Тп.н. - температура начала перестаривания, °С, δтр. - требуемая минимальная величина относительного удлинения, %; 920 и 12,5 - эмпирические коэффициенты, и проводят дрессировку. 3 табл.

Изобретение относится к области металлургии, а именно к способу производства холоднокатаного проката из сверхнизкоуглеродистых IF-сталей (Interstitial Free - сталь без атомов внедрения), который может быть использован в автомобильной промышленности. Для получения из стали проката с уровнем свойств, соответствующим сталям марок DC05, DC06 и DC07 по EN 10130, то есть создания кассетной технологии, при сохранении высоких показателей пластичности и штампуемости осуществляют выплавку стали, разливку, горячую прокатку, травление, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи и дрессировку, при этом выплавляют сталь унифицированного химического состава, содержащую, мас.%: С - 0,002-0,006, Si - 0,005-0,020, Mn - 0,08-0,13, Al - 0,03-0,06, Ti - 0,03-0,08, Fe и неизбежные примеси - остальное, температуру конца горячей прокатки в черновой группе клетей непрерывного широкополосного стана назначают в соответствии с зависимостью Ткчп ≤ 830 [Ti]+1025, где Ткчп - температура конца прокатки, °С, [Ti] - содержание титана, мас.%, 830 и 1025 - эмпирические коэффициенты, температуру смотки горячекатаных полос назначают в соответствии с зависимостью Тсм=[15δТР +50]±15°С, где Тсм - температура смотки, °С, δТР - требуемая минимальная величина относительного удлинения, %, 15 и 50 - эмпирические коэффициенты, а температуру рекристаллизационного отжига в колпаковой печи назначают в соответствии с зависимостью Тотж=[5δТР +490]±10°С, где ТОТЖ - температура рекристаллизационного отжига, °С, δТР - требуемая минимальная величина относительного удлинения, %, 5 и 490 - эмпирические коэффициенты. 3 табл.

Изобретение относится к области металлургии, к производству листового проката толщиной до 25 мм из низколегированной хладостойкой конструкционной стали для использования в судостроении, топливно-энергетическом комплексе. Для обеспечения высокой прочности, пластичности и хладостойкости осуществляют выплавку стали, содержащей, мас. %: С 0,04-0,09, Si 0,15-0,35, Mn 1,9-2,10, Cr 0,8-1,10, Cu 0,6-0,9, Мо 0,18-0,3, V 0,02-0,06, Nb 0,02-0,05, Ti 0,01-0,03, S не более 0,003, Р не более 0,012, Al 0,02-0,05, N не более 0,012, Fe - остальное и неизбежные примеси, в том числе мышьяк, свинец, цинк, содержание которых не более As 0,02%; Pb 0,005, Zn 0,01, причем [Ti]/[N]≤4, а Рсм - не более 0,32%, где Рсм - коэффициент трещиностойкости %, разливку, нагрев слябов под прокатку до температуры аустенизации 1200°С, не приводящей к полному растворению в металле карбидных и карбонитридных фаз и значительному росту зерна, окончание прокатки при температуре 690-750°С, ускоренное охлаждение до температуры не более 350°С, отпуск в диапазоне температур 550-600°С. 3 табл.

Изобретение относится к области металлургии, в частности к производству листового проката для применения в ответственных деталях автомобилей, сельскохозяйственного оборудования, краностроении и др., сталь может использоваться в строительных конструкциях в условиях Сибири и Крайнего Севера. Для повышения пластичности, хладостойкости, деформируемости и свариваемости осуществляют выплавку стали, содержащей, мас.%: С 0,05-0,08, Si 0,2-0,35, Мn 1,1-1,50, V 0,05-0,1, Ti 0,01-0,03, S не более 0,015, Р не более 0,015, Аl 0,01-0,025, N 0,01-0,02, Са не более 0,02, Fe - остальное и неизбежные примеси, в том числе мышьяк, свинец, цинк, олово, содержание которых не более As 0,01, Pb 0,001, Zn 0,005, Sn 0,08, с углеродным эквивалентом Сэ ≤ 0,35, коэффициентом трещиностойкости Рcm ≤ 0,25, разливку стали, нагрев заготовки под прокатку до температуры 1200-1250°С, окончание прокатки при температуре 850-880°С, смотку в рулон при температуре 600-550°С, охлаждение на воздухе. 2 табл.

Изобретение относится к области металлургии, а именно к производству низкоуглеродистых и низколегированных сталей повышенной коррозионной стойкости для изготовления электросварных нефтепромысловых труб. Сталь содержит компоненты при следующем соотношении, маc.%: углерод 0,05-0,25, марганец 0,30-1,50, кремний 0,10-0,70, хром 0,01-0,60, никель 0,03-0,20, медь 0,06-0,20, фосфор не более 0,015, сера не более 0,005, алюминий 0,01-0,06, кальций 0,0001-0,008, железо и неизбежные примеси, в том числе кислород и магний, - остальное. Сталь имеет полосчатость феррито-перлитной структуры не выше 2 баллов и содержит неметаллические включения комплексного состава, содержащие алюминий, кальций, магний и кислород, причем суммарное содержание кальция и магния во включениях превышает содержание алюминия. Обеспечивается повышение коррозионной стойкости стали за счет обеспечения отсутствия локальных участков с пониженной коррозионной стойкостью, а также повышение технологичности и свариваемости стали при сохранении прочности, вязкости и хладостойкости. 2 н.п. ф-лы, 3 табл.

