Способ контроля качества саломаса для маргарина

 

Использование: в способах контроля качественных характеристик саломаса по количеству твердых плавящихся триглицеридов в нем и по их температуре плавления. Сущность изобретения: В процессе осуществления способа осуществляют отбор определенных количеств исследуемой и контрольной проб с заранее заданным количеством плавящихся триглицеридов и температурой плавления, охлаждение взятых проб до 0oC, термоэлектрический нагрев проб до полного расплавления и анализ с последующим установлением по дифференциальной кривой нагрева показателя коррелирующего с количеством плавящихся триглицеридов, определяемым по теплоте их плавления. Дополнительно определяют показатель, коррелирующий с температурой плавления саломаса, в качестве которого используют точку перегиба дифференциальной кривой нагрева, а теплоту плавления триглицеридов определяют по тангенсу угла наклона той же дифференциальной кривой нагрева, при этом контроль качества саломаса ведут с учетом обоих показателей. 2 табл. 2 ил.

Изобретение относится к способам контроля качественных характеристик саломаса по количеству твердых плавящихся триглицеридов в нем и по их температуре плавления и предназначено для использования в технико-химическом контроле для маргириновой промышленности.

Известен способ контроля качества саломаса для маргарина, предусматривающий отбор определенных количеств исследуемой и контрольной проб с заранее заданным количеством плавящихся триглицеридов и температурой плавления, охлаждение взятых проб до 0oC, термоэлектрический нагрев проб до полного расплавления и анализ с последующим установленным по дифференциальной кривой нагрева показателя, коррелирующего с количеством плавления плавящихся триглицеридов, определяемым по теплоте их плавления (а.с. N 1774254, кл. G 01 N 33/03, опубл. 1992 г./.

Целью изобретения является сокращение времени проведения анализа и совмещение определения двух качественных характеристик саломаса: количества твердых триглицеридов и температуры плавления.

Для этого дополнительно определяют показатель, коррелирующий с температурой плавления саломаса, в качестве которого используют точку перегиба дифференциальной кривой нагрева, а теплоту плавления триглицеридов определяют по тангенсу угла наклона той же дифференциальной кривой нагрева, при этом контроль качества саломаса ведут с учетом обоих показателей.

Таким образом, совокупность существенных признаков изложенных в формуле изобретения позволяет достичь желаемого результата, а именно сокращение времени проведения анализа, и совмещение определения двух параметров: температуры плавления, количества твердых триглицеридов. Так как в изобретении использован дифференциальный термический анализ, использование которого облегчает отбор проб для анализа, позволяет существенно уменьшить время анализа, а также позволяет совместить определение двух качественных параметров саломаса для маргарина.

На фиг. 1 дана схема установки для ДТА саломаса, реализующая способ; на фиг. 2 кривая нагрева саломаса. В качестве инертного вещества можно брать любое вещество с теплопроводностью, близкой к теплопроводности саломаса, и не претерпевающее фазовых переходов в температурной области исследования саломаса, например подсолнечное масло.

Установка для ДТА состоит из термоблока 1 латунного или алюминиевого, с которым в хорошем термическом контакте находятся две термоэлектрические батареи 2, термоблок находится в пенопластовой теплоизоляции 3. В термоблоке расположены два проточных тигля 4,5 с встроенными "горячими" спаями, дифференциальной термопары. В тиглях находится: в одном исследуемый саломас, в другом термически инертное вещество рафинированное подсолнечное масло. Дифференциальная термопара регистрирует температуру в образце саломаса и в разность температур между образцом саломаса и рафинированным маслом. Холодные спаи термопары термостатируют в сосуде Дьюара со льдом 6. Устройство 7 регистрирует сигналы от термопар и управляет термоэлектрическим нагревом и охлаждением с помощью термобатарей 2.

Предлагаемый способ контроля качественных характеристик саломаса осуществляют следующим образом.

Тигель 4 заполняют рафинированным подсолнечным маслом, тигель 5 заполняют расплавленным саломасом и охлаждают термоблок 1 до 0oC выдерживают при этой температуре затем нагревают термоблок 1 до полного расплавления саломаса. При этом устройство 7 с помощью дифференциальной термопары регистрирует изменение температуры в образце и в термически инертном веществе. Причем тангенс угла наклона кривой нагрева саломаса пропорционален количеству твердых триглицеридов, а точка перегиба кривой нагрева соответствует температуре плавления саломаса.

Для испытаний взяты образцы саломаса марки 1-1 на Краснодарском МЖК.

Количество твердых триглицеридов и температура плавления образцов определены стандартными методами, приведенными в описании.

Данные испытаний, показывающих ускорение определения качественных характеристик саломасов предложенным способом, приведены в таблице 1.

В предложенном способе контроля качественных характеристик саломаса охлаждение и кристаллизация саломаса происходит постепенно что снижает переохлаждение триглицеридов и уменьшает время кристаллизации саломаса.

