Каталитическая система и способ восстановления noх

Изобретение относится к каталитической системе и способу восстановления выбросов оксидов азота. Описана каталитическая система для восстановления NOx, содержащая: катализатор, содержащий носитель, содержащий, по меньшей мере, один представитель, выбранный из группы, состоящей из оксида алюминия, диоксида титана, диоксида циркония, диоксида церия, карбида кремния и их смесей, каталитический оксид металла, содержащий, по меньшей мере, один из оксида галлия или оксид серебра, и, по меньшей мере, один активирующий металл, выбранный из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и их смесей; и газовый поток, содержащий кислород в диапазоне примерно от 1 мол.% до примерно 21 мол.%, воду в диапазоне примерно от 1 мол.% до примерно 12 мол.% и органический восстановитель, выбранный из группы, состоящей из спирта, карбоната и их комбинаций, причем указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 24:1. Описана каталитическая система для восстановления NOx, содержащая: катализатор, состоящий из (i) металлооксидного носителя, содержащего оксид алюминия, (ii) по меньшей мере, один из оксидов: оксид галлия или оксид серебра, присутствующих в количестве в диапазоне примерно от 5 мол.% до примерно 31 мол.%; и (iii) активирующего металла или комбинации активирующих металлов, присутствующих в количестве в диапазоне примерно от 1 мол.% до примерно 22 мол.%, и выбранного из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и молибдена, индия и кобальта и индия и вольфрама; и газовый поток, содержащий (А) воду в диапазоне примерно от 1 мол.% до примерно 12 мол.%; (В) кислород в диапазоне примерно от 1 мол.% до примерно 15 мол.%; и (С) органический восстановитель, включающий в себя кислород и выбранный из группы, состоящей из метанола, этилового спирта, бутилового спирта, пропилового спирта, диметилкарбоната и их комбинаций; где указанный органический восстановитель и NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 24:1. Также описаны способы восстановления NOx, которое включает в себя стадии: обеспечение газовой смеси и контактирование указанной газовой смеси с вышеописанными катализаторами восстановления NOx (варианты). Технический результат - уменьшение пагубных последствий загрязнения воздуха, вызванного побочными продуктами, образующимися в результате неполного высокотемпературного сгорания органических веществ. 4 н. и 17 з.п. ф-лы, 4 табл.

 

Область техники, к которой относится изобретение

Настоящее изобретение в целом относится к каталитической системе и способу восстановления выбросов оксидов азота, более конкретно к каталитической системе, которая включает в себя многокомпонентный катализатор и восстановитель.

Долгое время искали способы уменьшения пагубных последствий загрязнения воздуха, вызванного побочными продуктами, образующимися в результате неполного высокотемпературного сгорания органических веществ. Когда сгорание происходит в избытке воздуха и при высоких температурах, то создаются вредные побочные продукты, такие как оксиды азота, обычно известные как NOx. Предполагалось, что NOx и его производные играют основную роль в формировании озонного слоя Земли, который связан с астмой и другими респираторными заболеваниями. NOx также вносит вклад в образование сажи, что связано с рядом серьезных воздействий на здоровье, а также в кислотные дожди и ухудшение состояния устьев рек. Как результат, выбросы NOx регламентируются многими регулятивными нормами, ограничивающими количество NOx, которое может присутствовать в потоке газа, выпущенном в окружающую среду.

Один известный способ при работе с NOx включает в себя использование селективного каталитического восстановителя (SCR) для восстановления NOx до газа азота (N2) с использованием аммиака (NH3) в качестве восстановителя. Однако поскольку присущие аммиаку опасные последствия хорошо известны, использование NH3 в системе SCR представляет дополнительные экологические и другие проблемы, на которые также нужно обращать внимание. В то время как регулятивные органы продолжают снижать пределы на выбросы NOx, другие нормативные документы, кроме этого, снижают допустимые уровни NH3, которые могут быть выпущены в атмосферу. Вследствие регулирующих пределов по содержанию аммиака является очень привлекательным использование углеводородов и их кислородсодержащих производных для восстановления NOx в технологии SCR. С этой целью были предложены многочисленные катализаторы, включающие в себя цеолиты, перовскиты и металлы на металлооксидном носителе. Однако существующие каталитические системы имеют либо низкую активность, либо узкую область рабочих температур или низкую стабильность по отношению к воде, которая наносит вред при их практическом использовании. Патент США № 6703343 раскрывает каталитические системы для их использования в восстановлении NOx. Однако эти каталитические системы требуют специально синтезированного металлооксидного носителя катализатора с очень низким уровнем примесей. Поэтому есть потребность в эффективной каталитической системе для восстановления выбросов NOx, при этом такая система является стабильной и действующей в широком диапазоне температур.

Сущность изобретения

Авторы настоящего изобретения установили каталитические системы, которые являются удивительно эффективными при использовании коммерчески доступных металлооксидных носителей катализатора с обычным содержанием примесей. Таким образом, в одном варианте осуществления настоящего изобретения предлагается каталитическая система для восстановления NOx, при этом указанная каталитическая система включает в себя катализатор, содержащий металлооксидный носитель, каталитический оксид металла, содержащий, по меньшей мере, один из оксидов: оксид галлия или оксид серебра, и, по меньшей мере, один активирующий металл, выбранный из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и их смесей. Каталитическая система дополнительно включает в себя газовый поток, образованный органическим восстановителем, содержащим кислород.

