Концентрированный раствор стабилизированного озона для лечения воспалительных процессов



Концентрированный раствор стабилизированного озона для лечения воспалительных процессов
Концентрированный раствор стабилизированного озона для лечения воспалительных процессов
Концентрированный раствор стабилизированного озона для лечения воспалительных процессов

Владельцы патента RU 2324468:

Житков Михаил Юрьевич (RU)
ФГУ ЦНИИС Федерального агентства по здравоохранению и социальному развитию (RU)
Григорьян Алексей Суренович (RU)
Григорьянц Леон Андроникович (RU)

Изобретение относится к области медицины и может быть использовано для лечения воспалительных процессов. Концентрированный раствор стабилизированного озона для лечения воспалительных процессов содержит носитель озона, включающий изотонический солевой раствор и озон, дополнительно он содержит перфторуглерод или смесь перфторуглеродов и поверхностно-активное вещество. Компоненты берут в определенном количественном содержании. Концентрированный раствор стабилизированного озона позволяет длительно сохранить антимикробную активность и повысить срок хранения раствора, содержащего озон. 3 ил.

 

Изобретение относится к области медицины и может быть использовано для лечения воспалительных процессов.

Известно, что озон широко используется в медицине [Мирошин С.И., Семенов С.В. Санация брюшной полости при разлитом перитоните с помощью озона // Нижегородский медицинский журнал. - 1996. - №2. - С.46-48]. В стоматологии использование обдувания озоном противопоказано, так как значительная часть поражений находится в ротовой полости. Поэтому в стоматологии вместо газообразного озона широко используют растворы озона в изотоническом солевом растворе и дистиллированной воде.

Однако эти лекарственные формы неустойчивы и должны использоваться в течение нескольких минут после насыщения озоном, что создает большие неудобства для использования [Жанбаев А.К., Мирошин С.И., Перетягин С.П. Применение озона при обработке ран глаза в условиях боевых действий // Нижегородский медицинский журнал. - 1996. - №1. - С.57-58].

Известен способ получения препарата, получаемого путем озонирования триглицеридов жирных кислот, в частности оливкового масла. Эффективность данного препарата обусловлена содержащимися в нем озонидами ненасыщенных жирных кислот. Однако при использовании в медицине эмульсии озонидов оливкового масла, такие важные биологические эффекты препаратов озона как бактерицидное действие и стимуляция регенерации тканей в рекомендуемых концентрациях крайне незначительны. В то же время при высоких концентрациях озонидов оливкового масла проявляются их неблагоприятное побочное действие - повреждение тканей и угнетение их регенерации [Сорокина С.Р., Конторщикова К.Н., Петрикас А.Ж. Влияние озонированных растворов, применяемых в стоматологической практике, на кислотообразующую микрофлору полости рта // Нижегородский медицинский журнал. - 1997. - №2. - С.66-67].

Наиболее близким к предложенному препарату, содержащему озон, является раствор озона в изотоническом солевом растворе с концентрацией озона от 1 до 20 мг/л (0,0001-0,002%) [Жанбаев А.Н., Мирошин С.И., Перетягин С.П. Применение озона при обработке ран глаза в условиях боевых действий // Нижегородский медицинский журнал. - 1996. - №1. - С.57-58].

Техническим результатом данного изобретения является повышение срока хранения препарата, содержащего озон.

Технический результат достигается тем, что в препарате стабилизированного озона, содержащем носитель озона, включающий изотонический солевой раствор и озон, отличительной особенностью является то, что носитель озона содержит перфторуглерод или смесь перфторуглеродов и поверхностно-активное вещество при следующем соотношении компонентов (мас.%):

перфторуглерод или смесь перфторуглеродов1-90
поверхностно-активное вещество0,01-50
озон0,0001-0,03
изотонический солевой растворостальное

Предложенный препарат отличается высокой временной стабильностью и возможностью достижения высоких концентраций озона.

Показано, что в смесях перфторуглеродов, поверхностно-активных веществ и изотонического солевого раствора, в частности выпускаемой отечественной медицинской промышленностью под названием "Перфторан", растворимость озона в десятки раз выше, чем в изотоническом солевом растворе или воде. Также существенно выше временная стабильность озона, растворенного в подобных смесях, по сравнению с растворами озона в воде и изотоническом солевом растворе: концентрация озона в эмульсии перфторуглеродов уменьшается вдвое через 5-7 сут, а не через 3-5 мин как в воде и изотоническом солевом растворе. Поэтому озонированные эмульсии перфторуглеродов, в частности озонированный "Перфторан", могут быть использованы для медицинских целей в течение 5-7 сут после приготовления.