Изобретение относится к области металлургии, конкретно к способам производства сортового круглого проката из легированных сталей для изготовления крепежных изделий холодной объемной штамповкой. Для повышения механических свойств проката осуществляют нагрев заготовки до температуры 1080-1200°С, горячую прокатку с температурой конца прокатки в диапазоне 900-1050°С и регламентируемое охлаждение, при этом охлаждение после прокатки ведут со скоростью 0,1-5°С/с до Тохл=541,1-144,3[С] - 94,5[Si] - 24,6[Mn] - 9,6[Cr] - 4,84[Ni] - 52,0[Мо]±20°С, а окончательное охлаждение ведут с произвольной скоростью. Охлажденный прокат подвергают сфероидизирующему отжигу при Тотж=688,8+20,4[Si] - 13,5[Mn]+17,7[Cr] - 13,8[Ni]+6,5[Мо]±10°С. Прокат получают из стали, содержащей, мас. %: углерод 0,09-0,47, кремний 0,17-0,40, марганец 0,30-0,94, хром 0,4-1,35, никель до 0,8, молибден 0,1-0,3, сера не более 0,045, фосфор не более 0,035, железо и неизбежные примеси остальное. 3 табл., 1 пр.

Изобретение относится к области металлургии, конкретно к способу производства сортового круглого проката из легированных сталей для изготовления крепежных изделий холодной объемной штамповкой. Для повышения механических свойств проката проводят нагрев заготовки до температуры 1080-1200°С, горячую прокатку с температурой конца прокатки в диапазоне 900-1050°С и регламентируемое охлаждение, при этом охлаждение после прокатки ведут со скоростью 0,5-5°С/с до температуры Тохл., последующее охлаждение осуществляют со скоростью 0,01-0,4°С/с. до 400-600°С, а затем последующее охлаждение ведут с произвольной скоростью, при этом температуру охлаждения Тохл определяют в зависимости от состава стали по соотношению: Тохл=688,8+20,4[Si] - 13,5[Mn]+17,7[Cr] - 13,8[Ni]+6,5[Мо]±10°С. Прокат производят из стали, содержащей, мас. %: углерод 0,09-0,47, кремний не более 0,40, марганец 0,30-0,94, хром 0,4-1,35, никель до 0,8, молибден 0,15-0,26, сера не более 0,045, фосфор не более 0,035. медь не более 0,30, железо и неизбежные примеси - остальное. 3 табл.
Изобретение относится к области металлургии, конкретнее, для получения рулонного полосового проката с низкой скоростью коррозии при сохранении уровня прочностных и пластических характеристик, соответствующего категории прочности К52, осуществляют аустенизацию заготовки при 1200-1280°С, черновую прокатку до толщины промежуточного подката, чистовую прокатку с регламентированной температурой конца прокатки и ламинарное охлаждение водой до температуры смотки в рулон, при этом заготовку получают из стали, содержащей мас.%: углерод 0,04-0,07, марганец 0,4-0,9, кремний 0,1-0,4, хром 0,2-0,7, медь 0,3-0,6, никель 0,15-0,60, алюминий не более 0,03, молибден не более 0,08, сера не более 0,003, фосфор не более 0,015, при выполнении соотношения Nb+V+Ti≤0,15, остальное – железо и неизбежные примеси, аустенизацию осуществляют с выдержкой не менее 3 часов, черновую прокатку заготовки производят при величине единичного относительного обжатия в первом проходе не менее 30% и не менее 20% в последнем проходе с обеспечением толщины подката, равной 5,5-7,5 толщины готовой полосы, а чистовую прокатку производят при величине единичного относительного обжатия в первом проходе не менее 30% и не более 10% в последнем проходе, причем температуру конца чистовой прокатки устанавливают из соотношения Ткп=800*К, °С, где К - эмпирический коэффициент, составляющий К=1,02-1,15, а смотку полосы в рулон производят в диапазоне температур 585-670°С. 1 з.п. ф-лы.

Изобретение относится к области металлургии, к способам получения листовых плакированных сталей и может быть использовано при изготовлении сварных конструкций и оборудования для химической, нефтехимической, нефтеперерабатывающей, коксохимической и других отраслей промышленности. Заявлен способ получения высокопрочной коррозионностойкой листовой плакированной стали. Способ включает горячую прокатку при температуре не выше 1250°С с ее окончанием при температуре выше 880°С, проведение смотки полосы в рулон при температуре 570-660°С. Основной слой выполняют из низкоуглеродистой стали, микролегированной молибденом и титаном, способствующих образованию межфазных наноразмерных карбидных и карбонитридных выделений, а плакирующий слой выполняют из коррозионностойкой аустенитной стали, состав которой удовлетворяет условию Crэкв/Niэкв≤1,6, причем хромовый эквивалент составляет Crэкв=%Cr+1,37%Мо+1,5%Si+2%Nb+3%Ti, а никелевый эквивалент - Niэкв=%Ni+0,31%Mn+22%C+14,2%N+%Cu. Обеспечиваются стабильно высокие значения прочности, пластичности, хладостойкости, коррозионной стойкости, сплошности соединения слоев и свариваемости. 1 з.п. ф-лы, 2 табл., 2 пр.