В другом варианте осуществления настоящего изобретения предложена каталитическая система для восстановления NOx, указанная каталитическая система включает в себя катализатор, состоящий из (i) металлооксидного носителя, содержащего оксид алюминия, (ii) по меньшей мере, один из оксидов: оксид галлия или оксид серебра, присутствующего в количестве в диапазоне примерно от 5 мол.% до примерно 31 мол.%; и (iii) активирующий металл или комбинацию активирующих металлов, присутствующих в диапазоне примерно от 1 мол.% до примерно 22 мол.%, и выбранного из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и молибдена, индия и кобальта и индия и вольфрама. Каталитическая система дополнительно включает в себя газовый поток, содержащий (A) воду в диапазоне примерно от 1 мол.% до примерно 12 мол.%; (B) кислород в диапазоне примерно от 1 мол.% до примерно 15 мол.%; и (C) органический восстановитель, включающий в себя кислород и соединение, выбранное из группы, состоящей из метанола, этилового спирта, бутилового спирта, пропилового спирта, диметилового эфира, диметилкарбоната и их комбинаций. Органический восстановитель и NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 24:1.

В еще одном варианте осуществления настоящего изобретения предложен способ восстановления NOx, который включает в себя стадии: обеспечение газовой смеси, содержащей NOx и органический восстановитель, содержащей кислород, и контактирование газовой смеси с катализатором. Катализатор включает в себя металлооксидный носитель, каталитический оксид металла, содержащий, по меньшей мере, один из оксидов: оксид галлия или оксид серебра, и, по меньшей мере, один активирующий металл, выбранный из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и их смесей.

В еще одном варианте осуществления настоящего изобретения предложен способ восстановления NOx, который включает в себя стадии: обеспечение газового потока, содержащего (A) NOx; (B) воду примерно от 1 мол.% до примерно 12 мол.%; (C) кислород примерно от 1 мол.% до примерно 15 мол.%; и (D) органический восстановитель, содержащий кислород, выбранный из группы, состоящей из метанола, этилового спирта, бутилового спирта, пропилового спирта, простого диметилового эфира, диметилкарбоната и их комбинаций; и контактирование указанного газового потока с катализатором, состоящим из (i) металлооксидного носителя, содержащего, по меньшей мере, один представитель, выбранный из группы, состоящей из оксида алюминия, диоксида титана, диоксида циркония, карбида кремния и диоксида серия; (ii) по меньшей мере, один из оксидов: оксид галлия или оксид серебра в диапазоне примерно от 5 мол.% до примерно 31 мол.%; и (iii) активирующего металла или комбинации активирующих металлов в диапазоне примерно от 1 мол.% до примерно 22 мол.%, и выбранного из группы, состоящей из серебра; кобальта; молибдена; вольфрама; индия и молибдена; индия и кобальта и индия и вольфрама; где указанный органический восстановитель и указанный NOх присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 24:1 и в котором указанное контактирование осуществляют при температуре в диапазоне примерно от 100°C до примерно 600°C и с объемной скоростью в диапазоне примерно от 5000 час-1 до примерно 100000 час-1.

Другие различные отличительные признаки, аспекты и преимущества настоящего изобретения станут более понятны на основании нижеследующего описания и прилагаемой формулы изобретения.

Подробное описание изобретения

В последующем описании и приведенной затем формуле изобретения будут сделаны ссылки на ряд терминов, которые следует определять как имеющие следующие значения. Форма единственного числа включает в себя формы множественного числа, если из контекста явно не следует обратное.

В одном варианте осуществления настоящее изобретение включает в себя каталитическую систему для селективного восстановления NOx, указанная каталитическая система включает в себя катализатор и восстановитель. Катализатор включает в себя металлооксидный носитель, каталитический оксид металла и активирующий металл. Восстановитель включает в себя кислородсодержащее органическое соединение.

Металлооксидный носитель может включать в себя оксид алюминия, диоксид титана, двуокись циркония, диоксид серия, карбид кремния или любую смесь этих веществ. Как правило, металлооксидный носитель включает в себя гамма-оксид алюминия с высокой площадью поверхности, содержащей примеси по меньшей мере примерно 0,2 мас.% в одном варианте осуществления и по меньшей мере примерно 0,3 мас.% примеси в другом. Металлооксидный носитель может быть получен любым способом, известным специалистам в данной области техники, таким как, например, соосаждение, распылительная сушка и золь-гель способ.

Катализатор также включает в себя каталитический оксид металла. В одном варианте осуществления каталитический оксид металла включает в себя, по меньшей мере, один из оксидов: оксид галлия или оксид серебра. В конкретном варианте осуществления катализатор включает в себя примерно от 5 мол.% до примерно 31 мол.% оксида галлия. В другом конкретном варианте осуществления катализатор включает в себя примерно от 12 мол.% до примерно 31 мол.% оксида галлия. В еще одном конкретном варианте осуществления катализатор включает в себя примерно от 18 мол.% до примерно 31 мол.% оксида галлия, причем во всех случаях мольный процент определен делением числа молей каталитического металла на общее количество молей металлических компонентов в катализаторе, включая носитель катализатора и любой присутствующий активирующий металл. В другом конкретном варианте осуществления катализатор включает в себя примерно от 0,5 мол.% до примерно 31 мол.% оксида серебра. В другом конкретном варианте осуществления катализатор включает в себя примерно от 10 мол.% до примерно 25 мол.% оксида серебра. В другом конкретном варианте осуществления катализатор включает в себя примерно от 12 мол.% до примерно 20 мол.% оксида серебра, причем во всех случаях мольный процент определен делением числа молей каталитического металла на общее количество молей металлических компонентов в катализаторе, включая металлические компоненты носителя катализатора и любого присутствующего активирующего металла. Катализатор также включает в себя, по меньшей мере, один активирующий металл. Активирующий металл может включать в себя, по меньшей мере, одно из серебра, кобальта, молибдена, вольфрама или индия. Дополнительно активирующий металл может также представлять комбинацию больше чем одного из этих металлов. Катализатор обычно включает в себя примерно от 1 мол.% до примерно 22 мол.% активирующего металла. В некоторых вариантах осуществления катализатор включает в себя примерно от 1 мол.% до примерно 12 мол.% активирующего металла и в некоторых других вариантах осуществления примерно от 1 мол.% до примерно 7 мол.% активирующего металла. В одном конкретном варианте осуществления катализатор включает в себя примерно от 1 мол.% до примерно 5 мол.% активирующего металла. Следует учесть, что термин "активирующий металл" предназначен для того, чтобы охватить металлы в виде простых элементов, металлических оксидов или солей активирующего металла, таких как, например, Co2O3. В одном конкретном варианте осуществления, в котором каталитический оксид металла включает в себя оксид серебра, каталитическая система должна дополнительно включать в себя, по меньшей мере, один активирующий металл, который выбран из группы, состоящей из кобальта, молибдена, вольфрама, индия и их смесей.

