Способ нанесения гальванических покрытий никелем

Изобретение относится к области гальваностегии. Способ включает осаждение никеля из электролита, содержащего сульфат никеля 0,322-0,889 моль/л, молочную кислоту (80%-ную) 20-30 мл/л и воду, при рН 3,0-4,0, температуре электролита 20-25°С, при катодной плотности тока 1,0-3,0 А/дм2 с использованием графитового анода. Технический результат: получение блестящих, хорошо сцепленных с основой покрытий никелем с высоким выходом по току. Электролит не содержит токсичных органических добавок. 1 ил., 5 табл.

 

Изобретение относится к гальваническому способу получения покрытий никелем.

Известен электролит следующего состава:

1. NiSO4·7H2O - 250-300 г/л, NaCl - 10-15 г/л, Н3ВО3 - 25-40 г/л, KF или NaF - 5-6 г/л, динатриевая соль нафталин-1,5-дисульфокислоты - 1,5-2,0 г/л, 1,4-бутиндиол - 0,2-0,5 мл/л, рН 4,5-5,5, температура 20-50°С, катодная плотность тока - 0,8-3,5 А/дм2 [1].

Данный электролит никелирования имеет ряд недостатков, среди которых можно выделить малую рассеивающую способность, достаточно большие внутренние напряжения, возникающие в покрытии в процессе осаждения. Также к недостаткам можно отнести содержание в электролите, помимо катионов никеля, токсичных анионов и органических веществ, которые заметно увеличивают трудоемкость утилизации отработанного электролита и очистку сточных вод с участка никелирования.

Из применяемых в настоящее время электролитов наиболее близким по составу и технологическим характеристикам является электролит, содержащий: 230-320 г/л кристаллогидрата сульфата никеля (II), 40-60 г/л кристаллогидрата хлорида никеля (II), 30-40 г/л борной кислоты, с добавками 1,4-бутиндиола, сахарина и фтальимида, рН 5,0. Диапазон рабочих температур 50-60°С. Рабочая плотность тока 2-7 А/дм2 [1].

Достаточно высокая рабочая температура (от 50 до 60°С) создает дополнительные трудности в эксплуатации, в связи с испарением раствора, а наличие органических добавок усложняет утилизацию отработанного электролита и очистку сточных вод.

Техническим результатом предлагаемого способа является получение блестящих, хорошо сцепленных с основой покрытий никелем с высоким выходом по току. Электролит должен быть простым в приготовлении и корректировке, а также не содержать токсичных органических добавок. Рабочая температура электролита не должна быть выше 30°С.

Это достигается тем, что в способе нанесения гальванического покрытия никелем из электролита, содержащего сульфат никеля и воду, при катодной плотности тока 1,0-3,0 А/дм2, согласно предлагаемому изобретению, в воде растворяют сульфат никеля - 0,322-0,889 моль/л, молочную кислоту (80%-ную) - 20-30 мл/л, рН - 3,0-4,0, после чего проводят процесс электролитического осаждения никеля при температуре 20-25°С с использованием графитового анода.

В качестве комплексообразователя выбрана молочная кислота. Она применяется как пищевая добавка, широко распространена в природе, является интермедиатом процессов обмена в биологических тканях, легко биоразлагаема и поэтому экологически безопасна.

Не выявлены решения, имеющие признаки заявляемого способа.

Способ нанесения гальванических покрытий никелем осуществляется следующим образом.

В дистиллированной воде растворяют, согласно составу электролита, сульфат никеля. Затем доливают молочную кислоту, доводят до объема дистиллированной водой и перемешивают. Осаждение ведут при катодной плотности тока 1-3 А/дм2, при температуре 20-25°С с использованием графитового анода.