Изобретение относится к металлургии и может быть использовано при производстве легированных марок сталей с содержанием углерода от 0,2 до 0,7 мас. %, в том числе с повышенной концентрацией серы 0,01-0,04 мас. %. В способе ковшовой обработки легированных сталей осуществляют ступенчатый ввод раскислителей и легирующих компонентов на выпуске полупродукта в сталь-ковш с последующей подачей металла на непрерывную разливку. Температура и содержание активного кислорода в полупродукте на выпуске составляют 1600-1700°С и 0,030-0,075% соответственно, первичное раскисление осуществляют предварительно присаженным на дно сталь-ковша углеродсодержащим материалом, при наполнении стальковша на 1/6-1/5 высоты присаживают алюминий в количестве до 3 кг/тонну, при наполнении сталь-ковша на 1/2-2/3 высоты присаживают силикомарганец совместно со второй присадкой углеродсодержащего материала, после осуществляют подачу легирующих компонентов в виде лигатур и ферросплавов на середину марочного содержания компонентов из расчета их полного усвоения, а перед подачей металла на непрерывную разливку в ковш присаживают кальцийсодержащие материалы. Изобретение позволяет получить низкий уровень загрязненности металла неметаллическими включениями, в том числе сульфидного, силикатного и шпинельного типов, за счет оптимизации процессов раскисления, легирования металла и модифицирования кальцийсодержащими материалами, а также снизить сталеплавильные дефекты за счет повышения стабильности непрерывной разливки. 1 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к области металлургии, в частности к способам получения листовой плакированной стали, и может быть использовано для строительства железнодорожных мостов, а также для оборудования нефтехимической промышленности. Способ производства листовой плакированной стали включает получение заготовки с поверхностным слоем из коррозионно-стойкой стали и основным слоем из углеродистой стали и горячую прокатку заготовки, при этом нагрев заготовки перед горячей прокаткой осуществляют в диапазоне температур от 1250 до 1300°С, охлаждение после прокатки ведут со скоростью не менее 7°С/с, причем температура конца ускоренного охлаждения составляет не выше 600°С, а заготовку получают из стали с плакирующим слоем из нержавеющей стали с ферритомартенситной структурой, содержащей, мас.%: углерод 0,01-0,15, кремний 0,30-0,70, марганец 0,50-2,7, хром 14-17, никель 1,0-2,5, молибден 0,01-2,5, титан 0,01-0,1, ванадий 0,01-0,1, ниобий 0,01-0,1, азот 0,1-0,3, фосфор 0,002-0,003, сера не более 0,005, железо и неизбежные примеси остальное. Изобретение направлено на повышение прочности и износостойкости стали с плакирующим слоем, а также на снижение затрат на производство при сохранении высокой прочности и сплошности соединения слоев, пластичности слоистого материала, а также высоких коррозионных свойств плакирующего слоя и хладостойкости стали основного слоя. 3 табл., 1 пр.

Изобретение относится к области металлургии, в частности к изготовлению листа, который используют в автомобильной промышленности. Для обеспечения необходимого уровня ВН-эффекта и способности к раздаче отверстия при сохранении механических свойств, присущего классу прочности 780 МПа феррито-мартенситной стали способ включает выплавку стали, содержащей, мас.%: С 0,09-0,14; Si 0,05-0,40; Mn 1,7-2,3; Cr 0,20-0,40; Mo 0,10-0,40; Al 0,02-0,08; Nb 0,01-0,04; P не более 0,02; S не более 0,02; Fe и неизбежные примеси, горячую прокатку при температуре начала от 1075 до 1250°C и заканчивают при 800-890°C, смотку листа в рулон при температуре не ниже 600°C, холодную прокатку с суммарным обжатием 45-70% на толщину 0,9-1,5 мм и термическую обработку в агрегате непрерывного действия путем нагрева до температуры отжига 720-780°C, выдержки, замедленного охлаждения до температур ниже Ar1, ускоренного охлаждения до 270-400°C и перестаривания при упомянутой температуре. Лист перемещают в агрегате со скоростью при условии: Vдв.пол=[(Тотж-680°С/k-10м/мин]÷[(Тотж-680°C/k+10 м/мин], где Vдв.пол - скорость движения полосы в агрегате, м/мин, k=1×мин×°C/м, Тотж - температура отжига, °C, а температуру смотки задают при условии: Тсм≥(690-2000×k×Nb%), где Тсм - температура смотки, °C, Nb - содержания ниобия, мас.%, k=1×°C/%. 4 табл.

Изобретение относится к области черной металлургии. Для изготовления изделий сложной формы разной категорией прочности с высокими показателями временного сопротивления, предела текучести, хладостойкости, коррозионной стойкости, высокой пластичности и свариваемости горячекатаный стальной лист нагревают до 900-960°C со скоростью не более 7°C/с, выдерживают в течение 4-5 мин, штампуют и охлаждают в штампе со скоростью 30-80°C/с для получения горячештампованого изделия, имеющего временное сопротивление до 2200 Н/мм2, при этом стальной лист получают из борсодержащей стали, легированной Si-Mn-Cr и микролегированной Ti-Nb-V или построенной по принципу низкоуглеродистой мартенситной стали, легированной Si-Mn-Cr-Ni и микролегированной Mo-Ti-Nb-V. Изделие имеет временное сопротивление 800-1300 Н/мм2. 3 з.п. ф-лы, 2 табл.
Изобретение может быть использовано при производстве многослойных плакированных листов и плит горячей прокаткой с различными вариантами основного и плакирующего слоя (слоев), в частности, для изготовления листов с высокой коррозионной стойкостью рабочих поверхностей. После подготовки контактных поверхностей плакирующего и плакируемого металлических листов наносят на плакирующий лист приваркой взрывом промежуточный слой с получением промежуточной двухслойной заготовки. Собирают пакет, нагревают его и деформируют горячей прокаткой до заданной толщины изготавливаемого плакированного металлического листа. В качестве промежуточного слоя используют лист металла, одинаковый по химическому составу с металлом плакируемого листа и толщина которого меньше, чем толщина плакируемого листа. При сборке пакета полученную промежуточную двухслойную заготовку размещают с одной или обеих сторон плакируемого листа. 5 з.п. ф-лы, 1 пр.