Катализаторы могут быть получены по влажной технологии, включающей в себя применение гомогенных и предварительно смешанных растворов предшественников для каталитического металлического оксида и активирующего металла, контактирующих с металлооксидным носителем катализатора. Частицы оксида металла для носителя катализатора обычно прокаливают перед применением раствора предшественника. В некоторых вариантах осуществления стадию первичного прокаливания проводят примерно от 80°C до примерно 120°C в течение примерно 1-2 часов, после которого осуществляют основной процесс прокаливания. Такое прокаливание может быть выполнено при температуре в диапазоне примерно от 500°C до примерно 800°C. В некоторых вариантах осуществления прокаливание выполнено в температуре в диапазоне примерно от 650°C до примерно 725°C. В некоторых вариантах осуществления прокаливание осуществляют в течение примерно от 2 часов до примерно 10 часов. В некоторых других вариантах осуществления прокаливание осуществляют в течение примерно от 4 часов до примерно 8 часов. Частицы просеивают так, чтобы отобрать и использовать те, которые в диаметре составляют примерно от 0,1 до примерно 1000 мкм. В одном варианте осуществления область размера частиц устанавливают в диапазоне примерно от 2 мкм до примерно 50 мкм в диаметре. На основании значения площади поверхности и общего объема пор носителя катализатора в виде частиц оксида металла затем может быть рассчитана требуемая загрузка катализатора. Как будет понятно специалистам в области техники, площади поверхности и пористость может составить значение, примерно на 20-30% меньшее в конечном каталитическом продукте в результате каталитического наполнения. Наполнение катализатора определено общим объемом пор носителя, который является объемом металлических предшественников, который может быть заполнен вследствие исходной влажности. Наполнение предшественника подбирают таким образом, чтобы количество металла обычно составляло уменьшенное значение по сравнению с монослоем активного металлического оксида на металлооксидном носителе катализатора. В некоторых вариантах осуществления используют удвоенный объем пор в качестве общего объема предшественника для осуществления наполнения и такое наполнение металла выбирают в диапазоне примерно от 1 ммоль до примерно 5 ммоль смеси каталитического металлического оксида и активирующего металла на грамм металлооксидного носителя катализатора.

На последующих стадиях приготовления катализатора могут быть приготовлены растворы предшественника каталитического металлического оксида и одного или нескольких активирующих металлов. Растворы предшественника могут быть приготовлены в водных средах, в гидрофильных органических средах или в их смесях. Гидрофильные органические среды включают в себя карбоновые кислоты, спирты и их смеси, такие как без ограничения уксусная кислота или этанол. Растворы обычно получают, смешивая растворитель с металлическими солями, такими как, но не ограниченными этим, нитраты металлов, соли лимонной кислоты, оксалаты, ацетилацетонаты, молибдаты или бензоаты, в количестве, чтобы создать раствор соответствующей молярности, основываясь на требуемом составе катализатора. В некоторых вариантах осуществления металлическая соль является молибденовым гетерополианионом или молибдатом аммония. Используемые для приготовления каталитической системы способы известны специалистам в области техники и включают в себя покрытие металлооксидного катализатора на носитель, имеющий сотовую структуру, способом тонкого нанесения или экструзионным прессованием суспензии в требуемой форме. Чистота металлических предшественников, либо каталитического металлического оксида, либо активирующего металла находится в диапазоне примерно от 95 мас.% до примерно 99,999 мас.%. В одном варианте осуществления все металлические предшественники перемешаны вместе и настолько гомогенны, насколько это возможно перед добавлением в металлооксидный носитель катализатора. В некоторых других вариантах осуществления различные металлические предшественники добавляют последовательно в металлооксидный носитель катализатора. В одном варианте осуществления требуемый объем раствора предшественника добавляют, чтобы покрыть металлооксидный носитель катализатора и создают катализатор с требуемой окончательной загрузкой катализатора. Как только раствор или растворы соли металла добавлены в металлооксидный носитель катализатора, катализатор необязательно может быть оставлен для выдерживания от примерно 6 до 10 часов в некоторых вариантах осуществления. Катализатор после этого высушивают в течение определенного промежутка времени при требуемой температуре. В конкретном варианте осуществления катализатор может быть высушен в вакууме, необязательно в токе азота. Наконец, катализатор может быть прокален при требуемой температуре и в течение требуемого времени, чтобы создать конечный каталитический продукт.

Катализаторы согласно типичным вариантам осуществления настоящего изобретения могут быть созданы, используя либо ручной, либо автоматизированный способы. Как правило, ручной способ используют для приготовления катализаторов с большим весом, например, такого как примерно от 1 до примерно 20 грамм (г). Автоматизированный способ обычно используется, когда катализаторы имеют меньший вес, например, такой как примерно от 5 миллиграммов (мг) до примерно 100 мг. Вообще ручной и автоматизированный способы приготовления катализатора подобны за исключением того, что автоматизированный способ включает в себя автоматизированное измерение и распределение растворов предшественников на металлооксидном носителе катализатора.

