Стабильные препараты инсулинотропных пептидов



Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов
Стабильные препараты инсулинотропных пептидов

 


Владельцы патента RU 2413530:

НОВО НОРДИКС А/С (DK)

Изобретение относится к области фармацевтических препаратов и касается способа получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного пептида, причем температура находится между 50 и 95°С, рН находится между примерно 8,0 и 10,5 и нагревание осуществляют в течение периода времени, составляющего между 3 мин и 180 мин. Изобретение позволяет повысить стабильность препарата. 7 н. и 5 з.п. ф-лы, 3 табл., 20 ил.

 

Область изобретения

Настоящее изобретение относится к области фармацевтических препаратов. А именно данное изобретение относится к фармацевтическим препаратам длительного хранения, включающим инсулинотропный пептид.

Предшествующий уровень техники

Терапевтические пептиды широко используются в медицинской практике. Фармацевтические композиции таких терапевтических пептидов должны иметь срок хранения несколько лет, чтобы быть пригодными для практического применения. Однако пептидные композиции по своей природе не стабильны из-за чувствительности к химической и физической деградации. Химическая деградация включает изменение ковалентных связей, такое как окисление, гидролиз, рацемизация или сшивание. Физическая деградация включает конформационные изменения относительно нативной структуры пептида, которые могут приводить к агрегации, осаждению или адсорбции на поверхностях.

Глюкагон используют в течение десятилетий в медицинской практике при диабете, и несколько глюкагоноподобных пептидов разрабатывают для разных терапевтических показаний. Ген препроглюкагона кодирует как глюкагон, так и глюкагоноподобный пептид 1 (GLP-1) и глюкагоноподобный пептид 2 (GLP-2) (GLP от glucagon-like peptide). Аналоги и производные GLP-1, а также гомологичный пептид ящерицы, экзендин-4, разрабатывают для лечения гипергликемии при диабете 2 типа. GLP-2 является потенциально полезным при лечении желудочно-кишечных болезней. Однако все эти пептиды, включающие 29-39 аминокислот, обладают высокой степенью гомологии и имеют ряд общих свойств, а именно их склонность к агрегации и образованию нерастворимых волокон. Считается, что это свойство включает переход из преобладающей конформации альфа-спирали в конформацию бета-листа (Blundell T.L. (1983) The conformation of glucagon. In: Lefébvre P.J. (Ed) Glucagon I. Springer Verlag, pp 37-55, Senderoff R.I. et al., J. Pharm. Sci. 87 (1998) 183-189, WO 01/55213). Агрегация глюкагоноподобных пептидов главным образом наблюдается, когда растворы пептидов перемешивают или встряхивают, на границе раздела жидкой и газообразной фаз (воздух) и при контакте с гидрофобными поверхностями, такими как Тефлон®.

WO 01/77141 раскрывает термическую обработку Arg34-GLP-1(7-37) при повышенных температурах в течение менее 30 секунд. WO 04/55213 раскрывает микрофильтрацию Arg34-GLP-1(7-37) при рН 9,5. WO 01/55213 раскрывает обработку Val8-GLP-1(7-37) при рН 12,3 в течение 10 минут при комнатной температуре. WO 03/35099 раскрывает получение цинковых кристаллов GLP-1 при щелочном рН.

Таким образом, к фармацевтическим композициям глюкагоноподобных пептидов часто следует применять разные обработки и добавление эксципиентов для того, чтобы улучшить их стабильность. Срок хранения жидких парентеральных препаратов этих пептидов должен составлять по меньшей мере год, предпочтительно дольше. Период использования, когда продукт можно транспортировать и ежедневно встряхивать при температуре окружающей среды, предпочтительно должен составлять несколько недель. Таким образом, существует потребность в фармацевтических композициях глюкагоноподобных пептидов, обладающих улучшенной стабильностью.

Краткое описание графических материалов

Фиг.1. Оба образца содержат препарат 1,2 мМ Лираглутида, 14 мг/мл пропиленгликоля, 40 мМ фенола, 10 мМ NaCl, рН 7,7. Полоксамер 188 добавляют до конечной концентрации 200 млн-1 в одном образце.

Фиг.2. Все образцы содержат 1,67 мМ Лираглутида, 58 мМ фенола, 14 мг/мл пропиленгликоля, 8 мМ фосфата натрия, рН 7,7. Полоксамер 188 добавляют к двум образцам.

Фиг.3. Оба образца содержат 1,2 мМ Лираглутида, 40 мМ фенола, 14 мг/мл пропиленгликоля, 10 мМ NaCl, рН 7,7. Полисорбат 20 добавляют к одному образцу.

Фиг.4. Измерение зависимости NTU (нефелометрической единицы мутности) от времени в ходе теста на вращение композиций лираглутида без поверхностно-активного вещества (F1) и с поверхностно-активным веществом (F2 и F3).

Фиг.5. Измерение зависимости флуоресценции ТПТ (тиофлавина Т) от времени в ходе теста на вращение композиций лираглутида без поверхностно-активного вещества (F1) и с поверхностно-активным веществом (F2). Нижняя кривая соответствует следу F2.

Фиг.6. Период времени для образования волокон.

Фиг.7. Физическая стабильность лираглутида, полученного термической обработкой при 60°С.

Фиг.8. Чистота лираглутида после термической обработки при 60°С.

Фиг.9. Физическая стабильность лираглутида, полученного термической обработкой при 80°С.

Фиг.10. Чистота лираглутида после термической обработки при 80°С.

