Способ концентрирования фосфорной кислоты

 

Изобретение относится к области концентрирования фосфорной кислоты путем выпаривания слабой фосфорной кислоты и может быть использовано для производства жидких и твердых комплексных удобрений, кормовых фосфатов и фосфорных солей с малым содержанием фтора. Сущность: экстракционную фосфорную кислоту упаривают в аппарате с пенным слоем путем прямого контакта с теплоносителем. В качестве теплоносителя используют перегретый пар, который подают в зону контакта концентратора со скоростью 11-16 м/с, отходящий из концентратора пар имеет температуру 105-120 С за счет регулирования соотношения кислоты и теплоносителя. Отработанный пар очищают сухим способом от фтористых соединений на твердых адсорбентах и направляют на стадию концентрирования. Таким образом получают фосфорную кислоту с содержанием P2O5 65% и F - 0,01-0,03% , пригодную для получения широкого ассортимента товаров. Процесс более экономичен и экологически чист. 1 з. п. ф-лы, 1 табл.

Изобретение относится к концентрированию фосфорной кислоты путем выпаривания слабой фосфорной кислоты, получаемой разложением фосфатного сырья, и может быть использовано для производства жидких и твердых комплексных удобрений, кормовых фосфатов и фосфорных солей с малым содержанием фтора.

Известен способ концентрирования фосфорной и получения суперфосфорной кислоты путем нагрева кислот паром в вакуум-выпарных установках через греющую поверхность греющих камер [1] . При этом температура упаривания до 155оС. С целью понижения температуры кипения кислот и соответственно температуры упаривания процесс ведут в присутствии добавок ПАВ. Способ экологически чистый, без выхлопа в атмосферу. Однако имеются трудности с подбором конструкционных материалов для изготовления греющих камер и циркуляционного контура из-за сильной коррозии при данных температурах. Кроме того, из-за сильных инкрустаций твердых на греющих поверхностях уменьшается коэффициент теплопередачи, а следовательно, эффективность использования теплоносителя и процесс осуществляют с периодическими остановками для чистки. Содержание фтора в продукционной кислоте 0,2-0,3% .

Известны способы концентрирования слабых фосфорных кислот (29-50% Р2О5) до получения концентрированных фосфорных кислот и суперфосфорных путем прямого контакта с теплоносителем в аппаратах с пенным слоем [2,3] . При этом топочные газы, получаемые в результате сгорания природного газа в топке в смеси с воздухом, подают с температурой 400-600оС в концентратор со скоростью 5-8 м/с и в пенном слое при противоточном движении нагревают кислоту до температуры 80-155оС и получают продукт, содержащий 52-65% P2O5. Способы позволяют получать продукт при сравнительно низких энергозатратах и малым содержанием тумана Н3РО4 в отходящих газах. Однако для реализации данного способа требуется привлечение теплоносителя (топлива) со стороны, такого как природный газ.

Если на предприятиях, где получают концентрированную фосфорную и суперфосфорную кислоты, имеется дешевый попутный пар, получаемый в котлах-утилизаторах смежных производств, то экономически целесообразно использовать в качестве теплоносителя водяной пар.

Из известных способов концентрирования фосфорной кислоты наиболее близким к предложенному по технической сущности и достигаемому результату является способ [3] , который заключается в следующем. Ортофосфорную кислоту концентрируют прямым контактом с топочными газами в пенном режиме при нагревании до температуры 130-155оС. Топочные газы подают противотоком кислоте с температурой 350-600оС. Для поддеpжания пенного гидродинамического режима обеспечивает объемное соотношение кислота/газ = (0,4-4,0) 10-3 и скорость газа 5-8 м/с. В результате получают суперфосфорную кислоту с содержанием 60,5-65% Р2О5. Расход топлива 60 нм3/т Р2О5.

Указанный способ позволяет получить суперфосфорную кислоту с относительно невысокими энергозатратами (80-100 кг у. т. /т Р2О5) и с минимальным содержанием тумана фосфорной кислоты в отходящих газах после концентратора не более 100 мг/нм3. Однако топочные газы, полученные сжиганием природного наза, имея невысокое теплосодержание, позволяют перерабатывать небольшое количество кислоты при высоких объемах газов и соответственно и металлоемкости аппаратуры и коммуникаций. Кроме того, природный газ является дорогим топливом, потребляемым со стороны. Отсутствует также возможность утилизации отработанных газов и их повторного использования и, тем самым экономия топливно-энергетических ресурсов. Остаточное содержание фтора в продукционной кислоты (0,05-0,17% ) ограничивает использование ее для получения широкого ассортимента экологически чистых продуктов.