Восстановитель для использования в каталитической системе согласно типичным вариантам осуществления настоящего изобретения включает в себя кислородсодержащее органическое соединение. Указанные кислородсодержащие органические соединения представляют собой газожидкостную смесь либо в виде жидкости, либо газа, так что они могут течь через катализатор, когда введены в поток отходящего газа для их использования в каталитической системе для восстановления NOx. Как правило, кислородсодержащие углеводороды с менее чем примерно 16 углеродных атомов будут жидкостью, хотя кислородсодержащие углеводороды с большим числом углеродных атомов могут также быть жидкостью, например, в зависимости от химической структуры и температуры газового потока. Кислородсодержащие органические соединения, подходящие для использования в качестве восстановителей, обычно включают представителя, выбранного из группы, состоящей из спирта, простого эфира, сложного эфира, карбоновой кислоты, альдегида, кетона, карбоната и их комбинаций. В некоторых вариантах осуществления кислородсодержащие органические соединения, подходящие для использования в качестве восстановителей, включают в себя по меньшей мере одну функциональную группу, отобранную из группы, состоящей из гидрокси, алкокси, карбонила, карбоната и их комбинаций. Некоторые неограничивающие примеры кислородсодержащих органические соединений, подходящих для использования в качестве восстановителей, включают в себя метанол, этиловый спирт, 1-бутанол, 2-бутанол, 1-пропанол, изопропанол, диметиловый эфир, диметилкарбонат и их комбинации.

Каталитическая система может использоваться во взаимодействии с любым процессом или системой, в которой может быть желательно уменьшить выбросы NOx, такой как газовая турбина, паровая турбина, котел, локомотив или передвижная система выпуска отработавших газов, такая как, но этим не ограниченная, дизельная система выпуска отработавших газов. Каталитическая система может также использоваться во взаимодействии с системами, включающими в себя образование газов от сжигания угля, сжигания летучих органических соединений (VOC) или при сжигании пластмасс, или на заводах по получению диоксида кремния, или на заводах по производству азотной кислоты. Катализатор обычно помещают внутри системы выпуска, где он будет подвергнут воздействию отходящего газа, содержащего NOx. Катализатор может быть расположен в виде реактора с уплотненным или псевдоожиженным слоем, нанесенным на монолит, вспененный материал, сетчатую или мембранную структуру, или быть расположен любым другим способом внутри выхлопной системы так, чтобы катализатор находился в контакте с отходящим газом.

Как будет понятно квалифицированным специалистам в данной области техники, несмотря на то что каталитические реакции вообще сложны и включают в себя много стадий, суммарный основной селективный процесс каталитической реакции восстановления при восстановлении NOx, как полагают, происходит следующим образом:

NOx + O2 + органический восстановитель → N2 + CO2 + H2O (1)

Поток отходящего газа обычно включает в себя воздух, воду, CO, CO2, NOx и может дополнительно содержать другие примеси. Кроме того, может также присутствовать в потоке отходящего газа невоспламенившееся или не полностью воспламенившееся топливо. Органический восстановитель обычно подают в потоке отходящего газа для формирования газовой смеси, которую затем пропускают через катализатор. Достаточное количество кислорода для поддержки реакции восстановления NOx может уже присутствовать в потоке отходящего газа. Если присутствующего в газовой смеси кислорода недостаточно для реакции восстановления NOx, дополнительный газ кислорода может также быть введен в поток отходящего газа в виде кислорода или воздуха. В некоторых вариантах осуществления газовый поток включает в себя примерно от 1 мол.% до примерно 21 мол.% газа кислорода. В некоторых других вариантах осуществления газовый поток включает примерно от 1 мол.% до примерно 15 мол.% газа кислорода.

Согласно вариантам осуществления настоящего изобретения одно преимущество заключается том, что реакция восстановления может протекать в условиях "обедненных по восстановителю". То есть количество восстановителя, который добавляют к отходящему газу для восстановления NOx, обычно низкое. Уменьшение количества восстановителя для преобразования NOx в азот может обеспечить более эффективный процесс, при котором уменьшится стоимость исходного сырья. Молярное отношение восстановителя к NOx находится обычно в диапазоне примерно от 0,25:1 до примерно 6:1. В других вариантах осуществления указанное отношение обычно такое, что отношение углеродных атомов в восстановителе составляет примерно от 0,5 до примерно 24 молей на моль NOx. В некоторых других вариантах осуществления органический восстановитель и NOx присутствуют в молярном отношении углерод:NOx, находящемся в диапазоне примерно от 0,5:1 до примерно 15:1. В конкретном варианте осуществления органический восстановитель и NOx присутствуют в молярном отношении углерод:NOx, находящемся в диапазоне от примерно 0,5:1 до примерно 8:1.

Реакция восстановления может протекать в широкой области температур. Как правило, температура в одном варианте осуществления может находиться в диапазоне примерно от 100°C до примерно 600°C, в другом варианте осуществления примерно от 200°C до примерно 500°C и в еще одном варианте осуществления примерно от 350°C до примерно 450°C.

Реакция восстановления может протекать в условиях, при которых газовую смесь приготавливают так, чтобы иметь объемную скорость в одном варианте осуществления в диапазоне примерно от 5000 час-1 до примерно 100000 час-1, в другом варианте осуществления в диапазоне примерно от 8000 час-1 до примерно 50000 час-1 и в еще одном варианте осуществления в диапазоне примерно от 8000 час-1 до примерно 40000 час-1.

Типичные варианты осуществления каталитической системы могут также успешно быть использованы в условиях влажности. Конкретные варианты осуществления восстановления NOx, доводящие до конца применение типичных вариантов осуществления настоящего изобретения, могут быть эффективны в потоках отходящего газа, содержащих воду. В некоторых вариантах осуществления газовый поток включает в себя примерно от 1 мол.% до примерно 12 мол.% воды и в некоторых других вариантах осуществления примерно от 2 мол.% до примерно 10 мол.% воды.