Изобретение относится к области черной металлургии. Для получения изделий сложной формы и обеспечения высоких показателей временного сопротивления, предела текучести, хладостойкости, коррозионной стойкости, высокой пластичности и свариваемости отожженный холоднокатаный стальной лист нагревают до температуры 890-950°C со скоростью не менее 6°C/с, выдерживают при упомянутой температуре в течение 4-5 минут, затем подвергают горячей штамповке и охлаждают в штампе со скоростью 30-80°C/с для получения изделия, имеющего временное сопротивление до 2200 Н/мм2. 5 з.п. ф-лы, 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочной коррозионно-стойкой плакированной стали, используемой для изготовления сварных конструкций и оборудования, применяемых в нефтеперерабатывающей, нефтехимической, химической, коксохимической и других отраслях промышленности. Плакированная сталь состоит из плакирующего слоя, выполненного из коррозионно-стойкой аустенитной стали, и основного слоя, выполненного из низкоуглеродистой высокопрочной микролегированной стали. Сталь основного слоя содержит компоненты в следующем соотношении, мас.%: С 0,070-0,120, Si 0,10-0,50, Mn 0,5-2,0, Р ≤0,03, S ≤0,005, Al 0,015-0,09, Nb 0,04-0,08, Ti 0,02-0,04, Cr ≤0,50, N ≤0,01, V 0,03-0,06, В 0,002-0,005, железо и неизбежные примеси остальное. Содержания титана и азота, ниобия и углерода связаны зависимостями: [Ti]/[N]=4-8 и [Nb]⋅[C]=0,004-0,008. Обеспечивается требуемый комплекс технологических и служебных свойств, а именно сплошность и прочность соединения слоев - не менее 450 Н/мм2, прочность - не менее 850 Н/мм2, хладостойкость KCU-70°C - не менее 80 Дж/см2, коррозионная стойкость, свариваемость и пластичность. 2 табл.

Изобретение относится к непрерывной разливке. Шлакообразующая смесь содержит (мас.%): углерод (5-8), фтор (6-9), окислы кальция (30-40), алюминия (10-18), кремния (5-9), натрия (9-12), лития (3-5), бора (6-10), марганца (1-2) и неизбежные примеси (остальное). Обеспечивается химическая инертность расплавленной шлакообразующей смеси к жидкой стали с содержанием алюминия до 2 мас.% при температуре плавления шлака на 350-400°C ниже температуры ликвидуса стали и вязкости шлака 0,06-0,25 Па⋅с. 3 табл., 1 пр.

Изобретение относится к области металлургии, а именно к получению высокопрочной горячекатаной стали, используемой для изготовления изделий нефтегазохимии и высокоскоростного транспорта, работающих в экстремальных условиях, а так же как основной слой биметаллических конструкций. Получают заготовку из стали, содержащей компоненты в следующем соотношении, мас.%: углерод 0,16-0,45, кремний 0,05-0,70, марганец 0,50-1,50, сера 0,002-0,008, фосфор не более 0,015, хром не более 0,15, никель не более 0,15, медь не более 0,15, ниобий от 0,005 до менее 0,01, алюминий кислоторастворимый 0,02-0,05, железо и неизбежные примеси - остальное, при этом содержание марганца и серы связано зависимостью [Mn]·[S]<0,005. Осуществляют нагрев заготовки до температуры в диапазоне от более 1250 до 1300°C и проводят горячую прокатку. Получаемый прокат обладает высокими прочностными показателями. 2 табл.

Изобретение относится к области черной металлургии, а именно к конструкционным горячекатаным сталям, предназначенным для изготовления высокопрочных стальных деталей сложной формы способом горячей штамповки, в том числе элементов конструкции автомобиля. Сталь содержит, мас.%: углерод 0,08-0,3, кремний 0,20-1,0, марганец 0,60-2,0, хром 0,60-1,80, никель 0,02-0,8, молибден 0,001-0,30, титан 0,02-0,08, ванадий 0,002-0,08, ниобий 0,038-0,07, бор 0,0001-0,004, медь 0,05-0,20, алюминий 0,01-0,09, азот 0,006-0,015, фосфор ≤0,03, сера ≤0,015, железо и неизбежные примеси, в том числе водород ≤0,0004, остальное. Сталь имеет однородную дисперсную феррито-перлитную структуру с баллом зерна феррита 9-11, а содержания титана и азота, ниобия и углерода связаны зависимостями: 2,0≤[Ti]/[N]≤5,5 и 0,003≤[Nb]·[C]≤0,012. Обеспечивается высокая прочность после горячей штамповки. 2 табл.

Изобретение относится к области металлургии, а именно к высокопрочной коррозионно-стойкой плакированной стали, используемой для изготовления сварных конструкций и оборудования, применяемых в нефтеперерабатывающей, нефтехимической, химической, коксохимической и других отраслях промышленности. Плакированная сталь состоит из плакирующего слоя, выполненного из аустенитной коррозионно-стойкой стали, и основного слоя, выполненного из низкоуглеродистой высокопрочной микролегированной стали. Сталь основного слоя содержит, мас.%: C 0,04-0,07, Si 0,10-0,50, Mn 0,5-2,0, Al 0,015-0,09, Mo 0,10-0,27, Ti 0,10-0,20, Cr ≤0,5, P ≤0,03, S ≤0,005, железо и неизбежные примеси, в том числе азот с содержанием не более ≤0,01 мас. %, остальное. Содержание молибдена в стали основного слоя определяется в зависимости от содержания титана в соответствии с зависимостью [Мо]=(1÷1,35)[Ti], способствующей образованию объемной системы наноразмерных выделений комплексных карбидов (Ti, Mo)C. Обеспечиваются высокие свариваемость, прочность, пластичность, хладостойкость и коррозионная стойкость. 2 табл.