Целью предложенного способа является интенсификация процесса, снижение энергозатат.

Изобретение направлено на решение данной технической задачи. Сущность предложенного способа заключается в следующем. Экстракционную фосфорную кислоту упаривают в аппарате с пенным слоем путем прямого контакта с теплоносителем. В качестве теплоносителя используют перегретый пар, который подают в зону контакта концентратратора со скоростью 11-16 м/с. Создают гидродинамический и температурный режим, при котором отходящий из концентратора пар имеет температуру 105-120оС за счет регулирования соотношения кислота: теплоноситель. Отработанный пар очищают сухим способом от фтористых соединений твердыми адсорбентами, и очищенный пар направляют на повторное использование в "голову" процесса.

Данный режим обеспечивает интенсивный теплообмен и улучшение расходных коэффициентов. Скорость подачи пара 11-16 м/с обусловливается следующим: по нижнему пределу (11 м/с) - необходимостью удержания кислоты в пенном слое паром, а верхний предел (16 м/с) обусловлен началом брызгоуноса и затруднением равномерного слива кислоты из концентратора.

Температура паровой фазы, отходящей из концентратора по нижнему пределу (105оС), обусловлена конденсацией паров воды в концентраторе при более низкой температуре, а по верхнему пределу (120оС) необходимостью фиксации в системе адсорбции фтористых соединений из паровой фазы на твердых поглотителях.

Совокупность отличительных признаков - использование перегретого пара в качестве теплоносителя, скорость, с котоpой подают пар, температура отходящего из концентратора пара, очистка его от фтора и повторное использование - позволяют достичь технический результата - интенсифицировать процесс, снизить энергозатраты, получить более чистую кислоту, сделать процесс экологически более чистым за счет повторного использования пара и сухого метода очистки пара. Сухая очистка исключает сточные воды.

Способ осуществляют следующим образом.

В верхнюю часть колонного аппарата тарельчатого типа подают фосфорную кислоту 29-54% Р2О5. Кислота стекает вниз на газораспределительные тарелки и вступает в контакт с теплоносителем, движущимся навстречу противотоком. Теплоноситель - перегретый пар, имеющий температуру 400-600оС, при атмосферном давлении подают в нижнюю часть концентратора. В рабочую зону концентратора пар поступает со скоростью 11-16 м/с, диспергируя движущуюся навстречу кислоту и образуя пенный слой. Поддерживая определенное объемное соотношение кислота: теплоноситель, создают нужный температурный режим в концентраторе. Этот температурный режим будет определять температуру концентрирования, которую в зависимости от конечной заданной концентрации Р2О5 поддерживают в пределах 80-140оС. Кроме того, гидродинамическими параметрами работы концентратора поддерживают температуру отработанного теплоносителя на выходе из концентратора 105-120оС, учитывая возможность конденсации воды из паров в концентраторе и необходимость выделения фтора из паровой фазы в системе адсорбции на твердых поглотителях. Отработанный теплоноситель, содержащий соединения фтора (HF + SiF4) в результате выделения последних в паровую фазу из кислоты при концентрировании последней за счет повышения температуры и изменения влагосодержания паровой фазы, поступает в систему адсорбции. В адсорбере, пройдя слой твердого поглотителя, приготовленного специально для очистки пара от фторичных соединений, теплоноситель практически освобождается от них. Затем вторичный пар поступает либо на утилизацию, например на вакуумную упарку через греющую поверхность, либо в голову системы для повторного использования. При этом вторичный пар освобождается от избыточной влаги, полученной при испарении из кислоты, и перегревается топочными газами в пароперегревателе до нужной температуры (указанной выше) и вновь поступает в концентратор. Топочные газы после перегрева пара идут в смежное производство для использования, например, на сушку вяжущего из фосфогипса. Поскольку работа с циркуляцией теплоносителя предполагает отсутствие подвода свежего пара, общие энергозатраты значительно снижаются.

Кроме того, в процессе контакта с перегретым паром фосфорной кислоты из нее удаляются практически полностью фтористые соединения до содержания F (0,01-0,03% ), что значительно расширяет область применения продукционной кислоты, например, для получения пищевых, моющих фосфатов, товаров народного потребления (зубная паста) и т. д.

П р и м е р 1. В колонный аппарат тарельчатого типа подают исходную кислоту, содержащую 54% Р2О5 в количестве 19 м3/ч. В нижнюю часть аппарата подают перегретый пар, имеющий температуру 480оС со скоростью 14 м/с в рабочей зоне аппарата. В пенном слое рабочей зоны пар контактирует с кислотой, нагревая ее до 140оС. При этом получается суперфосфорная кислота, содержащая 64% Р2О5 и 0,004% F, которая стекает из нижней части аппарата в продукционный бак. При диаметре сечения аппарата 1,5 м указанный расход кислоты обеспечивает годовую производительность 99 тыс. т Р2О5.