На основании выполненных исследований для осаждения блестящих покрытий никелем можно рекомендовать электролит следующего состава:

- сульфат никеля - 0,322-0,889 моль/л, молочная кислота (80%-ная) - 20-30 мл/л, рН - 3-4. При катодной плотности тока от 1 до 3 А/дм и температуре 20-25°С катодный выход по току равен 60-85%. Из данного электролита осаждаются блестящие покрытия без дополнительного введения блескообразующих добавок.

При приготовлении раствора необходимо учитывать, что большему содержанию ионов никеля в электролите должно соответствовать большее содержание молочной кислоты, меньшее значение рН. При увеличении концентрации компонентов раствора процесс можно вести при большей плотности тока. Ниже приводятся примерные составы таких растворов и режимы электролиза:

1. Сульфат никеля - 0,712-0,889 моль/л, молочная кислота (80%-ная) - 30 мл/л, рН - 3-3,5. При катодной плотности тока от 1 до 3 А/дм2 и температуре 20-30°С катодный выход по току равен 60-80%. Внешний вид получаемых покрытий представлен на чертеже.

2. Сульфат никеля - 0,322-0,373 моль/л, молочная кислота (80%-ная) - 20 мл/л, рН - 4,0. При катодной плотности тока 2 А/дм2 и температуре 20-30°С катодный выход по току равен 80-85%. Внешний вид получаемых покрытий представлен на чертеже.

Преимущества промышленного использования заявленного электролита:

1. Комплекс никеля с молочной кислотой может быть легко разрушен на стадии очистки сточных вод путем смещения значения рН выше 5.

2. Электролит сравнительно прост по составу, не содержит токсичных органических добавок, позволяет получать покрытия хорошего качества с высоким катодным выходом по току.

3. Диапазон рабочих температур в данном электролите снижен до 20-25°С, что значительно снижает испарение электролита, и отпадает необходимость принимать дополнительные меры по уменьшению испарения с поверхности электролита.

Таблица 1
Зависимость катодного выхода по току никеля от катодной плотности тока.
iк, А/дм2 1 2 3 5 20
ВТ, % 60 77 50 8,7 5

Таблица 2
Зависимость катодного выхода по току никеля от концентрации ионов никеля при плотности тока 2 А/дм2.
[Ni2+], моль/л 0,186 0,254 0,322 0,356 0,372 0,534 0,712 0,889 1,068
ВТ, % 26,7 24,4 30,1 33 34,9 40 55,5 77 54

Таблица 3
Зависимость катодного выхода по току никеля от концентрации молочной кислоты.
[Hlact], мл/л 10 20 30 40 50
ВТ, % 35 77,2 80 51 58

Таблица 4
Зависимость катодного выхода по току никеля от рН при катодной плотности тока 2 А/дм2.
рН 2,0 2,5 3,0 3,5 4,0
ВТ, % 1,0 11 77 80 88

Таблица 5
Зависимость катодного выхода по току никеля от t°C.
t°C 10 20 30 40 50
ВТ, % 37 80 55 48 33

Литература

1. Гальванические покрытия в машиностроении. Справочник. В 2-х томах. / Под ред. М.А.Шлугера. - М.: Машиностроение, 1985. - T.1. 1985. 240 с. с ил.

Способ нанесения гальванических покрытий никелем, включающий осаждение никеля из электролита, содержащего сульфат никеля и воду, при катодной плотности тока 1,0-3,0 А/дм2, отличающийся тем, что осаждение проводят из электролита, содержащего сульфат никеля 0,322-0,889 моль/л, молочную кислоту (80%-ную) 20-30 мл/л и воду, при рН 3,0-4,0, температуре электролита 20-25°С, с использованием графитового анода.



 

Похожие патенты:
Изобретение относится к гальваностегии и может быть использовано для получения кобальта электролитическим способом, а также может найти применение в областях техники, в которых предъявляются требования высокой коррозионной стойкости, твердости и магнитных свойств.
Изобретение относится к области гальванотехники и может быть использовано в радиотехнической промышленности, приборостроении, авиационной промышленности и в других областях народного хозяйства для антикоррозионной защиты алюминия и его сплавов и придания им специальных свойств.
Изобретение относится к области металлургии, а именно к способам нанесения износостойких карбидохромовых покрытий, и может быть использовано для защиты поверхности изделий из титана и его сплавов от воздействия агрессивных сред, абразивного износа и высоких температур.
Изобретение относится к области электрохимии, в частности к электрохимическому нанесению блестящих никелевых покрытий. .