Без дополнительного уточнения авторы изобретения полагают, что любой квалифицированный специалист в области техники, используя приведенное в данной работе описание, может использовать настоящее изобретение во всей его полноте. Приведенные далее примеры включены для того, чтобы предоставить дополнительные пояснения специалистам в данной области относительно практического осуществления заявленного изобретения. Предлагаемые примеры являются лишь иллюстративными примерами, которые вносят вклад в пояснения, приведенные в настоящей заявке. Соответственно приведенные примеры никоим образом не предназначены для ограничения изобретения, которое определено в прилагаемой формуле изобретения.

Примеры

Катализаторы были приготовлены и использованы в комбинации с восстановителями в соответствии с примерными вариантами осуществления настоящего изобретения. Преобразование NOx анализировали с помощью варьирования экспериментальных условий, включающих варьирование композиции катализатора, восстановителей, температур реакции и отношения восстановителя к

NOx.

В приведенных ниже примерах образцы катализатора были приготовлены таким образом, что каждый содержал носитель катализатора из гамма-диоксида алюминия, имеющегося в продаже в Saint-Gobain NorPro of Stow, Ohio. Носитель катализатора из оксида алюминия имел чистоту от 99,5% до 99,7%. Носитель катализатора из оксида алюминия сначала прокалили при 725°C в течение 6 ч в присутствии окислителя. Окислителем может быть воздух или газ окислителя, содержащий примерно от 1% до примерно 21% кислорода в азоте. Частицы оксида алюминия затем были просеяны для отбора носителя катализатора, имеющего диаметр с размером частиц примерно от 450 мкм до примерно 1000 мкм. Перед загрузкой носитель катализатора имел площадь поверхности примерно 240 м2/г и объем пор 0,796 мл/г.

Галлий использовали в качестве металла для каталитического металлического оксида, который добавляли к оксиду алюминия. Галлий добавляли в растворимой форме для увлажнения носителя из оксида алюминия и получали из раствора нитрата галлия, имеющего формулу Ga(NO3)3·6H2O. Раствор получали с помощью комбинирования деионизированной воды с нитратом галлия, имеющим чистоту 99,999% (по основным металлам), полученного от Alfa-Aesar of Ward Hill, Massachusetts. Воду, подвергнутую ультратонкой фильтрации, имеющую удельное сопротивление 18 МОм·см, использовали во всех операциях. Для активирующего металла водный раствор соли нитрата требуемого металла(ов), также имеющего чистоту 99,999% (по основным металлам) и полученного от Alfa-Aesar, добавляли к носителю из оксида алюминия. Все металлические предшественники были смешаны вместе и были настолько гомогенны, насколько это возможно перед добавлением к носителю из оксида алюминия. Катализаторы выдерживали от 6 до 10 часов и затем высушивали в условиях динамического вакуума в токе азота в течение от 4 до 5 часов в 80°C. На конечной стадии высушенный катализатор был термически обработан. Температурная кривая при этой обработке начинала возрастать от 25°C до 110°C с 1,4°C/мин. Катализатор выдерживали при 110°C в течение 1,5 часов, после этого температуру быстро линейно увеличивали на 5°C/мин до значения 650°C. Катализатор выдерживали 6 часов при этой температуре и затем давали ему возможность охлаждаться в течение примерно от 4 до 6 часов.

Катализаторы тестировали в 32-трубном микрореакторе с высокоэффективным скринингом гетерогенного катализатора. Реактор представлял собой обычный нагреваемый газораспределительный коллектор со свободным пространством, который равномерно распределял поток реагента через пригнанные капилляры в параллельные трубки реактора. Коллектор имел нагреваемые устройства, позволяющие осуществлять предварительное нагревание потока реагента и испарение жидких реагентов перед распределением. Весь нагреваемый коллектор в сборе устанавливали на вертикально перемещаемый стол, который поднимали и опускали с помощью пневматического давления. Трубки реактора вставляли в покрытый золотом 10-сантиметровый (см) толстый изолированный медный реакторный блок (с размерами 13,5 см×25 см), который имел электроподогрев для того, чтобы варьировать температуру от 200°C до 650°C.

Химически инертные KALREZ (ТМ) o-кольца, полученные от DuPont of Wilmington, Delaware, служили в качестве вязкоэластичных торцовых уплотнений на любом конце каждой трубки реактора. Трубки реактора были сделаны из трубопровода INCONEL 600 (ТМ) с внешним диаметром 0,635 см и внутренним диаметром 0,457 см, полученного от Inco Alloys/Special Metals of Saddle Brook, New Jersey. Трубки могли свободно скользить вертикально через покрытый золотом медный нагревательный блок. Каждая труба содержала стекловолоконную фритту, на которой образцы катализатора примерно 0,050 г были помещены в центр каждой из труб, через которые поток реагента смешанной газовой смеси, содержащей NOx и восстановитель, имитировали передаваемый поток отходящего газа. Использовали единственный перепускной патрубок, чтобы гарантировать равный поток через каждую из 32 тестируемых трубок. Соединительные части присоединяли к коллектору распределения для доставки смешанной газовой смеси. Компоненты смешанной газовой смеси подавали на общий коллектор для смешивания, используя электронные контроллеры массовых потоков, и затем распределяли на коллекторе. Давление в коллекторе распределения поддерживали примерно при 275,8 кПа. Реакторная температура и управление потоком были полностью автоматизированы.

После загрузки в трубки катализаторы были термически обработаны потоком воздуха, как описано в данном описании ранее, и затем взаимодействовали со смешанной газовой смесью. Реакторный поток посылали к нагретым клапанам отбора проб, которые последовательно отбирали трубки и подавали непрерывный поток на хемилюминесцентный анализатор. Любой поток, который не был направлен в аналитическое устройство, отправляли на общий вентиль.