Отходящие пары из верхней части концентратора поступает с температурой 110оС в систему адсорбции от фтора, где частично конденсируются, а затем поступают на утилизацию либо возвращаются в "голову" системы. Приведенные энергозатраты с учетом утилизации вторичного пара составляют 40 кг (у. т. )т Р2О5.

Другие примеры осуществления способа представлены в таблице. (56) 1. Авторское свидетельство СССР N 1430343, кл С 01 В 25/24, 1988.

2. Авторское свидетельство СССР N 1357349, кл. С 01 В 25/234, 1987.

3. Авторское свидетельство СССР N 1174373, кл. С 01 В 25/234, 1983.

Формула изобретения

1. СПОСОБ КОНЦЕНТРИРОВАНИЯ ФОСФОРНОЙ КИСЛОТЫ в аппарате с пенным режимом, включающий упаривание экстракционной фосфорной кислоты прямым контактированием с теплоносителем с получением продукционной кислоты и отводом отработанного пара, отличающийся тем, что в качестве теплоносителя используют перегретый пар, подаваемый в аппарат со скоростью 11 - 16 м/с, при этом поддерживают температуру отработанного пара 105 - 120oС путем регулирования соотношения кислота : пар.

2. Способ по п. 1, отличающийся тем, что отработанный пар подвергают сухой очистке от фтористых соединений на твердых поглотителях, нагревают до требуемой температуры и возвращают на стадию концентрирования в качестве теплоносителя

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к способам очистки фосфорной кислоты от мышьяка

Изобретение относится к способу получения концентрированной (50-55% р 0-) экстракционной фосфорной кислоты , используемой в производстве фосфорсодержащих минеральных удобрений

Изобретение относится к способу концентрирования фосфорной кислоты, включая получение полифосфорной кислоты, и может быть использовано в получении жидких комплексных удобрений

Изобретение относится к способам очистки экстракционной фосфорной кислоты /ЭФК/ от фтора и может быть использовано в производстве кормовых и технических фосфатов

Изобретение относится к способу получения фосфорнокислой соли магния, а именно к технологии производства трехзамещенного фосфата магния основного, применяемого в лабораторной практике

Изобретение относится к технологии очистки раствора фосфорной кислоты от фтора

Изобретение относится к способу концентрирования и очистки от примесей экстракционной фосфорной кислоты и может быть использовано при получений кислоты для производства кормовых фосфоров

Изобретение относится к способу очистки фосфорной кислоты от фтора и органических соединений и может быть использовано в пищевой промышленности

Изобретение относится к способу очистки экстракционной фосфорной кислоты от фтора, используемой в производстве удобрений, фосфорных солей и кормовых фосфатов

Изобретение относится к процессу очистки термической фосфорной кислоты, применяемой в производстве пищевых и кормовых фосфатов, в медицинской промышленности, в процессе оптического стекловарения, в электронной промышленности
Изобретение относится к способу удаления железа из фосфорной кислоты, полученной мокрым способом
Изобретение относится к технологии получения высококонцентрированной фосфорной кислоты, полученной экстракционным разложением природных фосфатов с последующей очисткой органическими экстрагентами и концентрированием и может быть использовано в химической промышленности для производства технических, кормовых и пищевых фосфатов

Изобретение относится к производству экстракционной фосфорной кислоты, а именно к получению фосфорной кислоты, которую возможно перерабатывать на пищевые и кормовые фосфаты, а также в производстве детергентов и других продуктов, где традиционно применялась термическая фосфорная кислота, отличающаяся более высокой степенью чистоты

Изобретение относится к очистке экстракционной фосфорной кислоты от сульфатов и взвесей и может быть использовано при производстве фосфатирующих растворов, солей

Изобретение относится к процессу очистки неочищенной фосфорной кислоты, полученной мокрым способом, и может найти применение в производстве удобрений, в кормах животным

Изобретение относится к способам очистки от сульфатов и взвесей экстракционной фосфорной кислоты, полученной кислотным разложением апатитового концентрата, и может быть использована при производстве технических солей, фосфатирующих растворов и в других производствах

Изобретение относится к области производства минеральных удобрений, пищевых фосфатов, химреактивов и моющих средств на базе переработки фосфатного минерального сырья, в частности - к способам переработки экстракционной фосфорной кислоты с целью ее извлечения и очистки от примесей
Наверх