Способ исключения возможности обрушения металлических конструкций каркаса от пожара



Способ исключения возможности обрушения металлических конструкций каркаса от пожара
Способ исключения возможности обрушения металлических конструкций каркаса от пожара
Способ исключения возможности обрушения металлических конструкций каркаса от пожара
Способ исключения возможности обрушения металлических конструкций каркаса от пожара

 


Владельцы патента RU 2411330:

Государственное Образовательное Учреждение Высшего Профессионального Образования Пензенский государственный университет архитектуры и строительства (RU)

Изобретение относится к области строительства, в частности к способу исключения возможности обрушения металлических конструкций каркаса от пожара. Технический результат заключается в исключении возможности обрушения металлических конструкций каркаса от пожара, повышении их огнестойкости и прочности. Способ заключается в том, что монтируют колонны и соединяют их ригелем покрытия. Располагают фонарь над центральной колонной и перекрывают его двухконсольной балкой. Колонны, ригель и балку выполняют из овальных в сечении труб. Устанавливают подкрановые балки из овальных профилей. В овальные трубчатые профили вводят пустотообразователи и напрягают их изнутри. Присоединяют к патрубкам профилей шланги бетононасосов и закачивают в профили самонапрягающийся при расширении бетон. После схватывания и самонапряжения элементов каркаса понижают до нуля внутреннее давление в пустотообразователях и извлекают их. Оснащают сооружение температурными датчиками и системой труб для подачи воды и разбрызгивания ее внутри профилей. В случае возникновения пожара по сигналу от датчиков температуры автоматически включают разбрызгивание воды внутри профилей и сток ее вниз по профилям. Охлаждают изнутри трубчатые профили испарением воды, исключают этим повышение температуры металла каркаса выше 12…130° по Цельсию. 4 ил.

 

Предлагаемое изобретение относится к повышению огнестойкости металлических конструкций каркаса зданий.

Известны многопролетные каркасы со ступенчатыми колоннами и фонарями, предназначенные для аэрации и освещения [1, с.13, рис.1.14].

Недостатки известного решения следующие:

- Низкая огнестойкость каркасов зданий, так как ригели каркаса чаще всего выполняют решетчатыми в виде ферм.

- Обрушение каркаса здания происходит в 45…50% случаев из-за обрушения решетчатых ферм покрытия [2, с.198], [3, с.5, рис.1], [4, с.113, рис.58], поэтому надежность каркасов зданий с решетчатыми ригелями низкая.

- Сложность узлов сопряжения конструкций, вызывающая избыточную трудоемкость, и исключающая безвыверочный монтаж конструкций с первой попытки.

Известны также технические решения управления осадкой и креном фундаментов, являющихся макрорегуляторами [5], [6], [7], [8], [9], обеспечивающие восстановление проектного положения фундаментов и сооружений после неравномерных осадок и ликвидации крена.

В качестве наиболее близкого прототипа примем «Способ управления напряженным состоянием рамы двухпролетного здания фундаментами с реактивными двигателями», предложенный Неждановым К.К. и разработанный с аспирантами [9, патент №2319811].

Известно также, что при нагревании сталь теряет свою прочность. При повышении температуры до ≈600°С [1, с.22] сталь переходит в пластичное состояние, и происходит обрушение стальных конструкций. Однако сталь начинает терять прочность только при температуре ≈200°С. Алюминиевые сплавы полностью переходят в пластичное состояние при температуре 200°С, поэтому их огнестойкость значительно ниже, чем у стальных конструкций.

Ужасное обрушение стальных конструкций произошло при террористическом акте в США 11 сентября 2001 г. Высотные здания обрушились в результате сильнейшего нагрева стальных колонн и потери ими несущей способности. Если бы была запроектирована система охлаждения колонн, автоматически включающаяся при пожаре, то обрушения не возникло бы, и не погибли бы люди!

В Пензе в январе 2008 возник пожар в Пензенском драматическом театре. Из-за низкой огнестойкости стальных ферм произошло очень быстро обрушение покрытия, и пожарники не смогли его предотвратить!

