Способ количественного определения метионина в водных растворах

Изобретение относится к аналитической химии и может быть использовано для количественного определения содержания метионина в водных растворах спектрофотометрическим методом. Способ включает подготовку стандартных растворов метионина, определение оптической плотности при характеристической длине волны, построение градуировочной функции стандартных растворов метионина по оптическим плотностям при характеристической длине волны от концентрации, определение оптической плотности исследуемого раствора метионина и нахождение концентрации метионина в растворе по оптической плотности при характеристической длине волны с применением градуировочной функции. При этом определение характеристической длины волны осуществляют в ультрафиолетовой области спектра по дифференциальным спектрам поглощения в координатах λ=f(ΔA), где ΔА=Апоследующеепредыдущее. Техническим результатом является повышение надежности, точности и селективности определения, а также упрощение и уменьшение времени определения. 3 ил.

 

Изобретение относится к аналитической химии и может быть использовано для количественного определения содержания метионина в водных растворах спектрофотометрическим методом.

Наиболее близким по технической сущности и достигаемому эффекту является способ количественного определения метионина [патент 1397812 Советский Союз, МПК G01N 21/78. Способ количественного определения метионина [Текст] / Якимова В.П.; заявитель и патентообладатель Ленинградский научно-исследовательский институт гигиены труда и профессиональных заболеваний. - №4166611/28-04; заявл. 24.12.1986; опубл. 23.05.1988].

Недостаток первого способа заключается в том, что его применение не позволяет определить с высокой надежностью концентрацию метионина в водном растворе и требует длительной подготовки пробы с использованием большого количества реактивов.

Техническая задача изобретения заключается в разработке способа количественного определения метионина в водных растворах, позволяющего определить концентрацию метионина в водном растворе спектрофотометрическим методом и специальным алгоритмом обработки данных с высокой надежностью, точностью и селективностью.

Техническая задача изобретения достигается тем, что способ количественного определения метионина в водных растворах, предусматривающий подготовку стандартных растворов метионина, определение оптической плотности при характеристической длине волны, построение градуировочной функции стандартных растворов метионина по оптическим плотностям при характеристической длине волны от концентрации, определение оптической плотности исследуемого раствора метионина и нахождение концентрации метионина в растворе по оптической плотности при характеристической длине волны с применением градуировочной функции, отличается тем, что определение характеристической длины волны осуществляют в ультрафиолетовой области спектра по дифференциальным спектрам поглощения в координатах λ=f(ΔA), где ΔА=Апоследующеепредыдущее.

Технический результат заключается в высокой надежности, точности и экспрессности измерений за счет отсутствия вспомогательных реактивов и длительной пробоподготовки качественного и количественного определения метионина в водных растворах.

Фиг.1. Спектр поглощения раствора метионина стандарт 1 - раствор метионина в воде с концентрацией 0,001 моль/дм3; стандарт 2 - раствор метионина в воде с концентрацией 0,0008 моль/дм3; стандарт 3 - раствор метионина в воде с концентрацией 0,0005 моль/дм3.

Фиг.2. Дифференциальный спектр поглощения раствора метионина стандарт 1 - раствор метионина в воде с концентрацией 0,001 моль/дм3; стандарт 2 - раствор метионина в воде с концентрацией 0,0008 моль/дм3; стандарт 3 - раствор метионина в воде с концентрацией 0,0005 моль/дм3.

Фиг.3. Градуированная функция в координатах A=f(c).

Способ количественного определения метионина в водных растворах реализуют следующим образом.

Построение градуировочной функции А=f(с). Готовят шесть стандартных водных растворов метионина с концентрациями (с) в диапазоне 0,2-1,2 ммоль/дм3. Вносят по 10 см3 стандартных растворов в кювету для детектирования, измеряют на спектрофотометре оптические плотности (А) в диапазоне длин волн (λ) от 190 нм до 450 нм с точностью их установки ±1,0 нм, строят спектры поглощения в координатах λ=f(A) (фиг.1), в которых отсутствуют выраженные аналитические пики. Для установления характеристической длины волны получают дифференциальные спектры поглощения в координатах λ=f(ΔА) (фиг.2), где ΔА=Апоследующеепредыдущее и устанавливают, что растворы метионина имеют максимум изменения оптической плотности поглощения при λ=211 нм. Форма дифференциального спектра в области длин волн от 200 до 230 нм является специфической для присутствия метионина в водном растворе и позволяет качественно определять метионин в водном растворе.

Градуировочную функцию в координатах А=f(с) строят методом наименьших квадратов по шести стандартным водным растворам метионина, оптические плотности которых измерены по три раза. Полученная функция описывается уравнением прямой А=1129·с с величиной достоверности аппроксимации 0,9889, график которой приведен на фиг.3. В области изученных концентраций соблюдается закон Бугера-Ламберта-Бера, неучтенные «шумы» отсутствуют и выбранной методикой можно пользоваться для количественного определения метионина в водных растворах.

Затем аналогично анализируют пробы водных растворов с неизвестной концентрацией метионина. В кювету наливают раствор с неизвестной концентрацией метионина, измеряют оптическую плотность при λ=211 нм и по градуировочной функции определяют концентрацию метионина.

Способ поясняется следующим примером.