Изобретение относится к области нанесения металлических покрытий, в частности никелевых, гальваническим способом на изделия из титана и его сплавов типа ВТ 3-1, ВТ9 и может быть использовано в авиационной промышленности и др.

Изобретение относится к области электрохимии, в частности к электрохимическому нанесению блестящих никелевых покрытии. .
Изобретение относится к области гальванотехники и может быть использовано при нанесении защитно-декоративных никелевых покрытий на различные металлические поверхности.

Изобретение относится к области гальваностегии, а именно: к процессам нанесения никелевого покрытия на поверхность металлического изделия

Изобретение относится к электротехнической промышленности и может быть использовано при производстве щелочных никель-кадмиевых аккумуляторов
Изобретение относится к технологии металлизации поверхности, а именно к способу нанесения никель-боридного покрытия на изделия из металлов методом автокаталитического осаждения из щелочного раствора. Раствор содержит следующие компоненты, мас.%: хлорид никеля 0,35-0,63, борогидрид натрия 0,025-0,105, вольфрамат свинца 0,0018-0,0054, этилендиамин 20,0-28,0, гидроксид натрия до получения величины pН от 10,0 до 14,0, деминерализованная вода остальное. Перед осаждением покрытия на обрабатываемую деталь подают ток с плотностью 0,027±0,005 А/см2. В частных случаях осуществления изобретения ток подают в течение 5-60 сек, а концентрацию раствора и его температуру подбирают с обеспечением скорости осаждения покрытия от 10 до 12 мкм/час. Получается механически прочное, с хорошей адгезией, а также стойкое к истиранию блестящее покрытие на основе никеля. 2 з.п. ф-лы.
Изобретение относится к нанесению покрытий и может быть использовано при получении жаростойких и антифрикционных покрытий на детали из углеродистых и легированных сталей, работающих в условиях повышенных температур до 1600°C и сухого трения. Покрытие формируют на стальных деталях путем нанесения алюминиевого слоя жидкофазным способом и проведение диффузионного отжига. Перед нанесением алюминиевого слоя стальную деталь никелируют, после чего наносят алюминиевый слой из расплава технически чистого алюминия при температуре 800-850°C в течение 3-4 с и проводят диффузионный отжиг при температуре 950-1100°C в течение 6-10 часов. Способ позволяет повысить производительность и снизить стоимость нанесения покрытия. 1 пр.

Изобретение относится к области гальванотехники и может быть использовано в авиационной промышленности, машиностроении и судостроении для увеличения коррозионной стойкости, паяемости и износостойкости деталей и узлов элементов систем управления, комбинированных конструкций из титана и алюминия. Электролит на водной основе содержит, г/л: никель сернокислый 35,0-55,0; ацетат натрия 25,0-30,0; уксусную кислоту 4,5-5,0 мл/л; натрий лаурилсульфат 0,1-1,0. В результате использования электролита получены высокотехнологичные сплошные никелевые покрытия на стали, алюминии, титане, меди и их сплавах с высокой адгезией, микротвердостью и коррозионной стойкостью покрытия без предварительной цинкатной - для алюминия или гидридной - для титана обработки. 3 табл., 8 ил., 1 пр.