Известно также, что при нагреве до температуры 100°С начинается кипение воды и интенсивное испарение, сопровождающееся значительным забором тепла! Используем это замечательное свойство для исключения возможности обрушения металлических конструкций. Для использования этого свойства удобно применять замкнутые трубчатые конструкции, как в прототипе, и охлаждать их изнутри испарением воды при нагреве их снаружи открытым огнем. Используем эти известные технические решения и свойства кипящей воды.

Технические задачи изобретения - исключение возможности обрушения трубчатых металлических конструкций каркаса от пожара охлаждением их изнутри испарением воды, которое останавливает повышение температуры на отметке кипения воды 100°С.

Способ исключения возможности обрушения металлических конструкций от пожара, повышения несущей способности металлического каркаса сооружения заключается в следующем.

Безвыверочным способом монтируют центральную и крайние ступенчатые колонны, соединяют их друг с другом ригелем покрытия, с образованием трехпролетной конструкции. Располагают фонарь над центральной колонной, перекрывают его двухконсольной балкой, соединяют консоли двухконсольной балки с нижележащим ригелем вертикальными подвесками и наклонными растянутыми раскосами.

Колонны, ригель и балку фонаря выполняют из овальных в сечении труб с отношением большего габарита к меньшему габариту, равным трем, подкрановые балки, также из овальных профилей, устанавливают на консоли центральной колонны с минимальным эксцентриситетом, а на крайних колоннах - по центру тяжести сечения колонн. Фундаменты колонн каркаса выполняют с реактивными соплами и заполняют их сыпучим рабочим телом.

Отличие заключается в том, что в овальные трубчатые профили вводят пустотообразователи, фиксируют их по центру овального профиля, напрягают пустотообразователи изнутри, например, гидравлическим или пневматическим способом.

Присоединяют к патрубкам овальных профилей шланги бетононасосов, закачивают в овальные профили способом «снизу вверх» пластичный мелкозернистый самонапрягающийся при расширении бетон, и повышают этим огнестойкость и прочность каркаса.

После схватывания и самонапряжения трубобетонных элементов каркаса снимают внутреннее давление в пустотообразователях, извлекают их, оснащают сооружение температурными датчиками и системой труб для подачи воды и разбрызгивания ее внутри овальных трубчатых профилей каркаса.

В случае возникновения пожара по сигналу от датчиков температуры автоматически включают разбрызгивание воды внутри овальных трубчатых профилей каркаса и сток ее вниз по трубчатым профилям, охлаждают изнутри трубчатые профили каркаса испарением воды, исключают этим повышение температуры металла каркаса выше 120…130° по Цельсию и исключают этим возможность обрушения металлических конструкций сооружения от пожара.

На фиг.1 показана рама сооружения; на фиг.2 - узел А; на фиг.3 - узел Б; на фиг.4 - узел В.

Рама здания содержит две ступенчатые крайние колонны 1 и ступенчатую центральную колонну 2. Колонны выполнены из овальных в сечении труб. Ригель 3 соединен со всеми колоннами. Над центральной колонной 2 помещен фонарь 4, выполняющий светоаэрационные функции.

Нижняя часть крайних колонн 1 наклонена под расчетным углом α к вертикали.

Верхняя часть крайней колонны 1 смещена наружу для обеспечения зазора между ее гранью и боковой поверхностью мостового крана. Подкрановые балки 5 установлены над центром тяжести нижней части крайней колонны 1, то есть без эксцентриситета.

Центральная колонна 2 доведена до двухконсольной балки фонаря. Оголовки ветвей центральной колонны 2 из овальных профилей соединены с ригелем 3 также из овального профиля. Концы двухконсольной балки фонаря 4 соединены с нижележащим ригелем 3 вертикальными подвесками 7 и наклонными растянутыми раскосами 8.

Подкрановые балки 6 из овальных профилей установлены на консолях центральной колонны 2 с минимальным эксцентриситетом, то есть так, чтобы между выступающей в сторону центральной колонны боковой гранью крана и этой колонной был обеспечен минимально допустимый зазор.