Пример. В мерную колбу вносят такой объем раствора метионина, чтобы его концентрация была в пределах градуировочной функции от 0,0005 до 0,001 моль/дм3. В кювету наливают раствор, содержащий метионин, и измеряют оптическую плотность в интервале длин волн от 190 до 250 нм. Для проверки соответствия максимума строят дифференциальный спектр поглощения. Форма дифференциального спектра в области длин волн от 200 до 230 нм показывает наличие метионина в растворе. Определяют оптическую плотность раствора при λ=211 нм. Оптическая плотность раствора составила А=1,0892, по градуировочной функции устанавливают концентрацию метионина, в анализируемой пробе она составила 0,000965 моль/дм3, пересчитывают на концентрацию в исходном растворе.

Продолжительность анализа составляет 5-7 мин, время измерения - 2 мин. Выход на рабочий режим спектрофотометра не более 10 мин.

Способ осуществим. Возможно определение концентраций метионина в водных растворах до концентрации 0,1 ммоль/дм3, что следует из примера и фиг.2 и 3. Границы доверительного интервала для каждого значения составляют не более 1,5% от средней величины найденной концентрации. Средняя погрешность измерений составляет 4,5%.

Предлагаемый способ позволяет качественно и количественно определять алифатическую аминокислоту метионин в водном растворе спектрофотометрическим методом аналогично ароматическим аминокислотам с высокой надежностью, точностью и селективностью благодаря специальному алгоритму обработки данных, не требует вспомогательных реактивов, его отличает простота и быстрота применения.

Способ количественного определения метионина в водных растворах, предусматривающий подготовку стандартных растворов метионина, определение оптической плотности при характеристической длине волны, построение градуировочной функции стандартных растворов метионина по оптическим плотностям при характеристической длине волны от концентрации, определение оптической плотности исследуемого раствора метионина и нахождение концентрации метионина в растворе по оптической плотности при характеристической длине волны с применением градуировочной функции, отличающийся тем, что определение характеристической длины волны осуществляют в ультрафиолетовой области спектра по дифференциальным спектрам поглощения в координатах λ=f(ΔA), где ΔА=Апоследующеепредыдущее.



 

Похожие патенты:

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств.

Изобретение относится к области очистки и дезинфекции жидкости, преимущественно питьевой и сточной воды, при помощи Уф-излучения, и предназначено для определения пропускания Уф-излучения в обрабатываемой жидкости с целью контроля ее характеристик и параметров процесса дезинфекции.

Изобретение относится к органической химии и может найти применение при определении общей органической загрязненности поверхностных, подземных, питьевых и производственных вод, а также для определения суммарного количества летучих органических соединений в этих водах.

Изобретение относится к высокоэффективной жидкостной хроматографии (ВЭЖХ), а именно, к способам количественного определения состава многокомпонентных лекарственных препаратов жаропонижающего, аналгезирующего, противопростудного действия и может быть использовано в практике контрольно-аналитических лабораторий фармацевтических предприятий и аптечной сети.

Изобретение относится к области технической физики, а именно к исследованию материалов с помощью анализа оптических сред и может быть использовано для непрерывного контроля состава жидкой биологической среды, например, в процессе гемодиализа, ликворосорбции, перитониального диализа.

Изобретение относится к анализу медицинских препаратов оптическими методами, а именно с использованием оптического излучения в УФ-области. .

Изобретение относится к способам оценки качества оптически прозрачного исландского шпата, как природного, так и синтетического, предназначенного для изготовления деталей оптических устройств

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств

Изобретение относится к способу анализа олигосахаридов, составляющих гепарины с низкой молекулярной массой и гепарины с очень низкой молекулярной массой, в плазме крови

Изобретение относится к области анализа органических веществ и аналитическому приборостроению, в частности к анализаторам двойных связей (АДС) - устройствам, позволяющим определять общую ненасыщенность органических соединений, и может быть использовано в самых разных отраслях промышленности и в лабораторных исследованиях

Изобретение относится к области медицины и может быть использовано в контрольно-аналитических лабораториях для стандартизации и контроля качества лекарственных средств

Изобретение относится к технической экспертизе документов

Изобретение относится к аналитической химии и фармацевтике и может быть использовано для извлечения пуриновых алкалоидов из водных сред с целью их последующего определения

Настоящее изобретение относится к медицине и описывает Способ измерения in situ нанесения орального агента из средства для ухода за зубами на субстрат, содержащий: (а) контакт субстрата с оральным агентом для нанесения некоторого количества орального агента на субстрат, причем субстрат покрыт слюной, и (b) анализ субстрата с использованием содержащегося в зубной щетке зонда, применяющегося для спектроскопии в ближней инфракрасной (БИК) области или спектроскопии в ультрафиолетовой (УФ) области, причем длина волны, используемая на этапе b), является характерной для упомянутого орального агента, при этом опорный сигнал средства для ухода за зубами без орального агента вычитается из результата анализа для определения количества орального агента. Способ может применяться в контроле состояния здоровья зубов пациента или в быстром, эффективном скрининге и/или анализе композиций в отношении их применения для нанесения оральных активных веществ на поверхности зубов. 2 н. и 12 з.п. ф-лы, 15 ил., 2 пр.
Наверх