Предлагаемый состав обладает выраженными антимикробными свойствами, сохраняющимися вплоть до концентрации озона 1,6 мг/л (0,00016%).

Пример 1.

Озонирование смеси перфтордекалина (16 мас.%), поверхностно-активного вещества проксанола (0,05 мас.%) и изотонического солевого раствора (83,95 мас.%). Смесь доводят до состояния однородной эмульсии путем механического встряхивания.

Озонирование испытуемого раствора в этом, как и в остальных примерах, проводят с помощью промышленного аппарата для получения озона фирмы "Медозон".

Выходящую из аппарата озонокислородную смесь пропускают над поверхностью озонируемой жидкости, налитой на дно бутыли для инъекционных растворов объемом 500 мл. В резиновую пробку вставляют 2 металлические иглы для отсасывания плазмы (с запаянным острым концом и перфорацией в стенках вокруг конца). Одну из этих игл силиконовой трубкой соединяют с выходным патрубком озонатора. Она должна доходить почти до дна бутыли. Вторую, доходящую только до середины бутыли, соединяют с всасывающим патрубком системы обезвреживания озона этого же прибора.

Озон, не поглощенный жидкостью, отсасывают обратно в тот же аппарат с целью обезвреживания оставшегося озона.

Объем озонируемой жидкости - 50,0 мл. Скорость подачи кислорода 0,35 л/мин, концентрация озона в выходящем из аппарата озонированном кислороде 70 мг/л, время озонирования 15 мин. Температура раствора 23°С.

Концентрацию озона в растворе определяют йодометрическим методом.

К пробе раствора от 1 до 10,0 мл (в зависимости от концентрации озона) добавляют 1,0 мл 10% раствора йодида калия, 1,0 мл 3-5% раствора соляной кислоты и 1-2 капли 1% раствора крахмала. Через 10 мин пробу титруют 0,05-0,1 н. раствором тиосульфата с точно определенным титром до обесцвечивания крахмала. Объем пробы и концентрацию раствора тиосульфата выбирают так, чтобы объем тиосульфата, пошедшего на титрование пробы, можно было измерить с точностью не менее 5%.

Расчет:

Концентрация озона, мг/л

где:

где Vs - объем пробы, мл (или масса навески пробы, г);

Vt - объем тиосульфата натрия, пошедшего на титрование, мл;

2400 - количество мкг озона, соответствующее 1 мл 0,1 н. раствора тиосульфата;

К - отношение титра использованного раствора тиосульфата к титру точно 0,1 н. раствора тиосульфата.

Концентрация озона в эмульсии после озонирования составляет по результатам трех измерений (М±σ):

К=1,002; Vs=2,0 мл; Vt=0,202±0,035 мл.

Х=243±42 мг/л (0,0243±0,0042 мас.%)

Пример 2.

Озонирование препарата "Перфторан" и определение концентрации озона проводят, как описано в примере 1.

Полученный препарат стабилизированного озона разделяют на 2 порции по 25,0 мл, которые сохраняют при температуре +4°С и при -20°С.

Результаты определения концентрации озона в озонированном препарате в течение 14 сут для определения стабильности озона приведены на фиг.1.

Пример 3 (сравнительный).

Озонирование изотонического солевого раствора и определение концентрации озона проводят, как описано в примере 1. Температура жидкости 23°С.

Сразу после озонирования изотонического солевого раствора концентрация озона в нем составила по результатам трех измерений (М±σ): 6,5±1,0 мг/л.

Результаты определения концентрации озона через различные промежутки времени после озонирования приведены на фиг.2.

Пример 4.

Определение антимикробной активности раствора озона в препарате "Перфторан" проводят по ширине зоны лизиса культуры E.coli LE 392 на поверхности агара, от концентрации озона.

Объем озонируемой эмульсии - 50,0 мл. Скорость подачи кислорода 0,35 л/мин., концентрация озона 70 мг/л, время озонирования 15 мин. Температура 21°С.

Концентрацию озона в растворе определяют йодометрическим методом.

Подробно методика озонирования и определения концентрации озона описана в примере 1.

Через 20 мин после озонирования в эмульсии определяют концентрацию озона. Эмульсию разводят неозонированным препаратом "Перфторан" для получения различных концентраций озона и используют в тесте на антимикробную активность по ширине зоны лизиса культуры E.coli LE 392 на поверхности агара.

Исследуемый раствор вносят в лунки на поверхности агара, засеянного газоном суточной культурой тестового микроорганизма.