Изобретение относится к электротехнике и может быть использовано в магнитопроводах электрооборудования. Технический результат состоит в повышении мощности, снижении потерь энергии на вихревые токи и тока хх. Магнитопровод выполнен из аморфного ферромагнитного ленточного материала и содержит стержни, верхние и нижние ярма. Он выполнен в виде многогранной конструкции с одинаковыми боковыми гранями с закругленными наружными и внутренними ребрами. Стержни соединены с ярмами вдоль середины боковых граней верхнего и нижнего ярем. Стержни соединены с ярмами вдоль середины нечетных боковых граней верхнего и нижнего ярем. Ярма и стержни выполнены из собранных из лент пакетов равной толщины с прямоугольным поперечным сечением с симметрично сдвинутыми пакетами стержней относительно вертикальной и горизонтальной осей стержней и друг друга с образованием в поперечном сечении конструкции с ребрами, каждый из пакетов которой меньшей площади, чем предыдущий, и сдвинут на одинаковое расстояние от стороны предыдущего. Пакеты стержней ярем выполнены чередующимися между собой и вертикально расположенными короткими и длинными пакетами. Площади коротких и длинных пакетов выполнены равными между собой с образованием между указанными пакетами вертикальных пазов. Ярма выполнены из чередующихся между собой и расположенных горизонтально пакетов, вставленных в пазы между пакетами стержней и вставок ярем, которые размещены между чередующимися горизонтальными пакетами. Концы вставок состыкованы с боковыми ребрами стержней. Число вставок ярем равно числу фаз магнитопровода. Длина горизонтальных пакетов и вставок ярем при приближении к горизонтальной оси симметрии магнитопровода уменьшается. Внешняя и внутренняя поверхность ярем выполнены в виде сплошного пакета, размещенного вдоль наружной и внутренней стороны ярем с возможностью крепления внешнего пакета. 1 з.п. ф-лы, 10 ил.

Изобретение относится к области металлургии, к технологии производства холоднокатаного проката повышенной прочности из низколегированной стали с высокими показателями пластичности и может быть использовано для изготовления деталей, применяемых в автомобилестроении. Для повышения прочностных характеристик стали и штампуемости, при сохранении высокого уровня пластичности осуществляют выплавку стали, содержащую, мас.%: углерод 0,06-0,10, кремний 0,35-0,65, марганец 0,6-1,2, фосфор не более 0,020, сера 0,003-0,025, алюминий 0,02-0,06, азот не более 0,006, ванадий 0,03-0,06, ∑Cr+Ni+Cu≤0,15, железо и неизбежные примеси - остальное, разливку стали в слябы, горячую прокатку сляба с температурой конца прокатки 800-850°C, смотку горячекатаных полос в рулоны при температуре 610-660°C, холодную прокатку, рекристаллизационный отжиг при температуре 650-690°C с выдержкой при этой температуре 15-30 часов, замедленное охлаждение в течение 1-7 часов и дрессировку с обжатием не более 1,4%. 2 табл., 5 пр.

Изобретение относится к области металлургии, конкретнее к технологии производства холоднокатаного проката повышенной прочности из низколегированной стали с высокими показателями пластичности, и может быть использовано для изготовления деталей, применяемых в автомобилестроении. Для повышения пластичности и штампуемости холоднокатаного проката при сохранении прочности осуществляют выплавку стали, содержащую, мас.%: углерод 0,05-0,08, кремний не более 0,03, марганец 0,30-0,65, фосфор не более 0,015, сера не более 0,020, алюминий 0,015-0,050, азот не более 0,006, ниобий 0,005-0,015, ∑Cr+Ni+Cu≤0,15%, железо и неизбежные примеси - остальное, разливку стали в слябы, горячую прокатку с температурой начала прокатки в чистовой группе клетей Т6≤1000°C и температурой конца прокатки 845-880°C, смотку полос в рулоны при 510-560°C, рекристаллизационный отжиг при температуре 630-670°C с выдержкой при этой температуре 15-28 часов и дрессировку с обжатием не менее 1,2%. 2 табл.
Изобретение относится к металлургии, конкретно к области оценки стойкости трубных марок стали и труб против коррозионного разрушения. Способ контроля качества стальных изделий путем определения их коррозионной стойкости, заключающийся в том, что от изделий отбирают пробы. Затем изготавливают образцы с полированной поверхностью, которую обрабатывают электрохимическим методом реактивом, содержащим ионы хлора. После чего судят о коррозионной стойкости стали. Причем поверхность образца обрабатывают электрохимическим методом в потенциостатическом режиме, при потенциале -400÷-150 мВ (х.с.э.) в течение 35÷120 мин в растворе, содержащем 0,1-25 г/л ионов хлора и дополнительно 0,1-4 г/л ионов магния, а о коррозионной стойкости стали судят по значению плотности тока насыщения. Техническим результатом является повышение информативности и достоверности способа оценки коррозионной стойкости трубных марок стали и труб, эксплуатируемых в условиях высокоминерализованных агрессивных сред. 3 табл.
Изобретение относится к области металлургии, в частности к производству cверхнизкоуглеродистых холоднокатаных сталей для глубокой вытяжки изделий и последующего однослойного эмалирования и может быть использовано при изготовлении деталей бытовой техники, посуды, санитарно-гигиенических приборов, в химической промышленности, в строительстве и др. Способ производства cверхнизкоуглеродистой холоднокатаной стали для глубокой вытяжки и последующего однослойного эмалирования включает выплавку стали, содержащую, мас.%: С не более 0,007, Si не более 0,03, Mn 0,15-0,30, Ti (4С+3,43N+1,5S+0,02) - 0,17, где С, N и S - содержание углерода, азота и серы, мас.%, S 0,03-0,06, P не более 0,03, N не более 0,007, Al 0,01-0,06, Cr не более 0,04, Ni не более 0,04, Cu не более 0,04, Fe и неизбежные примеси - остальное, разливку, горячую прокатку, смотку, травление, холодную прокатку, отжиг и дрессировку. Нагрев слябов под прокатку осуществляют до температуры 1150-1250°C, прокатку заканчивают при температуре 880-960°C, смотку осуществляют при температуре 700-750°C. Холодную прокатку ведут с суммарным обжатием 70-90%. Отжиг осуществляют при температуре 700-750°C. Технический результат заключается в получении сверхнизкоуглеродистой холоднокатаной стали, пригодной для однослойного эмалирования, с высокой стойкостью к образованию дефекта "рыбья чешуя" и высоким комплексом механических свойств. 1 з.п. ф-лы, 3 табл.