Угол α наклона нижней части крайней колонны относительно вертикали определяют расчетом. Угол α назначен таким, чтобы величины изгибающих моментов, возникающих в узлах сопряжения крайних колонн с фундаментами, стали минимальными, а следовательно, и усилия в анкерных болтах стали минимальными.

Монтируют безвыверочным способом [9] центральную колонну 2 и крайние колонны 1 и соединяют их с ригелем 3. Соединяют концы двухконсольной балки фонаря подвесками 7 с нижележащим ригелем каркаса и растянутыми раскосами 8. Соединяют верхнюю часть центральной колонны 2 с этим же ригелем. Этим жесткость и прочность средней части ригеля 3 повышена.

Рассчитывают ригель с малым центральным пролетом, в три-пять раз более жестким, чем жесткость крайнего пролета его.

Всю систему каркаса напрягают реактивной тягой двигателей фундаментов, увеличивают опорные моменты в ригеле над ветвями центральной колонны и уменьшают пролетные моменты в его крайних пролетах. Этим создают благоприятное напряженное состояние, компенсирующее избыточные напряжения от внешней нагрузки, и этим обеспечивают снижение материалоемкости ригеля и каркаса сооружения.

Способ исключения возможности обрушения конструкций каркаса от пожара заключается в следующем.

Оснащают сооружение температурными датчиками и системой труб для подачи воды в полости овальных трубчатых профилей и разбрызгивания ее внутри полости. В случае возникновения пожара, автоматически, посредством датчиков температуры, включают подачу воды в систему труб. Разбрызгивают воду внутри полостей овальных трубчатых профилей ригелей, в наивысшей точке конструкции. Под действием сил гравитации в соответствии с уклонами заставляют воду течь по полостям ригелей, стекать в полости колонн и вытекать из колонн через отверстия вблизи пола сооружения.

Горячие стальные конструкции нагревают воду до 100° по Цельсию. Вода отбирает тепло у стальных конструкций, начинает испаряться и этим охлаждать изнутри овальные трубчатые профили, предотвращая повышение температуры металла выше 120…130° по Цельсию, и этим исключают возможность обрушения металлических конструкций каркаса сооружения.

Сопоставление с аналогом показывает следующие существенные технические отличия:

- Испарением воды охлаждают металлические конструкции изнутри и исключают возможность их обрушения. Испарением воды ограничивают повышение температуры каркаса и не допускают ее повышение выше 100…120°С.

- Реактивные двигатели фундаментов создают реактивную тягу вверх и возвращают каркас в проектное положение.

- Сыпучее рабочее тело внедряют в сопла фундаментов центральных колонн грунтонасосами [8], создают реактивную тягу, выдавливают фундаменты-макрорегуляторы вверх на расчетную величину Δ и поворачивают их в грунте на проектный угол.

- Реактивные двигатели фундаментов осуществляют предварительное напряжение всей системы каркаса.

- Фонари помещены над центральной колонной и усиливают ригель покрытия. Это позволяет включать металл конструкций фонаря в эффективную работу каркаса здания как единого целого.

- Разработанная система каркаса с регулируемыми внутренними усилиями обеспечивает снижение материалоемкости на 10…12%.

Экономический эффект возник из-за следующего:

- Исключена возможность обрушения металлических конструкций каркаса охлаждением их изнутри испарением воды. Повышение температуры каркаса останавливают испарением воды при нагреве до 100…120°С.

- Повышена надежность всего каркаса, так как он выполнен из овальных трубобетонных элементов.

- Реактивные двигатели фундаментов регулируют напряжения в системе каркаса и этим оптимизируют его напряженно-деформированное состояние и обеспечивают выгодную работу каркаса и ригеля, усиленного двухконсольной балкой фонаря.

Литература

1. Металлические конструкции. Общий курс: Учебник для вузов / Е.И.Беленя и др. Ред. Е.И.Беленя. - 6-е изд., переработанное и доп. - М.: «Стройиздат», 1986 г - 560 с.