Инкубацию проводят в течение 24 ч при 37°С.

Результаты приведены на фиг.3.

Как видно из сравнения данных, приведенных на фиг.1 и 2, концентрация озона в озонированном "Перфторане" в десятки раз превысила концентрацию озона в озонированном изотоническом солевом растворе. Концентрация озона в озонированном изотоническом солевом растворе снизилась вдвое через 8 мин. В озонированном "Перфторане" снижение концентрации озона вдвое произошло только через 5 сут.

Таким образом, стабильность озона в смеси перфторуглеродов, поверхностно-активного вещества и изотонического солевого раствора в сотни раз выше, чем в изотоническом солевом растворе.

Как следует из этих данных, приведенных на фиг.3, антимикробная активность препарата стабилизированного озона сохраняется вплоть до концентрации озона 1,6 мг/л (0,00016 мас.%).

Пример 5.

Озонирование смеси, содержащей 5,0 г перфторана (20% смеси перфторуглеродов); 50,0 г поверхностно-активного вещества проксанола 268; 45,0 г воды бидистиллированной. Смесь получают последовательным смешением компонентов в указанном порядке при постоянном перемешивании до получения гомогенной эмульсии.

Озонирование полученной эмульсии, содержащей по массе 1% перфторированных углеводородов и 50% ПАВ, и определение концентрации озона проводят как описано в примере 1. Температура жидкости 22°С. Концентрация озона по результатам трех параллельных измерений сразу после озонирования составляет 18,2±3,7 мг/л. Озонированную смесь сохраняют при +4°С в течение 5 сут (7500 мин). Концентрация озона по результатам трех параллельных измерений после хранения составляет 5,4±2,9 мг/л (30% исходной).

Пример 6.

Озонирование смеси, содержащей перфтордекалина - 90 г, поверхностно-активного вещества проксанола - 0,01 г, воды бидистиллированной - 9,99 г. Смесь получают последовательным смешением компонентов в указанном порядке при постоянном перемешивании до получения гомогенной эмульсии.

Озонирование полученной эмульсии, содержащей по массе 90% перфторированных углеводородов и 0,01% ПАВ, и определение концентрации озона проводят как описано в примере 1. Температура жидкости 22°С. Концентрация озона по результатам трех параллельных измерений сразу после озонирования составляет 288±21 мг/л. Озонированную смесь сохраняют при +4°С в течение 5 сут (7500 мин). Концентрация озона по результатам трех параллельных измерений после хранения составляет 108±14 мг/л (44% исходной).

Как показано в примерах 5 и 6, стабильность и концентрация озона в смеси возрастают с увеличением концентрации перфторуглеродов.

Концентрированный раствор стабилизированного озона для лечения воспалительных процессов, содержащий носитель озона, включающий изотонический солевой раствор и озон, отличающийся тем, что носитель озона дополнительно содержит перфторуглерод или смесь перфторуглеродов и поверхностно-активное вещество при следующем соотношении компонентов, мас.%:

перфторуглерод или смесь перфторуглеродов1,0-90,0
поверхностно-активное вещество0,01-50,0
озон0,0001-0,03
изотонический солевой растворостальное



 

Похожие патенты:

Изобретение относится к селективному ингибированию продукции эстрогена и обеспечению эстрогенного действия в организме млекопитающего. .
Изобретение относится к химико-фармацевтической, пищевой, парфюмерно-косметической промышленности. .
Изобретение относится к химико-фармацевтической промышленности, а именно создание средств природного происхождения для лечения туберкулеза. .
Изобретение относится к химико-фармацевтической промышленности, а именно создание средств природного происхождения для лечения туберкулеза. .
Изобретение относится к химико-фармацевтической промышленности, а именно создание средств природного происхождения для лечения туберкулеза. .
Изобретение относится к химико-фармацевтической промышленности, а именно создание средств природного происхождения для лечения туберкулеза. .
Изобретение относится к химико-фармацевтической промышленности, а именно создание средств природного происхождения для лечения туберкулеза. .
Изобретение относится к химико-фармацевтической промышленности, а именно создание средств природного происхождения для лечения туберкулеза. .