Изобретение может быть использовано для изготовления изделий, эксплуатирующихся в широком температурном интервале (до -60°C) в условиях повышенного коррозионного износа под воздействием морской воды и других агрессивных сред. Биметаллическую заготовку получают путем электрошлаковой наплавки на заготовку основного слоя расходуемых электродов из коррозионностойкой стали. Проводят последующую прокатку биметаллической заготовки на листы. Перед наплавкой по всей длине заготовки основного слоя в подэлектродных пространствах приваривают накладки, а в межэлектродных пространствах протачивают углубления. Накладки выполняют из стали, близкой по химическому составу к стали основного слоя или стали расходуемых электродов. Сечение накладки представляет собой плоскость, описанную ломаной линией или дугой или их сочетанием. Способ обеспечивает равномерность толщины плакирующего слоя горячекатаных биметаллических листов при сохранении высокой прочности и сплошности сцепления слоев, а также коррозионной стойкости плакирующего слоя. 2 ил., 1 табл., 1 пр.

Изобретение относится к области черной металлургии, в частности к производству коррозионностойкой стали с внепечной обработкой и разливкой на установке непрерывной разливки. В способе осуществляют выплавку стали в сталеплавильном агрегате, выпуск расплава в ковш, рафинирование стали в процессе выпуска и доводки на установке печь-ковш. Во время выпуска в ковш присаживают флюс в количестве 4-10 кг/т стали, содержащий 40-85% Al2O3 и 2,0-12,0% СаО, алюминий в количестве 1,0-1,9 кг/т стали, известь в количестве 5-12 кг/т стали, кремний и марганецсодержащие ферросплавы в количестве 5-10 кг/т стали, во время доводки на установке печь-ковш на шлак присаживают алюминиевую сечку в количестве 0,3-2,0 кг/т стали, а в металл вводят кальцийсодержащие материалы из расчета 0,05-0,2 кг кальция на тонну стали. Во время выпуска отношение СаО/Al2O3 в шлаке должно составлять менее 3,5, а во время доводки на установке печь-ковш в металл вводят карбид кремния в количестве не более 1,2 кг/т стали. Изобретение позволяет повысить чистоту стали по коррозионноактивным неметаллическим включениям для исключения образования и развития локальной коррозии и увеличения эксплуатационной стойкости труб. 2 з.п. ф-лы, 1 табл.

Изобретение относится к области контроля качества стальных изделий, предназначенных для эксплуатации в агрессивных средах, оказывающих коррозионное воздействие на металлы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что изготавливают образцы цилиндрической формы, к которым прикладывают напряжение и подвергают воздействию испытательной среды. Причем образцы подвергают предварительной деформации растяжением со степенями 1-10%. Затем прикладывают нагрузку, величина которой составляет 50-80% от предела текучести, и помещают образцы в испытательную среду со значением pH в пределах 2,5-5 на 180-360 часов. Далее образцы разрушают на воздухе методом растяжения на разрывной машине, а о стойкости к коррозионному растрескиванию под напряжением судят по разнице механических свойств сталей в исходном состоянии и после испытаний. При этом о стойкости к коррозионному растрескиванию под напряжением судят по степени изменения пластичности, которую вычисляют по формуле: ξ = δ 5 0 − δ 5 H δ 5 0 ⋅ 100 % , где - δ 5 0 - относительное удлинение в исходном состоянии; δ 5 H - относительное удлинение после испытаний, при этом стали, для которых значение ξ составляет от 0 до +10%, относят к 1-му классу стойкости, стали, для которых значение ξ составляет более +10% или от минус 10% до 0%, относят ко 2-му классу стойкости, стали, для которых значение ξ составляет менее минус 10%, относят к 3-му классу стойкости. Техническим результатом является повышение информативности и достоверности при снижении длительности проведения контроля на стойкость против коррозионного растрескивания с учетом склонности стали к неоднородности пластической деформации, а также возможность ранжирования сталей по классам стойкости против коррозионного растрескивания под напряжением. 1 з.п. ф-лы, 2 табл.
Способ включает формообразование рабочих органов из горячекатаного биметаллического листа и термическую обработку. Основной слой биметалла изготавливают из легированной стали, содержащей, мас.%: углерод 0,10-0,50; кремний 0,5-1,5; марганец 0,5-1,5; хром 0.5-1,5; фосфор не более 0,025; сера не более 0,025; железо и неизбежные примеси - остальное. Плакирующий слой выполняют из высоколегированной износостойкой стали, содержащей, мас.%: углерод 0,7-1,2; кремний 0,1-1,7; марганец 0,15-0,80; хром 0.6-2,0; молибден до 0,3; фосфор не более 0,025; сера не более 0,025; железо и неизбежные примеси - остальное. Плакирующий слой наносят на основной слой методом электрошлаковой наплавки. Перед формообразованием лист отжигают при температуре 680-820°C. Термическую обработку рабочих органов ведут путем закалки от температуры 850-950°C и отпуска при температуре 150-250°C. Такая технология позволит прочность сцепления слоев и технологичность при изготовлении изделий с высокими показателями прочности, твердости и износостойкости готового изделия, а также сохранения в процессе работы оптимальной формы режущего лезвия. 3 з.п. ф-лы, 6 табл.