Переключающими клапанами для маршрутизации газов управляли с помощью компьютера, и их приводили в действие согласно предварительно заданной синхронизированной последовательности. Хемилюминесцентный анализатор связан системой регистрации данных, основанной на применении компьютера. Данным, соответствующим реакторной композиции потока трубки, присваивались временные метки, и они сохранялись в памяти. Данные от перепускного патрубка также сохраняли в памяти в качестве справочной информации по входной композиции труб каталитического реактора. Это позволяло комбинировать данные по определению активности и селективности каждого образца катализатора.

Для тестирования восстановления NOx поток реагента смешанной газовой смеси включал в себя восстановитель, примерно 200 промиль NOx, 12 об.% кислорода, 7 об.% воды и остаток азота. Тип и количество восстановителя в потоке варьировали в зависимости от проводимых экспериментов. Скорость потока смешанной газовой смеси через каждую из труб составляла 33 нсм3/мин на трубу.

В таблице 1 приведены композиции приготовленных образцов катализатора в виде составов, выраженных в мольных процентах для каждого активирующего металла и/или каталитического металла, присутствующего в катализаторе. Остаток композиции представляет собой оксид алюминия в виде носителя катализатора из оксида алюминия. Мольный процент определяли для каждого компонента делением числа молей указанного компонента к общему количеству молей металлических компонентов в катализаторе, включая металлические компоненты металлооксидного носителя катализатора. Сравнительный пример 1 состоит только из носителя оксида алюминия.

Таблица 1
Пример Ga In Ag Co Mo W
Сравнительный пример 1 0 0 0 0 0 0
Сравнительный пример 2 29 0 0 0 0 0
Сравнительный пример 3 0 2 0 0 0 0
Сравнительный пример 4 0 4 0 0 0 0
Сравнительный пример 5 0 0 2 0 0 0
Сравнительный пример 6 0 0 5 0 0 0
Сравнительный пример 7 27 2 0 0 0 0
Пример 1 27 0 2 0 0 0
Пример 2 25 0 4 0 0 0
Пример 3 27 0 0 2 0 0
Пример 4 25 0 0 4 0 0
Пример 5 25 2 0 2 0 0
Пример 6 22 3 0 3 0 0
Пример 7 27 0 0 0 2 0
Пример 8 25 0 0 0 5 0
Пример 9 22 0 0 0 8 0
Пример 10 22 3 0 0 3 0
Пример 11 21 6 0 0 1 0
Пример 12 27 0 0 0 0 2
Пример 13 25 0 0 0 0 4
Пример 14 20 0 0 0 0 8
Пример 15 22 6 0 0 0 1
Пример 16 21 3 0 0 0 3

Была проведена первая серия экспериментов, в которой различные образцы катализатора были приготовлены и протестированы с различными восстановителями, используя описанную процедуру тестирования при 350°C. Данные в таблице 2 показывают процент конвертированного NOx для каждой из каталитических систем. Номера примеров и сравнительных примеров в таблице 2 соответствуют каталитическим композициям в примерах и сравнительных примерах таблицы 1. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx обычно равно примерно 2:1 для каждой из экспериментальных систем. Аббревиатура "NBA" означает 1-бутанол.

Таблица 2
Восстановители
Пример MeOH EtOH i-PrOH NBA
Сравнительный пример 1 12 35 30 35
Сравнительный пример 2 18 32 33 31
Сравнительный пример 3 29 35 28 33
Сравнительный пример 4 26 34 43 32
Сравнительный пример 5 6 24 66 42
Сравнительный пример 6 7 14 36 21
Пример 1 12 59 97 55
Пример 2 2 14 30 19
Пример 3 15 34 31 30
Пример 4 43 56 25 46
Пример 5 42 46 28 41
Пример 6 34 39 33 39

Как показано в таблице 2, пример 1, характеризующийся комбинацией оксида галлия в качестве каталитического оксида металла и серебра в качестве активирующего металла, показал особенно хорошие результаты при использовании восстановителей, таких как этанол, изопропанол и 1-бутанол. Пример 4, содержащий галлий и кобальт, показал хорошие характеристики с метанолом, этанолом и NBA. Примеры 5 и 6, содержащие кобальт, индий и галлий, также показали хорошие характеристики с метанолом, этанолом и с 1-бутанолом.

Была проведена вторая серия экспериментов, в которой различные образцы катализатора были приготовлены и протестированы с различными восстановителями, используя описанную процедуру тестирования при 400°C. Данные в таблице 3 показывают процент конвертированного NOx для каждой из каталитических систем. Номера примеров и сравнительных примеров в таблице 3 соответствуют каталитическим композициям, приведенным в примерах и сравнительных примерах таблицы 1. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx обычно равно примерно 6:1 для каждой из экспериментальных систем. Аббревиатуры "DMC", "IPA" и "NBA" означают диметилкарбонат, изопропиловый спирт и 1-бутанол соответственно.