2. Беляев Б.И., B.C.Корниенко «Причины аварий стальных конструкций и способы их устранениям. - М.: «Издательство литературы по строительству», 1968 г.

3. М.М.Сахновский, A.M.Титов «Уроки аварий стальных конструкций». - Киев: «Издательство Будивельник, 1969 г.

4. А.Н.Шкинев «Аварии на строительных объектах, их причины и способы предупреждения и ликвидации».

5. Нежданов К.К. и др. Патент России №2230157 «Способ управления осадкой осевшего фундамента», Бюл. №16, 10.06.2004.

6. Нежданов К.К. и др. Патент России №2211288 «Способ управления креном и осадкой массивного сооружения», Бюл. №24, 27.08.2003.

7. Нежданов К.К. и др. Патент России №2225480 «Фундамент для внецентренно нагруженной колонны», Бюл. №7, 10.03.2004.

8. Нежданов К.К. и др. Патент России №2228408 «Грунтонасос», Бюл. №13, 10.05.2004.

9. Нежданов К.К., Нежданов А.К., Либаров А.В. «Способ управления напряженным состоянием рамы двухпролетного здания фундаментами с реактивными двигателями», патент России №2319811, 2008-03-20. Бюл. №8 (прототип).

10. Нежданов К.К., Туманов В.А., Нежданов А.К., Рубликов С.Г. Способ повышения несущей способности цилиндрической трубы на изгиб. Патент №2304479. М.Кл. B21D 9/00 (2006.01), В66С 7/00. Опубликовано 20.08.2007.

11. Нежданов К.К. и др. Патент России №2192381 «Рельсобалочная конструкция, Бюл. №31, 10.11.2002.

12. Нежданов К.К., Нежданов А.К., Бороздин А.Ю. «Способ управления движением фундамента реактивными двигателями». Патент России №2319812. EC2D 35/00 (2006.01). Заявка №2005 116385/03 (018711).

13. «Большой энциклопедический словарь». Главный редактор A.M.Прохоров, изд. переработанное и доп. - М.: Научное издательство «Большая Российская энциклопедия», 1998 г.

Способ исключения возможности обрушения металлических конструкций от пожара, заключающийся в том, что безвыверочным способом монтируют центральную и крайние ступенчатые колонны, соединяют их друг с другом ригелем покрытия с образованием трехпролетной конструкции, располагают фонарь над центральной колонной, перекрывают его двухконсольной балкой, соединяют консоли двухконсольной балки с нижележащим ригелем вертикальными подвесками и наклонными растянутыми раскосами, причем колонны, ригель и балку фонаря выполняют из овальных в сечении труб с отношением большего габарита к меньшему габариту равном трем, подкрановые балки, также из овальных профилей, устанавливают на консоли центральной колонны с минимальным эксцентриситетом, а на крайних колоннах - по центру тяжести сечения колонн, фундаменты колонн каркаса выполняют с реактивными соплами и заполняют их сыпучим рабочим телом, отличающийся тем, что в овальные трубчатые профили вводят пустотообразователи, фиксируют их по центру овального профиля, напрягают пустотообразователи изнутри, например, гидравлическим или пневматическим способом, присоединяют к патрубкам овальных профилей шланги бетононасосов, закачивают в овальные профили способом «снизу вверх» пластичный мелкозернистый самонапрягающийся при расширении бетон и повышают этим огнестойкость и прочность каркаса, а после схватывания и самонапряжения трубобетонных элементов каркаса понижают до нуля внутреннее давление в пустотообразователях, извлекают их, оснащают сооружение температурными датчиками и системой труб для подачи воды и разбрызгивания ее внутри овальных трубчатых профилей каркаса, и в случае возникновения пожара по сигналу от датчиков температуры автоматически включают разбрызгивание воды внутри овальных трубчатых профилей каркаса и сток ее вниз по трубчатым профилям, охлаждают изнутри трубчатые профили каркаса испарением воды, исключают этим повышение температуры металла каркаса выше 120…130°С и исключают этим возможность обрушения металлических конструкций сооружения от пожара.