Изобретение относится к области металлургии, а именно к производству низкоуглеродистых и низколегированных сталей повышенной коррозионной стойкости для изготовления электросварных труб, используемых при строительстве трубопроводов, эксплуатируемых в условиях агрессивных сред, в частности для транспортировки обводненной нефти и высокоминерализированных пластовых вод, содержащих сероводород, ионы хлора, углекислоты, а также механические частицы. Сталь содержит, мас.%: углерод 0,03-0,08, марганец 0,5-1,1, кремний 0,01-0,5, хром 0,6-1,2, никель 0,05-0,3, медь 0,05-0,3, фосфор не более 0,015, сера не более 0,005, алюминий 0,01-0,05, кальций 0,0001-0,006, ниобий 0,01-0,05, железо и неизбежные примеси - остальное. Сталь имеет феррито-перлитную структуру с полосчатостью не выше 2 балла, а максимально допустимое значение плотности коррозионно-активных неметаллических включений в стали NКАНВ определяется в зависимости от содержания ниобия в стали, в соответствии с условием: |NКАНВ| ≤5,6-33·|Nb|,где |NКАНВ| - абсолютная величина плотности коррозионно-активных неметаллических включений, включения/мм2, |Nb| - абсолютная величина содержания ниобия, мас.%. Содержание кальция в стали определяется зависимостью: |Ca|/|Al|≤0,24, где |Ca| - абсолютная величина содержания кальция, мас.%, |Al| - абсолютная величина содержания алюминия, мас.%. Повышаются коррозионная стойкость стали, в том числе к водородному растрескиванию и локальной коррозии, чистота металла по вредным примесям и прочностные характеристики при сохранении свариваемости и высокой технологичности. 2 н. и 2 з.п. ф-лы., 3 табл., 1 пр.
Изобретение относится к области черной металлургии, в частности к производству особонизкоуглеродистых сталей с внепечной обработкой и разливкой на установках непрерывной разливки стали. В способе осуществляют выпуск металла в сталь-ковш при окисленности металла не более 950 ppm, усреднительную продувку инертным газом осуществляют в течение 2-60 минут при остаточной толщине шлака 20-150 мм, вакуумное обезуглероживание начинают при окисленности металла 350-600 ppm и температуре 1610-1650°С, после окончания вакуумного обезуглероживания вводят алюминий и известь для получения в покровном шлаке отношения (CaO)/(Al2O3) в пределах 1,0-1,7, проводят раскисление шлака до получения содержания (FeO)≤1,5 мас.%, осуществляют ввод ферросплавов, производят продувку расплава инертным газом, в процессе которой в глубину расплава вводят кальцийсодержащий реагент из расчета 0,15-0,5 кг кальция на тонну стали, после чего сталь-ковш подают на разливку. Изобретение позволяет повысить чистоту особонизкоуглеродистых сталей от неметаллических включений, что исключает затягивание в расплав погружных и разливочных стаканов при разливке, и увеличить выход годного металла за счет снижения отсортировки проката по дефектам поверхности. 1 з.п. ф-лы, 2 табл.
Изобретение относится к области металлургии, конкретнее к контролю стойкости трубных сталей, предназначенных для эксплуатации в агрессивных (водородсодержащих) средах, оказывающих коррозионное воздействие на материалы. Способ контроля стойкости трубных сталей против коррозионного растрескивания под напряжением заключается в том, что из сталей изготавливают образцы, в которых определяют общее содержание водорода в исходном состоянии, в состоянии после искусственного старения в течение 10-40 часов при температурах 50-300°C и после дополнительной термической обработки при температуре 850-1000°C в течение 10-60 минут в печи в воздушной атмосфере с последующим охлаждением на воздухе, а перед термической обработкой обеспечивают влажность атмосферы в рабочем пространстве печи не менее 50%. При этом о стойкости стали против коррозионного растрескивания судят по изменению содержания водорода в процессе старения и термической обработки по сравнению с его содержанием в исходном состоянии. Техническим результатом является обеспечение информативности при небольшой длительности проведения контроля на стойкость против коррозионного растрескивания с учетом химического состава и микроструктуры, наличия и распределения неметаллических включений, являющихся ловушками водорода.
Изобретение относится к металлургии, а именно к получению биметаллических листов с наплавленным (плакирующим) слоем из износостойкой стали и основным слоем из легированной стали. Способ включает получение биметаллического слитка наплавкой заготовки основного слоя плакирующим износостойким слоем и последующую его горячую прокатку. После горячей прокатки проводят отжиг при температуре 680-820°C. Основной слой изготавливают из стали, содержащей углерод, кремний, марганец, хром, фосфор, серу, железо и неизбежные примеси. Износостойкий плакирующий слой выполнен из высокоуглеродистой легированной стали, содержащей углерод, кремний, марганец, хром, вольфрам, ванадий, молибден, фосфор, серу, железо и неизбежные примеси. Техническим результатом изобретения является повышение технологичности изготовления изделий с высокими показателями прочности, твердости и износостойкости. 4 табл., 1 пр.

