Люминесцентный материал зеленого цвета свечения

 

Сущность изобретения: состав материала соответствует формуле, указанной в описании. Показатели: яркость люминесценции Bотн.о 121 - 529; max 543 нм; координаты цветности X - (0,304 - 0,407); Y - (0,522 - 0,592). 2 ил., 1 табл.

Изобретение относится к технике люминофоров, а именно к люминесцентным материалам на основе фторидов лантаноидов, используемым в качестве лазерных, люминесцентных и оптических материалов.

Известны люминесцентные материалы на основе фторидов, лантаноидов, активированных ионами тербия [1, 2] Недостатком их является низкая яркость излучения или полное ее отсутствие.

Наиболее близким к изобретению является люминесцентный материал, описываемый формулой KY3F10 Tb [3] Недостатком указанного люминофора является то, что он слабо люминесцирует в видимой области спектра при ультрафиолетовом возбуждении и, кроме того, имеет недостаточную насыщенность зеленого цвета свечения.

Целью изобретения является повышение яркости свечения при ультрафиолетовом возбуждении и улучшение яркости свечения при ультрафиолетовом возбуждении и улучшение насыщенности зеленого цвета свечения люминесцентного материала на основе фторида элемента группы и фторида иттрия, активированного тербием.

Указанную цель обеспечивает люминесцентный материал из фторида цезия и/или рубидия и фторида иттрия, активированного тербием следующей химической формулы: (Rb1 - xCsx) F 2(Y1 - y)Tby)F3, где 0x 1; 0,005 y 0,99.

Данный люминесцентный материал имеет интенсивное зеленое свечение при ультрафиолетовом возбуждении при длине волны 365 нм.

Спектральные и светотехнические характеристики приведены в таблице.

На фиг. 1 представлена зависимость интенсивности свечения люминофора Iотн. от содержания активатора; на фиг.2 зависимость Iотн. от длины волны или спектра излучения.

Яркость люминесценции предлагаемого люминесцентного материала составляет 529% от яркости промышленного люминофора Y2O2S:Tb (КЛЗ-31); длина волны основного спектрального максимума 5D4-7F5 перехода смещена в коротковолновую область спектра (543,5 нм) по отношению к длине волны (545 нм) промышленного люминофора Y2O2S:Tb, что свидетельствует об улучшении насыщенности зеленого цвета свечения предлагаемого материала.

Для получения люминесцентного материала готовят механическую смесь, содержащую 70 мол. оксида иттрия и 30 мол. оксида тербия. Эту смесь двух оксидов в количестве 10 г переносят в сосуд высокого давления, футерованный медным вкладышем, объемом 60 см3 и заливают 21 мол. раствором фторида цезия в количестве 35 см3. Сосуд высокого давления герметизируют, помещают в печь, нагревают до 450оС и выдерживают 100 ч при указанной температуре. Затем печь охлаждают до комнатной температуры, сосуд высокого давления вскрывают и извлекают продукт взаимодействия между окислами редкоземельных элементов и раствором фторида цезия. Для получения составов, содержащих два одновалентных катиона, используют сложные растворы фторидов цезия и рубидия.

Монофазность получаемого продукта контролировали методом РФА.

Во всех случаях регистрировали образование только соединений с набором рентгеновских рефлексов, которые индицируются в гексагональной сингонии с параметрами а15,6 и с12,0 , т.е. соединений, отвечающих составам Rb1 - xCsx(Y1 - y)Tby)2F7.

Частичная или полная замена иона Cs+ на Rb+ в составах Rb1 -xCsx.(Y1 - yTby)2. F7 в пределах ошибки эксперимента не влияет как на яркость, так и на цветовые координаты люминесценции. Данное обстоятельство позволяет использовать при синтезе предлагаемых составов неочищенный по рубидию фторид цезия.

В таблице приведены конкретные примеры составов предлагаемого люминесцентного материала.

Высокие люминесцентные характеристики описанного люминесцентного материала позволяют использовать для его изготовления эффективных преобразовательных экранов электронно-лучевых приборов и визуализатоpов ультрафиолетового излучения.

