Устройство для анализа состава многокомпонентного потока текучей технологической среды

Использование: для анализа состава многокомпонентного потока текучей технологической среды. Сущность: заключается в том, что устройство включает выполненную в виде элемента продуктопровода зону измерений, рентгенофлуоресцентный анализатор, содержащий рентгенопрозрачную перегородку, присоединенный к зоне измерений через цилиндрическую врезку посредством механизма крепления с возможностью вертикального перемещения рентгенофлуоресцентного анализатора в зоне измерения и оснащено приспособлением для деструктурирования потока в виде верхней и нижней плоских направляющих, пересечение осей которых образует угол, вершина которого расположена напротив рентгенопрозрачной перегородки. Устройство оснащено байпасным продуктопроводом, входное отверстие которого размещено в верхней части зоны измерений перед приспособлением для деструктурирования потока относительно направления движения текучей среды, а выходное отверстие в верхней части зоны измерений после рентгенофлуоресцентного анализатора, при этом перед выходным отверстием байпасного продуктопровода в зоне измерений установлена дополнительная перегородка. Технический результат: повышение точности и представительности анализа. 1 з.п. ф-лы, 1 табл., 1 ил.

 

Изобретение относится к области контроля процессов обогащения и гидрометаллургии и может быть использовано для определения состава вещества и его плотности, в частности к устройствам для рентгенофлуоресцентного анализа состава пульп, растворов, промывочных кислот и т.п. в многокомпонентной текучей технологической среде.

Известен датчик для рентгенорадиометрического анализа состава пульп или растворов в потоке, содержащий источники первичного излучения и полупроводниковый блок детектирования, заключенные в кожух, снабженный поплавками, компенсирующими вес датчика, погруженного в пульпу или раствор, имеющими возможность изменять их подъемную силу. При вышеперечисленных условиях датчик является плавающим по поверхности пульпы [1].

Недостатками устройства [1] являются невысокая точность и достоверность анализа, обусловленные изменением уровня пульпы, что приводит к перемещению датчика от нижних - плотных слоев пульпы к верхним - менее плотным, за счет чего снижается представительность анализа и появляется дополнительная погрешность.

Ближайшим к изобретению техническим решением, взятым за прототип, является устройство для комплексного автоматического контроля текучей технологической среды, включающее зону измерения, врезанную в трубопровод с восходящим потоком контролируемой среды, рентгенофлуоресцентный анализатор элементного состава, присоединенный к зоне измерения посредством механизма крепления, содержащего рентгенопрозрачную перегородку, блок управления [2].

Недостатком устройства [2] является снижение точности анализа из-за расслоения пульпы, обусловленного малотурбулентным гидродинамическим режимом в сечении трубопровода.

Технический результат, получаемый при реализации предлагаемого устройства, заключается в повышении точности и представительности анализа.

Указанный технический результат достигается за счет того, что устройство для анализа состава многокомпонентного потока текучей технологической среды включает выполненную в виде элемента продуктопровода зону измерений, рентгенофлуоресцентный анализатор, содержащий рентгенопрозрачную перегородку, присоединенный к зоне измерения посредством механизма крепления с возможностью его вертикального перемещения. Устройство оснащено приспособлением для деструктурирования потока в виде верхней и нижней плоских направляющих, пересечение осей которых образует угол, вершина которого расположена напротив рентгенопрозрачной перегородки. Устройство снабжено байпасным продуктопроводом, входное отверстие которого размещено в верхней части зоны измерений перед приспособлением для деструктурирования потока относительно направления движения текучей среды, а выходное отверстие в верхней части зоны измерений после рентгенофлуоресцентного анализатора; при этом перед выходным отверстием байпасного продуктопровода в зоне измерений установлена дополнительная перегородка.

Оснащение устройства приспособлением для деструктурирования потока обеспечивает повышение представительности анализа за счет смешивания верхних и нижних слоев потока анализируемой среды и направления к рентгенопрозрачной перегородке усредненного по составу потока.

Выполнение приспособления для деструктурирования в виде верхней и нижней плоских направляющих, пересечение осей которых образует угол, вершина которого расположена напротив рентгенопрозрачной перегородки, обеспечивает равномерное смешивание верхнего, среднего и нижнего слоев среды в гомогенный поток, состав которого в наибольшей мере соответствует среднему составу анализируемой текучей среды.