Изобретение относится к металлургии. Способ включает размещение металлической заготовки с зазором от стенки кристаллизатора, установку в зазоре расходуемых электродов, наведение шлаковой ванны и переплав в ней расходуемых электродов. Основной слой изготавливают из легированной стали, содержащей, мас.%: углерод 0,10-0,50, кремний 0,5-1,5, марганец 0,5-1,5, хром 0,5-1,5, фосфор не более 0,025, сера не более 0,025. Расходуемые электроды изготавливают в виде сортового круглого проката диаметром 40-60 мм из стали, содержащей, мас.%: углерод 0,6-1,2, кремний 0,15-1,8, марганец 0,15-0,80, хром 0,7-1,7, фосфор не более 0,025, сера не более 0,025. На поверхности стали основного слоя прикрепляют штанги в виде сортового проката диаметром 30-70 мм из стали, содержащей, мас.%: углерод 1,0-1,5, кремний 0,1-0,5, марганец 0,1-0,5, хром 1,0-7,5, вольфрам 0,5-2,5, ванадий 0,3-1,2, молибден до 0,3, фосфор не более 0,025, сера не более 0,025, обеспечивающие при переплаве образование легированного наплавленного слоя из стали, содержащей, мас.%: углерод 0,7-1,2, кремний 0,1-1,7, марганец 0,15-0,80, хром 0,6-2,0, вольфрам 0,02-1,0, ванадий 0,02-0,2, молибден до 0,3, фосфор не более 0,025, сера не более 0,025. Отношение массы штанг к массе расходуемых электродов составляет 10-20%. Обеспечивается получение биметаллического слитка с износостойким плакирующим слоем с высокой прочностью и сплошностью соединения слоев. 1 з.п. ф-лы, 5 табл.
Изобретение относится к области металлургии, в частности к производству холоднокатаной полосы с высокими вытяжными свойствами для холодной штамповки, применяемой в автомобилестроении. Для повышения штампуемости полосы выплавляют сталь, содержащую, мас.%: углерод 0,02-0,06, кремний 0,005-0,030, марганец 0,08-0,20, фосфор 0,005-0,018, серу 0,005-0,025, алюминий кислоторастворимый 0,02-0,05, азот 0,002-0,006, хром не более 0,05, никель не более 0,06, медь не более 0,07, ванадий не более 0,006, железо и неизбежные примеси - остальное, осуществляют разливку стали, прокатку на непрерывном широкополосном стане, смотку полос в рулоны, холодную прокатку, рекристаллизационный отжиг в колпаковой печи при температуре не ниже 690°C с регламентированным нагревом и дрессировку. Регламентированный нагрев под отжиг проводят сначала со скоростью не менее 30°С/час до температуры T1, определяемой из соотношения: T1>350+970[Cr+Ni+Cu]°C, затем от температуры T1 нагрев ведут со скоростью не более 25°C/час по крайней мере в течение 3 часов, а далее - со скоростью не более 40°C/час до температуры отжига не более 720°C, при этом время нахождения металла при температурах не менее 690°C определяется из соотношения: τ690≥4+950[V]. 2 табл., 5 пр.

Изобретение относится к сварочному производству. Способ включает изготовление присадочного материала в форме брикетов. Брикеты состоят из смеси порошков, в которой упрочняющие частицы в наноразмерном диапазоне составляют 0,1-0,4% от массы наплавляемого металла. Связующий компонент выполняют в виде 4-5% водного раствора карбоксиметилцеллюлозы (КМЦ). Затем осуществляют сушку до их полного затвердевания. Затем укладывают брикет на наплавляемую поверхность. Далее производят наплавку валика покрытия путем полного расплавления брикета присадочного материала и частично металла изделия с глубиной его проплавления 0,1-0,5 мм. Каждый последующий брикет укладывают на наплавляемую поверхность после расплавления предыдущего. Далее производят наплавку непрерывно валик за валиком двух и более слоев покрытия. Техническим результатом изобретения является повышение производительности за счет непрерывного процесса наплавки покрытия валик за валиком без последующего их охлаждения. 2 з.п. ф-лы, 1 табл., 1 пр.

Изобретение относится к металлургии, конкретнее к области специальной электрометаллургии, а именно к производству биметаллических слитков с использованием электрошлаковой технологии

Изобретение относится к области металлургии, а именно к низколегированной стали повышенной коррозионной стойкости и хладостойкости, применяемой для различного оборудования, в том числе для нефтяных резервуаров, электросварных труб повышенной коррозионной стойкости, используемых для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости, в частности водные среды, содержащие ионы хлора, сероводород, углекислый газ, механические примеси и другие компоненты

Изобретение относится к области электротехники, а именно к магнитопроводам силовых трансформаторов, материалом выполнения которых является аморфная электротехническая сталь или нанокристаллический магнитомягкий сплав

Изобретение относится к металлургии, а именно к производству углеродистых и низколегированных сталей для изготовления электросварных труб, используемых для строительства трубопроводов, транспортирующих агрессивные в коррозионном отношении жидкости, в частности водные среды, содержащие ионы хлора, сероводород, углекислый газ, механические примеси и другие компоненты

Изобретение относится к мостовым компенсационным преобразователям переменного тока в постоянный ток с большим диапазоном регулирования, работающим с искусственной коммутацией силовых вентилей в анодной и катодной группах, которые могут быть использованы в электроприводах постоянного и переменного тока, в устройствах возбуждения электрических машин, в технологических установках с применением постоянного тока
Изобретение относится к области металлургии, а именно к сплавам на основе железа, применяемым для изготовления изделий и оборудования, работающих в активных углеродсодержащих средах при повышенных температурах

Изобретение относится к металлургии, конкретнее, к производству конструкционных сталей высокой прочности улучшенной свариваемости для применения в судостроении, топливно-энергетическом комплексе, транспортном и тяжелом машиностроении, мостостроении и др
Изобретение относится к черной металлургии и может быть использовано при производстве углеродистых и низколегированных сталей для проката и труб с повышенными механическими свойствами и стойкостью против различных видов общей и локальной коррозии

 


Наверх