Изобретение относится к области электролитического нанесения покрытий с помощью химических реакций на поверхности, например, формирования преобразованных слоев, а именно к процессам микроплазменного оксидирования вентильных металлов и может быть использовано для получения функциональных покрытий, в том числе электропроводных покрытий в электронике и микроэлектронике. Способ получения композиционного металлокерамического покрытия на подложке из вентильного металла или его сплава, преимущественно на подложке, выполненной из алюминия, магния, титана, циркония или их сплавов, включает три этапа. На первом этапе осуществляют формирование на подложке тонкого керамического подслоя толщиной от 7 до 12 мкм. На втором этапе осуществляют формирование на полученном подслое пористого керамического слоя требуемой толщины, состоящего преимущественно из оксидов материала основы и дополнительно из оксидов меди и/или никеля. На третьем этапе выполняют операцию восстановления меди и/или никеля до металла из их соединений для формирования в пористом керамическом слое, полученном на втором этапе, металлической фазы. Получается композиционное металлокерамическое покрытие, обладающее поверхностной электропроводностью. 10 з.п. ф-лы, 3 ил., 4 пр.

Изобретение относится к области гальваностегии и может быть использовано в различных областях для изготовления декоративно-блестящих деталей, защищенных от коррозии. Электролит содержит никель сернокислый, натрий хлористый, борную кислоту, блескообразователь и воду, при этом в качестве блескообразователя электролит содержит одну из ненасыщенных изотиурониевых солей следующей структуры: при следующем соотношении компонентов, г/л: никель сернокислый 270; натрий хлористый 12, кислота борная 40; изотиурониевая соль 1,5-2; вода до 1 л. Технический результат: получение блестящих покрытий с высоким выходом по току и низкой пористостью покрытия. 3 пр.

Изобретение относится к области осаждения износостойких комбинированных покрытий для защиты поверхностей алюминиевых сплавов от воздействия агрессивных сред и износа, в частности для защиты алюминиевых литейных сплавов с высоким содержанием кремния, и может быть использовано в авиационной промышленности, станко-, судо- и моторостроении. Осаждают износостойкое покрытие на алюминиевый сплав, в котором формируют промежуточный слой с последующим нанесением на него слоя карбида хрома путем химического осаждения из паровой фазы бисаренхроморганического соединения, при этом промежуточный слой формируют из никель-кобальтового сплава электрохимическим способом. Обеспечивается сплошность покрытия и его прочность сцепления с подложкой из алюминиевого сплава с высоким содержанием кремния, а также снижение времени, энерго- и трудоемкости процесса осаждения. 5 з.п. ф-лы, 2 табл., 9 пр.

Изобретение относится к области гальванотехники и может быть использовано для обработки деталей в приборостроении и машиностроении, при изготовлении предметов домашнего обихода, хирургических и лабораторных инструментов. Способ включает использование стандартного электролита, содержащего никель сернокислый, никель хлористый, борную кислоту и блескообразователь. Электролиз проводят при температуре 50°C и плотности тока 5,0-6,0 А/дм2, а в качестве блескообразователя в электролит вводят в концентрации 0,3-0,7 г/л производные трихлорэтиламидов следующей структуры: Технический результат: получение блестящих покрытий с высоким выходом по току и низкой пористостью покрытия и расширение ассортимента блескообразующих добавок. 3 пр.

Изобретение относится к области металлургии, а именно к химико-термической обработке металлических деталей, и может быть использовано для защиты металлических деталей от коррозии. Способ диффузионного цинкования металлических деталей включает предварительную подготовку поверхности деталей и нанесение слоя защитного покрытия методом диффузионного цинкования в вакууме. Цинковый слой наносят в среде инертного газа, причем перед нанесением цинкового покрытия на подготовленную поверхность металлических изделий гальваническим методом наносят подслой из никеля толщиной не более 3-5 мкм, а после нанесения упомянутого цинкового слоя осуществляют охлаждение металлических изделий в среде инертного газа. Обеспечивается снижение необходимой эффективной толщины защитного покрытия за счет повышения степени антикоррозионной защиты покрытия, снижения риска наводораживания покрытия при эксплуатации изделий в условиях воздействия агрессивного фактора среды за счет снижения пористости пленки. 2 ил., 1 табл., 2 пр.
Наверх