Изобретение относится к новым соединениям, представленным общей формулой (I): (где R1 и R 2 могут быть одинаковыми или различными, и каждый представляет собой арильную группу, замещенную 1-3 группами, выбранными из группы заместителей ; R3 представляет собой любую из следующих групп: -CO-R4, -CO-O-R 4, -CO-NH-R4, -CO-CH 2-N(Ra)Rb, -(CH2)m-CO-R 5, -(CH2)m-R 5, -CO-NH-CO-N(Ra)R b, -CO-NH-SO2-N(R a)Rb, -CO-NH-CO-(CH 2)m-N(Ra)R b, и -CO-NH2; R4 представляет собой низшую алкильную группу, циклоалкильную группу, циклоалкильную группу, замещенную 1-3 группами, выбранными из группы заместителей , низшую алкенильную группу, низшую алкинильную группу, галоген низшую алкильную группу, гидрокси низшую алкильную группу, низшую алкоксиалкильную группу, низшую алифатическую ацилоксиалкильную группу или низшую алкоксикарбонилалкильную группу; R 5 представляет собой гидроксильную группу, группу -OR 4 или группу -N(Ra)R; R a и R могут быть одинаковыми или различными, и каждый представляет собой атом водорода, гидроксильную группу, низшую алкоксигруппу, гидрокси низшую алкоксигруппу, гидрокси низшую алкоксиалкильную группу, низшую алкокси низшую алкоксиалкильную группу, циано низшую алкильную группу, циано низшую алкоксиалкильную группу, карбокси низшую алкильную группу, карбокси низшую алкоксиалкильную группу, низшую алкоксикарбонил низшую алкоксиалкильную группу, карбамоил низшую алкильную группу, карбамоил низшую алкоксиалкильную группу, низшую алифатическую ациламино низшую алкильную группу, низшую алифатическую ациламино низшую алкоксиалкильную группу, низшую алкилсульфониламино низшую алкильную группу, низшую алкилсульфониламино низшую алкоксиалкильную группу, (N-гидрокси-N-метилкарбамоил) низшую алкильную группу, (N-гидрокси-N-метилкарбамоил) низшую алкоксиалкильную группу, (N-низшую алкокси-N-метилкарбамоил) низшую алкильную группу, (N-низшую алкокси-N-метилкарбамоил) низшую алкоксиалкильную группу или R4, или вместе, включая атом азота, к которому они присоединены, представляют собой азотсодержащую гетероциклическую группу или азотсодержащую гетероциклическую группу, замещенную 1-3 группами, выбранными из группы заместителей ; m равно целому числу от 1 до 6; А представляет собой карбонильную группу; В представляет собой прямую связь; D представляет собой атом кислорода; Е представляет собой С1 -С4 алкиленовую группу; n равно целому числу от 1 до 3; и группа заместителей представляет собой группу заместителей, состоящих из атомов галогена, низших алкильных групп, гидрокси низших алкильных групп, галоген низших алкильных групп, карбокси низших алкильных групп, низших алкоксигрупп, гидрокси низших алкоксигрупп, гидрокси низших алкоксиалкильных групп, низших алкоксикарбонильных групп, карбоксильных групп, гидроксильных групп, низших алифатических ацильных групп, низших алифатических ациламиногрупп, (N-гидрокси-N-метилкарбамоил) низших алкильных групп, (N-низших алкокси-N-метилкарбамоил) низших алкильных групп, гидрокси низших алифатических ациламиногрупп, аминогрупп, карбамоилгрупп и цианогрупп), или его фармакологически приемлемой соли.

Изобретение относится к новым соединениям формулы I или его фармацевтически приемлемой соли или же сольвату, где пунктирная линия означает возможную дополнительную связь, а означает числа от 0 до 2, b означает числа от 0 до 2, n означает 2, р означает 2, r означает 1, М1 означает атом азота, М2 означает C(R 3), X означает связь или алкиленовую группу с числом атомов углерода от одного до шести, Y означает группу -С(O)-, Z означает связь, алкиленовую группу с числом атомов углерода от одного до шести, алкениленовую группу с числом атомов углерода от одного до шести, группу -С(O)-, -CH(CN)-, -SO2 - или CH2C(O)NR4-, R1 означает группы R2 означает шестичленное гетероарильное кольцо с одним или двумя гетероатомами, выбираемыми независимо друг от друга из атома азота или группы N-O, при этом остающиеся атомы в цикле представлены атомами углерода, пятичленное гетероарильное кольцо с одним, двумя, тремя или четырьмя гетероатомами, выбираемыми независимо друг от друга из атома азота, кислорода или серы, при этом остающиеся атомы в цикле представлены атомами углерода, R32-замещенную хинолинильную группу, R32-замещенную арильную группу, гетероциклоалкильную группу, циклоалкильную группу с числом атомов углерода от трех до шести, алкильную группу с числом атомов углерода от одного до шести, группу где названное шестичленное гетероарильное кольцо или названное пятичленное гетероарильное кольцо может нести заместитель R6, R12 независимо от других выбирают из группы, состоящей из алкильной группы с числом атомов углерода от одного до шести, гидроксильной группы или атома фтора, при этом в случае, когда R12 означает гидроксильную группу или атом фтора, остаток R 12 не может быть связан с атомом углерода, соединенным с атомом азота, или два заместителя R12 образуют алкильный мостик с числом атомов углерода от одного до двух, направленный от одного атома углерода в кольце к другому, не соседствующему с ним атому углерода в кольце, R 13 независимо от других выбирают из группы, состоящей из алкильной группы с числом атомов углерода от одного до шести, гидроксильной группы, алкоксигруппы с числом атомов углерода от одного до шести или атома фтора, при этом в случае, когда R13 означает гидроксильную группу или атом фтора, остаток R13 не может быть связан с атомом углерода, соединенным с атомом азота, или два заместителя R13 образуют алкильный мостик с числом атомов углерода от одного до двух, направленный от одного атома углерода в кольце к другому, не соседствующему с ним атому углерода в кольце, а значение остальных переменных структурных элементов приведено в описании.