Таблица 3
Каталитическая композиция Восстановитель
Пример Ga In Ag Co Mo W MeOH DMC EtOH IPA NBA
Сравнительный пример 2 29 0 0 0 0 0 20 38 57 55 57
Сравнительный пример 3 0 2 0 0 0 0 18 34 55 61 56
Сравнительный пример 5 0 0 2 0 0 0 21 30 95 96 83
Сравнительный пример 7 27 2 0 0 0 0 28 48 62 54 57
Пример 3 27 0 0 2 0 0 17 79 49 42 37
Пример 6 22 3 0 3 0 0 18 49 40 40 33
Пример 7 27 0 0 0 2 0 28 44 60 52 56
Пример 8 25 0 0 0 5 0 34 54 76 70 65
Пример 9 22 0 0 0 8 0 50 77 44 31 41
Пример 10 22 3 0 0 3 0 35 62 47 33 42
Пример 11 21 6 0 0 1 0 25 25 65 28 21
Пример 12 27 0 0 0 0 2 37 55 19 22 68
Пример 13 25 0 0 0 0 4 53 32 28 24 21
Пример 14 20 0 0 0 0 8 65 36 30 31 29
Пример 15 22 6 0 0 0 1 24 58 50 13 55
Пример 16 21 3 0 0 0 3 41 64 60 22 61

В то время как все образцы катализатора показали хорошие или улучшенные характеристики по сравнению с образцами сравнительных примеров, в частности образец примера 8, содержащий 5 мол.% молибдена и 25 мол.% галлия, показал хорошие результаты со всеми пятью окислительными восстановителями. Вообще каталитические системы в соответствии с типичными вариантами осуществления и настоящего способа были успешны при восстановлении некоторого количества NOx в каждом случае.

Была проведена третья серия экспериментов, в которой метанол тестировали в качестве восстановителя при 400°C в присутствии газовой смеси, содержащей 200 промиль NOx, 4%-ную воду и 13% O2, и остаточный азот при номинальной объемной скорости 28000 час-1. Каталитические композиции наряду с активностью катализатора для каждого эксперимента приведены в таблице 4. Мольный баланс катализатора включает в себя металлооксидный носитель катализатора. Хотя молярное отношение восстановителя к NOx варьируется в зависимости от использованного восстановителя, молярное отношение углерод:NOx обычно равно примерно 6:1 для каждой из экспериментальных систем. Активность катализатора выражена в молях NOx, конвертированного в N2 на грамм катализатора в час.

Таблица 4
Пример Каталитическая композиция Восстановитель
Ga Ag In MeOH
Пример 17 6 6 19 5,2E-06
Пример 18 6 13 13 l,0E-05
Пример 19 6 19 6 1,6E-05
Пример 20 13 6 13 5,2E-06
Пример 21 0 19 13 2,0E-05
Пример 22 0 13 19 5,9E-07
Пример 23 29 2 0 8,4E-08
Пример 24 0 16 16 1,7E-05
Пример 25 9 11 11 1,1E-05
Пример 26 5 16 10 1,6E-5
Сравнительный пример 8 31 0 0 6,3E-07

Различные варианты осуществления данного изобретения описаны для удовлетворения различным потребностям, которым изобретение соответствует. Следует признать, что эти варианты осуществления являются просто иллюстрацией принципов различных воплощений настоящего изобретения. Многочисленные модификации и адаптация изобретения очевидны специалистам в области техники без отступления от смысла и возможностей настоящего изобретения. Таким образом, предполагается, что настоящее изобретение охватывает все подходящие модификации и разновидности, попадающие в объем притязаний прилагаемой формулы изобретения, и их эквиваленты.

1. Каталитическая система для восстановления NOx, содержащая: катализатор, содержащий носитель, содержащий, по меньшей мере, один представитель, выбранный из группы, состоящей из оксида алюминия, диоксида титана, диоксида циркония, диоксида церия, карбида кремния и их смесей, каталитический оксид металла, содержащий, по меньшей мере, один из оксида галлия или оксид серебра, и, по меньшей мере, один активирующий металл, выбранный из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и их смесей; и
газовый поток, содержащий кислород в диапазоне примерно от 1 мол.% до примерно 21 мол.%, воду в диапазоне примерно от 1 мол.% до примерно 12 мол.% и органический восстановитель, выбранный из группы, состоящей из спирта, карбоната и их комбинаций, причем
указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 24:1.

2. Каталитическая система по п.1, в которой указанный каталитический оксид металла включает окись галлия в диапазоне примерно от 5 мол.% до примерно 31 мол.%.

3. Каталитическая система по п.1, в которой указанный каталитический оксид металла включает в себя окись галлия в диапазоне примерно от 18 мол.% до примерно 31 мол.%.

4. Каталитическая система по п.1, в которой указанный каталитический оксид металла включает в себя оксид серебра в диапазоне примерно от 0,5 мол.% до примерно 31 мол.%.

5. Каталитическая система по п.1, в которой указанный катализатор включает в себя указанный активирующий металл в диапазоне примерно от 1 мол.% до примерно 22 мол.%.

6. Каталитическая система по п.1, в которой указанный катализатор включает в себя указанный активирующий металл в диапазоне примерно от 1 мол.% до примерно 7 мол.%.

7. Каталитическая система по п.1, в которой каталитический оксид металла включает в себя окись галлия и активирующий металл включает серебро или комбинацию индия и серебра.

8. Каталитическая система по п.1, в которой каталитический оксид металла включает в себя оксид серебра и активирующий металл включает индий.

9. Каталитическая система по п.1, в которой указанный органический восстановитель отобран из группы, состоящей из метанола, этилового спирта, бутилового спирта, пропилового спирта, диметилкарбоната и их комбинаций.

10. Каталитическая система по п.1, в которой указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 8:1.

11. Каталитическая система по п.1, в которой NOx присутствует в потоке отходящего газа от источника сгорания, указанный источник сгорания включает, по меньшей мере, одно из нижеперечисленного: газовую турбину, паровую турбину, котел, локомотив, передвижную систему выпуска отработавших газов, сжигания угля, сжигания пластмасс, сжигания летучих органических соединений, завод по получению диоксида кремния или завод по производству азотной кислоты.