 

Похожие патенты:

Изобретение относится к способу изготовления элемента для защиты от огня, имеющего слоистую структуру, и к использованию элементов для защиты от огня для зданий или оборудования в любых зданиях.

Изобретение относится к строительству и может быть использовано для противопожарной защиты покрытий строящихся, реконструируемых и эксплуатируемых зданий, сооружений, в которых расположено технологическое оборудование с высокой степенью пожарной опасности при авариях на них.

Изобретение относится к противопожарной технике и предназначено для локализации пожара в открытых технологических проемах, проемах зданий и сооружений, тоннелях, шахтах, на сцене зрительного зала с помощью подвижной противопожарной преграды.

Изобретение относится к строительству, в частности используется для увеличения предела огнестойкости реконструируемого перекрытия с несущими стальными балками и деревянным заполнением, а также для снижения класса его пожароопасности.

Изобретение относится к области защиты конструкций зданий и сооружений от взрыва, а также предохранения их в течение заданного по техническим требованиям промежутка времени от повреждений при воздействии высоких температур.

Изобретение относится к средству противопожарной защиты для рамки для входов кабелей и вводов труб. .
Изобретение относится к области строительства, а именно к строительным тонкостенным, в том числе пространственным, конструкциям с высокой огнестойкостью и можно применять в зданиях первой степени огнестойкости.

Изобретение относится к гипсовой плите со значительно улучшенной огнестойкостью. .

Изобретение относится к плиточному противопожарному элементу (5) для покрытия стен или перекрытий (3) из армированного бетона

Изобретение относится к конструкциям панелей, используемых в промышленном и гражданском строительстве, а именно для изготовления наружных ограждающих конструкций, противопожарных перегородок, теплоизоляционных конструкций зданий и сооружений (стены, панели, внутренние и внешние перегородки), кровельных покрытий

Изобретение относится к конструкциям многослойных панелей, а именно к металлическим композитным панелям, которые могут применяться в современном промышленном и гражданском строительстве
Изобретение относится к промышленности строительных материалов и может быть использовано при заполнении пустот, а именно кабельных проходок, в строительных конструкциях зданий и сооружений различного назначения для обеспечения ограничения распространения по ним пламени. Подушка противопожарная из стеклоткани выполнена в виде мешочка, заполненного смесью вспученного вермикулита и гранулированного базальтового волокна, полученной путем перемешивания указанных компонентов в смесителе-грануляторе в течение 10-15 минут, при следующем содержании мас.%: вспученный вермикулит 30-35; гранулированное базальтовое волокно 65-70. Технический результат заключается в повышении плотности материала заполнения подушки, что обеспечивает повышение огнестойкости пустот или кабельных проходок за счет повышения эффективности огнезащиты подушек противопожарных путем исключения возможности проникновения через них продуктов горения. 2 пр.

Изобретение относится к области пожарной безопасности зданий, в частности, может быть использовано при изготовлении конструктивной огнезащиты стальной колонны здания. Техническим результатом изобретения является повышение надежности крепления элементов крупноразмерной облицовки, повышение предела огнестойкости стальной колонны, снижение риска обрушения колонны в начальной стадии пожара. Стальной колонный двутавр оборудован крепежными гайками и установочными винтами с потайными головками и ввинчиваемым заостренным концом. Элементы листовой облицовки прикреплены вплотную к полкам колонного двутавра, элементы плитной облицовки - вплотную к стенке двутавра. Толщина элементов огнезащитной облицовки заранее определена с учетом теплофизических свойств ее материалов, условий нагрева колонного двутавра при пожаре и нормативного предела огнестойкости колонны здания. 12 з.п.ф-лы, 2 ил.