Формула изобретения

ЛЮМИНЕСЦЕНТНЫЙ МАТЕРИАЛ ЗЕЛЕНОГО ЦВЕТА СВЕЧЕНИЯ на основе фторида первой группы и фторида иттрия, активированного тербием, отличающийся тем, что, с целью повышения яркости свечения при ультрафиолетовом возбуждении и насыщенности цвета свечения, он содержит в качестве фторида первой группы фторид цезия и/или рубидия при соотношении компонентов, удовлетворяющем следующей формуле: (Rb1-xCsx)F 2(Y1-y Tby)F3, где о x 1; 0,05 y 0,99.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3



 

Похожие патенты:

Изобретение относится к квантовой оптике и может быть использовано в светотехнике, медицинском и электронном приборостроении

Изобретение относится к алюминесцентному материалу, работающему в условиях повышенного радиационного излучения

Изобретение относится к термолюминофору на основе фторида кальция, активированного марганцем и диспрозием, используемому для регистрации поглощенных доз различного ионизирующего излучения

Изобретение относится к люминофорам и может быть использовлно для регистрации различных видов ионизирующего излучения в медицине и промьгашениости

Изобретение относится к технн- .ке люминофоров на основе монокристаллов фторида кальция, используемых для регистрации поглоп1енньгх доз рентгеновского , гамма-излучения -и другюс видов ионизирующего излучения в медицине , радиационной технике, и обеспечивает увеличение отношения чувствительностей к о( - и J) -излучениям и сн ижение фединга
Изобретение относится к технологии люминофоров, в частности к способам получения люминофора на основе фторида лития, применяемого в термолюминес- центной дозиметрии
Изобретение относится к неорганической химии, к способам получения сульфидных электролюминофоров, в частности электролюминофоров типа А2В6

Изобретение относится к детектированию ионизирующего излучения, а именно к люминофорам для термолюминесцентной дозиметрии и может быть использовано в индивидуальной и клинической дозиметрии, в дозиметрии окружающей среды, в космических исследованиях, в дозиметрии реакторов, ускорителей и других источников смешанного излучения, включающего быстрые нейтроны или тяжелые заряженные частицы и гамма-излучение
Изобретение относится к материалам функциональных элементов устройств ИК-техники и сцинтилляционного детектирования ионизирующих излучений, преимущественно электронов, -частиц и гамма-квантов энергией до 100 кэВ

Изобретение относится к сцинтиллятору для использования в радиационном детекторе. Сцинтиллятор для высокотемпературных условий содержит кристалл типа кольквириита формулы LiM1M2X6, где M1 выбирают из щелочноземельных элементов Mg, Ca, Sr и Ba; M2 выбирают из Al, Ga и Sc; X - галоген. Примером кристалла является кольквириит типа LiCaAlF6. Кристалл может содержать элемент из группы лантаноидов, такой как Ce или Eu. Описываются также радиационный детектор, содержащий указанный сцинтиллятор и фотодетектор, и способ обнаружения излучения с его использованием. Изобретение обеспечивает сцинтиллятор с хорошими фотоэмиссионными характеристиками в высокотемпературных условиях, позволяющими его использовать для обнаружения нейтронов и измерения излучения в высокотемпературных условиях. 3 н. и 5 з.п. ф-лы, 11 ил., 2 пр.