Изобретение относится к новым соединениям формулы I или его фармацевтически приемлемой соли или же сольвату, где пунктирная линия означает возможную дополнительную связь, а означает числа от 0 до 2, b означает числа от 0 до 2, n означает 2, р означает 2, r означает 1, М1 означает атом азота, М2 означает C(R 3), X означает связь или алкиленовую группу с числом атомов углерода от одного до шести, Y означает группу -С(O)-, Z означает связь, алкиленовую группу с числом атомов углерода от одного до шести, алкениленовую группу с числом атомов углерода от одного до шести, группу -С(O)-, -CH(CN)-, -SO2 - или CH2C(O)NR4-, R1 означает группы R2 означает шестичленное гетероарильное кольцо с одним или двумя гетероатомами, выбираемыми независимо друг от друга из атома азота или группы N-O, при этом остающиеся атомы в цикле представлены атомами углерода, пятичленное гетероарильное кольцо с одним, двумя, тремя или четырьмя гетероатомами, выбираемыми независимо друг от друга из атома азота, кислорода или серы, при этом остающиеся атомы в цикле представлены атомами углерода, R32-замещенную хинолинильную группу, R32-замещенную арильную группу, гетероциклоалкильную группу, циклоалкильную группу с числом атомов углерода от трех до шести, алкильную группу с числом атомов углерода от одного до шести, группу где названное шестичленное гетероарильное кольцо или названное пятичленное гетероарильное кольцо может нести заместитель R6, R12 независимо от других выбирают из группы, состоящей из алкильной группы с числом атомов углерода от одного до шести, гидроксильной группы или атома фтора, при этом в случае, когда R12 означает гидроксильную группу или атом фтора, остаток R 12 не может быть связан с атомом углерода, соединенным с атомом азота, или два заместителя R12 образуют алкильный мостик с числом атомов углерода от одного до двух, направленный от одного атома углерода в кольце к другому, не соседствующему с ним атому углерода в кольце, R 13 независимо от других выбирают из группы, состоящей из алкильной группы с числом атомов углерода от одного до шести, гидроксильной группы, алкоксигруппы с числом атомов углерода от одного до шести или атома фтора, при этом в случае, когда R13 означает гидроксильную группу или атом фтора, остаток R13 не может быть связан с атомом углерода, соединенным с атомом азота, или два заместителя R13 образуют алкильный мостик с числом атомов углерода от одного до двух, направленный от одного атома углерода в кольце к другому, не соседствующему с ним атому углерода в кольце, а значение остальных переменных структурных элементов приведено в описании.

Изобретение относится к кристаллическому гидрату 3-(2-цианофенил)-5-(2-пиридил)-1-фенил-1,2-дигидропиридин-2-она примера В1, к способу его получения, а также к безводным кристаллическим формам 3-(2-цианофенил)-5-(2-пиридил)-1-фенил-1,2-дигидропиридин-2-она примеров D1, C1, E1, и к фармацевтической композиции.

Изобретение относится к новым производным бис-(4-алкиламинопиридиний-1)алканов формулы (1) где X - липофильным анион, выбранный из группы: трииодид I3, иодат IO3, перхлорат ClO4; Y - линейная или разветвленная алкиленовая группа, содержащая от 4 до 18 атомов углерода; R - линейная или разветвленная алкильная, циклоалкильная или арилалкильная группа, содержащая от 5 до 18 атомов углерода, к способам их получения и применению их в качестве веществ, проявляющих антибактериальную и антивирусную активность.
Наверх