Выполнение механизма крепления рентгенофлуоресцентного анализатора с возможностью вертикального перемещения в зоне измерения позволяет расположить рентгенопрозрачную перегородку в потоке анализируемой среды, характеризующемся наибольшей стабильностью состава пульпы и минимальными отклонениями от среднего состава.

Оснащение устройства байпасным продуктопроводом, входное отверстие которого размещено в верхней части зоны измерений перед приспособлением для деструктурирования потока относительно направления движения текучей среды, а выходное отверстие в верхней части зоны измерений после рентгенофлуоресцентного анализатора, позволяет повысить точность анализа за счет устранения зарастания рентгенопрозрачного окна шламовыми фракциями и предотвращения попадания в зону возбуждения характеристического излучения воздушных пузырьков.

Установление перед выходным отверстием байпасного продуктопровода дополнительной перегородки позволяет повысить точность измерений за счет более эффективного перекачивания пульповоздушной смеси в обход зоны возбуждения характеристического излучения.

Расположение зоны измерений соосно наклонному участку продуктопровода позволяет снизить общее гидродинамическое сопротивление системы продуктопровод - зона измерений и обеспечить максимальную эффективность процессов деструктуризации текучей технологической среды и удаления из зоны измерений пульповоздушной смеси, что в конечном итоге обеспечивает увеличение точности измерений и надежности автоматического контроля.

На чертеже представлена одна из возможных форм выполнения устройства для анализа состава многокомпонентного потока текучей технологической среды. Оно включает зону измерения 1, представляющую собой фрагмент трубопровода с сопрягающими фланцами 2, врезанную в трубопровод с потоком контролируемой среды 3. Зона измерения имеет цилиндрическую врезку 4, где с помощью механизма крепления 5 размещен рентгенофлуоресцентный анализатор элементного состава 6, содержащий рентгенопрозрачную перегородку 7. Рентгенопрозрачная перегородка предназначена для разделения рентгенофлуоресцентного анализатора элементного состава и контролируемой среды. Механизм крепления снабжен приспособлением 8, обеспечивающим вертикальное перемещение рентгенофлуоресцентного анализатора в зоне измерения для выбора оптимального положения рентгенопрозрачной перегородки в потоке анализируемой среды, характеризующемся наибольшей стабильностью и минимальными отклонениями от среднего состава. Зона измерения оснащена приспособлением для деструктурирования потока 9, выполненном в виде верхней 10 и нижней 11 плоских направляющих, пересечение осей которых образует угол, вершина которого расположена напротив окна рентгенофлуоресцентного анализатора элементного состава. Зона измерения снабжена байпасным продуктопроводом 12, входное отверстие 13 которого расположено в верхней части зоны измерений перед приспособлением для деструктурирования потока относительно направления движения текучей среды, а выходное отверстие 14 в верхней части зоны измерений после рентгенофлуоресцентного анализатора, при этом перед выходным отверстием байпасного продуктопровода в зоне измерений установлена дополнительная перегородка 15, являющаяся элементом цилиндрической врезки.

Устройство для анализа состава многокомпонентного потока текучей технологической среды работает следующим образом. На входе анализируемой среды в зону измерения 1 с помощью приспособления для дестрруктурирования потока 9 происходит смешивание нижних - плотных слоев потока анализируемой среды с верхними - менее плотными. За счет перепада давления через байпасный продуктопровод 12 происходит отсечение части потока, представляющей собой вспененную часть пульпы. Рентгенофлуоресцентный анализатор элементного состава 6 регистрирует характеристическое излучение полезных компонентов усредненного по составу потока. Первичную информацию преобразуют в электрические импульсы, которые по кабелю связи передают на обработку и которые составляют информацию о составе многокомпонентного потока текучей технологической среды. При изменении параметров анализируемого потока с помощью приспособления 8 производят корректировку положения рентгенофлуоресцентного анализатора в зоне измерения, и его рентгенопрозрачную перегородку устанавливают на глубине, где концентрации анализируемых элементов в наибольшей мере соответствуют своим средним значениям.

В таблице приведены результаты сравнительных испытаний заявленного устройства и прототипа.