Изобретение относится к оптическим средам на основе кристаллических галогенидов и может быть использовано в системах оптической связи в качестве широкополосных усилителей и лазеров. Оптическая среда содержит ионы низковалентного висмута в качестве единственного оптически активного центра, способна к широкополосной люминесценции в ближнем ИК диапазоне, представляет собой кристаллическую фазу бромида цезия-кадмия CsCdBr3, содержащую изоморфную примесь ионов одновалентного висмута Bi+ в количестве от 0.1 ат.% до 3 ат.%, и люминесцирует в диапазоне 900-1200 нм при возбуждении излучением с длинами волн в пределах 570-700 нм. Предложено два варианта способа получения оптической среды. Первый вариант включает приготовление шихты путем смешения CsBr, CdBr2 и BiBr3 или CsCdBr3, CdBr2 и BiBr3, добавление к шихте металлического висмута, нагревание полученной смеси, помещенной в кварцевый контейнер, в вакууме до температуры 450-500°С до полного расплавления, медленное охлаждение расплава до спонтанной кристаллизации и отделение из полученной поликристаллической структуры монокристаллов. Второй вариант включает приготовление шихты путем смешения CsBr, CdBr2 и BiBr3 или CsCdBr3, CdBr2 и BiBr3, добавление к шихте металлического висмута, помещение смеси в кварцевом контейнере в вертикальную печь Бриджмена-Стокбаргера до образования монокристаллического образца оптической среды. Предложенная оптическая среда негигроскопична, обладает стабильной люминесценцией в ближнем ИК диапазоне, а именно, в диапазоне 900-1200 нм при возбуждении излучением с длинами волн в интервале 570-700 нм. Способ получения бромида CsCdBr3 достаточно прост технологически и позволяет выращивать качественные кристаллы необходимых размеров. 3 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к люминофору, содержащему М2АХ6, легированному четырехвалентным марганцем. При этом М включает одновалентные катионы, по меньшей мере включая калий и рубидий, причем А включает четырехвалентный катион, по меньшей мере включая кремний, причем Х включает одновалентный анион, по меньшей мере включая фтор, и причем М2АХ6 имеет гексагональную фазу. Также изобретение относится к получению люминофора, а также к осветительному устройству и устройству отображения с жидкокристаллическим дисплеем, использующим люминофор. Предлагаемые люминофоры обладают узкополосным или линейчатым излучением в красной области спектра, поэтому они обеспечивают повышенную спектральную эффективность для целей освещения. 4 н. и 10 з.п. ф-лы, 4 ил.

Изобретение относится к новым неорганическим кристаллическим сцинтилляционным материалам на основе бромида лантана, легированного церием, и может быть использовано для регистрации ионизирующего излучения – гамма-квантов, рентгеновского излучения, космических излучений, элементарных частиц в фундаментальной физике, технике и медицине. Неорганический монокристаллический сцинтиллятор имеет состав La(1-m)CemBr(3-2k)Оk, где m - мольная доля церия, замещающего La, больше 0, но меньше или равно 1; k - мольная доля кислорода, замещающего бром, находится в пределах от 1.5⋅10-4 до 8⋅10-4. Технический результат заключается в повышенной механической прочности (повышение трещиностойкости, уменьшение хрупкости) кристаллического сцинтиллятора, в особенности диаметром 15 мм и более, с сохранением высоких сцинтилляционных характеристик. 1 табл., 8 пр.

Изобретение относится к красному люминесцентному материалу и содержащему его осветительному устройству. Осветительное устройство включает световой источник, выполненный с возможностью генерировать свет светового источника, и люминесцентный материал в форме частиц, выполненный с возможностью преобразовывать по меньшей мере часть света светового источника в свет люминесцентного материала. Световой источник содержит светоизлучающий диод (СИД). Люминесцентный материал в форме частиц содержит частицы, содержащие сердцевины. Указанные сердцевины содержат люминофор, содержащий M’xM2-2xAX6, легированный четырехвалентным марганцем, где M’ - щелочноземельный катион, M - щелочной катион, x - 0-1, A - четырехвалентный катион, по меньшей мере содержащий кремний, X - моновалентный анион, по меньшей мере содержащий фтор. Причем частицы дополнительно содержат покрытие на основе фосфата металла, где металл выбран из группы, состоящей из Ti, Si и Al. Описывается способ получения этого люминесцентного материала. Предложенный люминесцентный материал обеспечивает повышенную долговременную стабильность в воде и влажном воздухе при эффективном поглощении в синей области и преобразовании поглощенного света в красный цвет. 3 н. и 12 з. п. ф-лы, 7 ил., 1 табл., 1 пр.
Наверх