12. Каталитическая система для восстановления NOx, содержащая:
катализатор, состоящий из (i) металлооксидного носителя, содержащего оксид алюминия, (ii) по меньшей мере, один из оксидов: оксид галлия или оксид серебра, присутствующих в количестве в диапазоне примерно от 5 мол.% до примерно 31 мол.%; и (iii) активирующего металла или комбинации активирующих металлов, присутствующих в количестве в диапазоне примерно от 1 мол.% до примерно 22 мол.%, и выбранного из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и молибдена, индия и кобальта, и индия и вольфрама; и
газовый поток, содержащий (А) воду в диапазоне примерно от 1 мол.% до примерно 12 мол.%; (В) кислород в диапазоне примерно от 1 мол.% до примерно 15 мол.%; и (С) органический восстановитель, включающий в себя кислород и выбранный из группы, состоящей из метанола, этилового спирта, бутилового спирта, пропилового спирта, диметилкарбоната и их комбинаций;
где указанный органический восстановитель и NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 24:1.

13. Способ восстановления NOx, который включает в себя стадии:
обеспечение газовой смеси, содержащей NOx, воду в диапазоне примерно от 1 мол.% до примерно 12 мол.%, кислород в диапазоне примерно от 1 мол.% до примерно 21 мол.% и органический восстановитель, выбранный из группы, состоящей из спирта, карбоната и их комбинаций, причем указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 24:1; и контактирование указанной газовой смеси с катализатором, где указанный катализатор включает носитель, содержащий, по меньшей мере, один представитель выбранный из группы, состоящей из оксида алюминия, диоксида титана, диоксида циркония, диоксида церия, карбида кремния и их смесей, каталитический оксид металла, содержащий, по меньшей мере, один из оксида галлия или оксид серебра, и, по меньшей мере, один активирующий металл, выбранный из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и их смесей.

14. Способ по п.13, в котором указанный контакт осуществляют при температуре в диапазоне примерно от 100°С до примерно 600°С.

15. Способ по п.13, в котором указанный контакт осуществляют при температуре в диапазоне примерно от 200°С до примерно 500°С.

16. Способ по п.13, в котором указанный контакт осуществляют с объемной скоростью в диапазоне примерно от 5000 ч-1 до примерно 100000 ч-1.

17. Способ по п.13, в котором указанный каталитический оксид металла включает в себя окись галлия в диапазоне примерно от 5 мол.% до примерно 31 мол.%.

18. Способ по п.13, в котором указанный катализатор включает в себя указанный активирующий металл примерно от 1 мол.% до примерно 22 мол.%.

19. Способ по п.13, в котором указанный органический восстановитель отобран из группы, состоящей из метанола, этилового спирта, бутилового спирта, пропилового спирта, диметилового эфира, диметилкарбоната и их комбинаций.

20. Способ по п.13, в котором NOx присутствует в отходящем потоке газа от источника сгорания, указанный источник сгорания включает, по меньшей мере, одно из ниже перечисленного: газовую турбину, котел, локомотив, передвижную систему выпуска отработавших газов, сжигания угля, сжигания пластмасс, сжигания летучих органических соединений, завод по получению диоксида кремния или завод по производству азотной кислоты.

21. Способ восстановления NOx, который включает в себя стадии:
обеспечение газового потока, содержащего (А) NOx; (В) воду примерно от 1 мол.% до примерно 12 мол.%; (С) кислород примерно от 1 мол.% до примерно 15 мол.%; и (D) органический восстановитель, содержащий кислород, выбранный из группы, состоящей из метанола, этилового спирта, бутилового спирта, пропилового спирта, диметилкарбоната и их комбинаций; и
контактирование указанного газового потока с катализатором, состоящим из (i) - носителя катализатора, содержащего, по меньшей мере, одного представителя, выбранного из группы, состоящей из оксида алюминия, диоксида титана, диоксида циркония, карбида кремния и диоксида церия;
(ii) по меньшей мере, одного из оксидов: оксид галлия или оксид серебра, в диапазоне примерно от 5 мол.% до примерно 31 мол.%; и (iii) активирующего металла или комбинации активирующих металлов в диапазоне примерно от 1 мол.% до примерно 22 мол.%, и выбранного из группы, состоящей из серебра, кобальта, молибдена, вольфрама, индия и молибдена, индия и кобальта, и индия и вольфрама,
где указанный органический восстановитель и указанный NOx присутствуют в молярном отношении углерод:NOx примерно от 0,5:1 до примерно 24:1; и в котором указанное контактирование осуществляют при температуре в диапазоне примерно от 100°С до примерно 600°С и с объемной скоростью в диапазоне примерно от 5000 ч-1 до примерно 100000 ч-1.



 

Похожие патенты:

Изобретение относится к области органической химии и нефтехимии, в частности к разработке и использованию катализаторов. .

Изобретение относится к способу получения олефинов из углеводородов, в котором углеводороды обрабатываются автотермическим крекингом. .

Изобретение относится к каталитической химии, более конкретно - к катализаторам изодепарафинизации нефтяных. .

Изобретение относится к нефтеперерабатывающей и нефтехимической промышленности. .

Изобретение относится к области катализа селективной гидрогенизации. .

Изобретение относится к области нефтепереработки, а именно каталитическому реформингу исходной нафты. .

Изобретение относится к катализатору очистки газов от оксидов азота преимущественно в присутствии метана и кислорода, конверсии природного газа и к способу его получения.

Изобретение относится к катализаторам для синтеза пиразинамида в процессе реакции окислительного аммонолиза метилпиразина. .

Изобретение относится к получению одорантов для природного газа, в частности к безотходному способу получения метилмеркаптана, а также к способу получения катализатора, обеспечивающего более высокую степень взаимодействия метилового спирта и сероводорода и использованию такого способа получения сероводорода, который обеспечивает безотходность производства в целом.

Изобретение относится к одноатомным ациклическим спиртам, в частности к получению С<SB POS="POST">1</SB>-С<SB POS="POST">5</SB> спиртовой фракции, кипящей в интервале кипения автомобильного бензина.
Наверх