По результатам испытания саломаса марки 1-1 для маргарина с температурой плавления (34 + 0,5)oC и содержанием твердых триглицеридов при 20oC (32, 37 мас.), что соответствует ОСТ 18-262-75 "Саломас нерафинированный для маргариновой промышленности" установлено, что предлагаемый способ ускоренного контроля качественных характеристик саломаса позволяет быстрее подготавливать образец саломаса к анализу. При этом сокращается общее время анализа, количество операций, трудовые затраты и совмещается определение двух важных характеристик качества саломаса: количество твердых триглицеридов и температуру плавления саломаса (общее время анализа предлагаемым способом не более 30 минут). Известные же методы определения тех же характеристик в общей сложности дают время анализа не менее 80 минут, т.е. оперативность предлагаемого способа возрастает не менее чем в 2,5 раза, что позволяет контролировать качество саломаса в процессе гидрирования в пределах автоклавного цеха.

В таблице 2 дан пример построения калибровки для определения количества твердых триглицеридов и температуры плавления саломаса. Были подготовлены образцы саломаса с разным содержанием твердых триглицеридов и температурами плавления.

Получаемые кривые нагрева обрабатывали с помощью управляющего микропроцессора 7: определяли производную (тангенс угла наклона кривой нагрева) получаемой функции через определенные промежутки времени, что соответствует количеству твердых триглицеридов в образце, а изменение знака производной показывает точку перегиба, что в свою очередь соответствует значению температуры плавления образца саломаса.

По результатам опытов построена зависимость тангенса угла наклона касательной к точке кривой нагрева, соответствующей 20oC от содержания твердых триглицеридов.

P=12,65+1,74tg С помощью данной зависимости (калибровки), введенной в память микропроцессора можно вычислять по тангенсу угла наклона касательной к кривой нагрева количество плавящихся триглицеридов, Р.

Способ контроля качественных характеристик саломаса для маргарина позволяет оперативно получать данные о температуре плавления и количестве твердых триглицеридов.

Формула изобретения

Способ контроля качества саломаса для маргарина, предусматривающий отбор определенных количеств исследуемой и контрольной проб с заранее заданным количеством плавящихся триглицеридов и температурой плавления, охлаждение взятых проб до 0oС, термоэлектрический нагрев проб до полного расплавления и анализ с последующим установлением по дифференциальной кривой нагрева показателя, коррелирующего с количеством плавящихся триглицеридов, определяемым по теплоте их плавления, отличающийся тем, что дополнительно определяют показатель, коррелирующий с температурой плавления саломаса, в качестве которого используют точку перегиба дифференциальной кривой нагрева, а теплоту плавления триглицеридов определяют по тангенсу угла наклона той же дифференциальной кривой нагрева, при этом контроль качества саломаса ведут с учетом обоих показателей.

РИСУНКИ

Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4



 

Похожие патенты:

Изобретение относится к методам технохимическому контролю производства масложировой промышленности и исследованию качества получаемых побочных продуктов, а именно к способам количественного определения массовой доли общего жира и жирных кислот в соапстоке, получаемом при щелочной рафинации масел и жиров

Изобретение относится к лабораторному оборудованию для исследования процессов экстракции и может быть использовано при определении качества растительного сырья методами спектроскопии экстрактов

Изобретение относится к масложировой промышленности и может быть использовано для оценки качества жиров в перерабатывающих отраслях

Изобретение относится к технике измерений на СВЧ и может найти применение в пищевой промышленности

Изобретение относится к методам технохимического контроля производства в масложировой промышленности и исследования качества вырабатываемых жировых продуктов, а именно к способам количественного определения никеля в пищевых и технических маслах, жирах, маргариновой и другой продукции на их основе

Изобретение относится к методам технологического контроля производства в масложировой промышленности, а именно, к способам количественного определения фосфолипидов в вырабатываемых растительных маслах

Изобретение относится к санитарии и токсикологии и может быть использовано для санитарно-токсикологической оценки растительных масел, содержащих остаточные количества данного пестицида

Изобретение относится к пищевой промышленности и может быть использовано для определения кислотных чисел растительных масел

Изобретение относится к области пищевой промышленности и может быть использовано для определения кислотного числа растительных масел в технохимическом производственном контроле
Изобретение относится к масложировой промышленности и пищевой химии

Изобретение относится к технологии продуктов питания и может быть использовано в предприятиях массового общественного питания и пищевой промышленности

Изобретение относится к масложировой промышленности и может быть использовано для получения гидратированных растительных масел

Изобретение относится к масложировой промышленности и может быть использовано при гидратации растительных масел для регулирования процесса

Изобретение относится к масложировой промышленности и может быть использовано для определения содержания фосфолипидов в растительном масле независимо от природы масла (подсолнечное, соевое, кукурузное и др.)
Наверх