Таблица

Результаты сравнительных испытаний предлагаемого устройства и прототипа по определению состава рудной пульпы медно-цинковой флотации (для 200 измерений)
ПараметрыИсходный состав пульпы, %Результаты измерений
С использованием прототипаС использованием заявленного устройстваС использованием заявленного устройства по п.2
Содержание меди

Погрешность

Измерения (коэф. вариации) сод. меди
1,03



-
0,96



0,085
1,00



0,063
1,02



0,050
Содержание цинка

Погрешность измерения (коэф. вариации) сод. цинка
3,90



-
3,80



0,093
3,93



0,062
3,90



0,050

Анализ результатов испытаний (см. таблицу) показывает большую точность измерений предлагаемого устройства.

ИСТОЧНИКИ ИНФОРМАЦИИ

[1]. Авторское свидетельство №970964, кл. G 01 N 23/223, 1984 г. Аналог.

[2]. Российский патент №2201290, кл. G 01 N 23/12, 2003 г. Прототип.

1. Устройство для анализа состава многокомпонентного потока текучей технологической среды, включающее выполненную в виде элемента продуктопровода зону измерений, рентгенофлуоресцентный анализатор, содержащий рентгенопрозрачную перегородку, присоединенный к зоне измерений через цилиндрическую врезку посредством механизма крепления с возможностью вертикального перемещения в зоне измерения, оснащенное приспособлением для деструктурирования потока, выполненным в виде верхней и нижней плоских направляющих, пересечение осей которых образует угол, вершина которого расположена напротив рентгенопрозрачной перегородки; оборудованное байпасным продуктопроводом, входное отверстие которого размещено в верхней части зоны измерений перед приспособлением для деструктурирования потока относительно направления движения текучей среды, а выходное отверстие в верхней части зоны измерений после рентгенофлуоресцентного анализатора; при этом перед выходным отверстием байпасного продуктопровода в зоне измерений установлена дополнительная перегородка.

2. Устройство по п.1, отличающееся тем, что зона измерений расположена соосно с наклонным участком продуктопровода.



 

Похожие патенты:

Изобретение относится к области химического и биологического анализа и может быть использовано для создания высокочувствительных аналитических приборов для качественного и количественного анализа водных и органических растворов, а именно природных вод и техногенных растворов, содержащих низкие концентрации определяемых неорганических и органических компонентов, а также растворов, содержащих биологически активные соединения.

Изобретение относится к области аналитической химии, в частности к рентгеноспектральным методам анализа элементного состава вещества, и может быть использовано для определения количественного содержания элементов с порядковым номером более 25 (Мn и более тяжелых элементов) при анализе в аналитических лабораториях с использованием рентгеновских спектрометров материалов сложного химического состава (одноэлементных и комплексных руд, продуктов их переработки, порошков, сплавов, пульп, растворов), а также при контроле непрерывных технологических процессов на предприятиях металлургической, химической промышленности, а также при геолого-разведочных работах.

Изобретение относится к области рентгеноспектрального анализа сырьевых и других материалов и может быть использовано для определения количественного состава материалов и контроля их качества, в том числе для определения незначительных количеств примесных элементов, в условиях промышленных и научных лабораторий.

Изобретение относится к области спектрометрических измерений состава веществ. .

Изобретение относится к области аналитической химии, в частности к способам анализа гетеробиметаллических соединений

Изобретение относится к способам локации целей в облаке пассивных помех

Изобретение относится к способам локации целей в облаке пассивных помех и может найти применение в локаторах

Изобретение относится к аналитической химии, а именно к способам определения ионов металлов, и может быть использовано в гидрометаллургии, в различных геологических разработках при поиске и разведке в случае анализа руд, а также в нефтехимии для определения в растворах, рудах и рудных концентратах концентраций ионов рения методом рентгенофлуоресцентного анализа (РФА)

Изобретение относится к области физико-химических методов анализа малых и труднодоступных люминесцирующих объектов по спектрам их оптического поглощения

Изобретение относится к ядерной физике, а именно к устройствам для элементного анализа состава вещества с помощью ионизирующих излучений

Изобретение относится к устройствам для анализа состава вещества и его плотности, в частности к устройствам для рентгенорадиометрического анализа состава пульп, растворов, промывочных кислот и т.п
Изобретение относится к аналитической химии брома и может быть использовано при определении компонентов, содержание которых в гексафториде урана подлежит контролю
Наверх