Изобретение относится к области пожарной безопасности зданий, в частности может быть использовано при изготовлении конструктивной огнезащиты стальной балки здания. Техническим результатом изобретения является повышение надежности крепления элементов крупноразмерной облицовки, повышение предела огнестойкости стальной балки, снижение риска обрушения балки в начальной стадии пожара. Cтальной балочный двутавр, к которому прикреплены стальные прокатные профили из швеллера и пары уголков, оборудован крепежными гайками и установочными винтами с потайными головками и ввинчиваемым заостренным концом. Элементы листовой облицовки прикреплены вплотную к полкам балочного двутавра, элементы плитной облицовки - вплотную к стенке двутавра. Толщина элементов огнезащитной облицовки заранее определена с учетом теплофизических свойств ее материалов и условий нагрева при пожаре. 7 з.п. ф-лы, 3 ил.

Изобретение относится к области пожарной безопасности зданий и касается способа конструктивной огнезащиты стальной колонны здания. Техническим результатом изобретения является повышение надежности крепления элементов крупноразмерной облицовки, повышение предела огнестойкости стальной колонны, снижение риска обрушения колонны в начальной стадии пожара. Стальной колонный двутавр оборудуют крепежными гайками и установочными винтами с потайными головками и с ввинчиваемым заостренным концом. Элементы листовой облицовки прикрепляют вплотную к полкам колонного двутавра, элементы плитной облицовки - вплотную к стенке двутавра. Толщину элементов огнезащитной облицовки заранее определяют с учетом теплофизических свойств ее материалов и условий нагрева полок и стенки двутавра при пожаре.11 з.п. ф-лы, 2 ил., 1 табл.

Изобретение относится к области пожарной безопасности зданий и касается способа конструктивной огнезащиты стальной балки здания. Техническим результатом изобретения является повышение надежности крепления элементов крупноразмерной облицовки, повышение предела огнестойкости стальной балки, снижение риска обрушения балки в начальной стадии пожара. Стальной балочный двутавр, к которому прикреплены стальные прокатные профили из швеллера и пары уголков, оборудуют крепежными гайками и установочными винтами с потайными головками и ввинчиваемым заостренным концом. Элементы листовой облицовки прикрепляют вплотную к полкам балочного двутавра, элементы плитной облицовки - вплотную к стенке двутавра. Толщину элементов огнезащитной облицовки заранее определяют с учетом теплофизических свойств ее материалов и условий нагрева при пожаре. 10 з.п. ф-лы, 3 ил.

Изобретение относится к области строительства, в частности к способу исключения возможности обрушения стальных ферм покрытия из овальных трубобетонных элементов от пожара. Технический результат изобретения заключается в повышении живучести фермы. Способ заключается в том, что заранее изготавливают стержни сжатого верхнего пояса фермы и стержни ее решетки из овальных труб с отношением большего габарита к меньшему габариту, равным трем. Всесторонне обжимают бетон обоймой снаружи. Превращают овальные сжатые элементы фермы в трубобетонные с центральным продольным каналом. Оснащают сооружение температурными датчиками и системой труб для подачи воды и разбрызгивания ее внутри каналов в овальных трубобетонных профилях фермы. В случае возникновения пожара по сигналу от датчиков автоматически включают подачу и разбрызгивание воды внутри каналов в овальных трубчатых профилях и сток ее под действием сил гравитации вниз по каналам трубчатых профилей. Металлические трубчатые профили фермы охлаждают изнутри испарением воды и исключают этим повышение температуры металла фермы выше 120…130°С. 6 ил.

Изобретение относится к области строительства. Технический результат - исключение газо-/дымопроницаемости стыков, обеспечение теплоизолирующих свойств и контроль достижения необходимой герметичности огнезащиты. Способ огнезащиты стыков строительных конструкций предусматривает закладку в стык терморасширяющегося средства, при этом на упомянутое место закладки подают поток нагретой среды. Заполнение стыков терморасширяющимся средством контролируют с использованием тепловизора, который устанавливают со стороны здания, сооружения или помещения противоположной стороне, на которую воздействуют потоком нагретой среды. 6 з.п. ф-лы, 6 ил.
Наверх