Фиг.11. Физическая стабильность лираглутида, полученного при термической обработки в течение 15 минут при 22, 40, 60 и 80°С.

Фиг.12. Физическая стабильность лираглутида, полученного термической обработкой при 50 и 80°С при рН 10.

Фиг.13. Чистота лираглутида после термической обработки при 50 и 80°С при рН 10.

Фиг.14. Физическая стабильность лираглутида, полученного термической обработкой при 60 и 80°С при рН 9 и 10.

Фиг.15. Данный чертеж показывает 5 разных препаратов. 4 разных препарата, содержащих разные количества Solutol HS-15 либо в фосфатном буфере, либо в трицин буфере. Один препарат (Станд. препарат) представляет собой лираглутид в фосфатном буфере без поверхностно-активного вещества.

Фиг.16. Данный чертеж показывает 5 разных препаратов. 4 разных препарата, содержащих разные количества Pluronic F-127 либо в фосфатном буфере, либо в трицин буфере. Один препарат (Станд. препарат) представляет собой лираглутид в фосфатном буфере без поверхностно-активного вещества.

Фиг.17. Физическая стабильность лираглутида после термической обработки при 50-70°С в течение 60-120 минут.

Фиг.18. Пенфилл®, термически обработанный при разных температурах и времени, который затем подвергали вращению.

Фиг.19. Стабильность препаратов, содержащих разные эксципиенты.

Фиг.20. Тест на вращение Пенфилла® препаратов, содержащих разные эксципиенты.

Далее следует подробное определение терминов, используемых в описании.

Используемый здесь термин «эффективное количество» означает дозировку, которой достаточно для того, чтобы лечение пациента было эффективным в сравнении с отсутствием лечения.

Используемый здесь термин «лекарство» означает фармацевтическую композицию, подходящую для введения пациенту фармацевтически активных соединений.

Используемый здесь термин «фармацевтическая композиция» означает продукт, включающий активное соединение или его соль вместе с фармацевтическими эксципиентами, такими как буфер, консервант и модификатор тоничности, указанная фармацевтическая композиция, являющаяся пригодной для лечения, предотвращения или уменьшения тяжести заболевания или расстройства при введении человеку указанной фармацевтической композиции. Таким образом, фармацевтическая композиция также известна из предшествующего уровня техники как фармацевтический препарат. Следует понимать, что рН фармацевтической композиции, которая должна быть восстановлена, представляет собой значение рН, которое измерено в восстановленной композиции, полученной восстановлением в предусмотренной жидкости для восстановления при комнатной температуре.

Используемый здесь термин «фармацевтическая композиция длительного хранения» означает фармацевтическую композицию, которая стабильна по меньшей мере в течение периода, требуемого контрольными органами применительно к терапевтическим белкам. Предпочтительно, чтобы фармацевтическая композиция длительного хранения была стабильна в течение по меньшей мере одного года при 5°С. Стабильность включает как химическую, так и физическую стабильность.

Используемый здесь термин «стабильный раствор» означает препарат соединения, который используется в качестве промежуточного при получении фармацевтических композиций длительного хранения, как описано выше.

Используемый здесь термин «фармацевтически приемлемый» означает подходящий для обычных фармацевтических применений, т.е. не вызывающий нежелательных явлений у пациентов и т.д.

Используемый здесь термин «буфер» относится к химическому соединению в фармацевтической композиции, которое уменьшает тенденцию рН композиции изменяться со временем, что иначе произошло бы вследствие химических реакций. Буферы включают химические реактивы, такие как фосфат натрия, TRIS, глицин и цитрат натрия.

Используемый здесь термин «консервант» относится к химическому соединению, которое добавляют к фармацевтической композиции, чтобы предотвратить или замедлить действие микробов (развитие и метаболизм). Примерами фармацевтически приемлемых консервантов являются фенол, м-крезол, и смесь фенола и м-крезола.

Используемый здесь термин «агент изотоничности» относится к химическому соединению в фармацевтической композиции, которое служит для изменения осмотического давления фармацевтической композиции так, чтобы осмотическое давление стало ближе к осмотическому давлению человеческой плазмы. Агенты изотоничности включают NaCl, глицерин, маннит и т.п.

Используемый здесь термин «стабилизатор» относится к химическим реактивам, добавляемым к содержащим пептид фармацевтическим композициям с тем, чтобы стабилизировать пептид, т.е. увеличить срок хранения и/или период использования таких композиций. Примерами стабилизаторов, применяемых в фармацевтических препаратах, являются L-глицин, L-гистидин, аргинин, полиэтиленгликоль и карбоксиметилцеллюлоза.

Используемый здесь термин «поверхностно-активное вещество» относится к любым молекулам или ионам, которые включают водорастворимую (гидрофильную) часть, голову, и жирорастворимую (липофильную) часть. Поверхностно-активные вещества предпочтительно накапливаются на границах раздела, при этом гидрофильная часть ориентирована по направлению к воде (гидрофильная фаза), а липофильная часть - по направлению к маслу или гидрофобной фазе (т.е. стекло, воздух, масло и т.п.). Концентрация, при которой поверхностно-активные вещества начинают образовывать мицеллы, известна как критическая концентрация мицеллообразования или ККМ. Кроме того, поверхностно-активные вещества уменьшают поверхностное натяжение жидкости. Поверхностно-активные вещества также известны как амфифильные соединения. Термин «детергент» является синонимом, обычно используемым для поверхностно-активных веществ.

Анионные поверхностно-активные вещества можно выбрать из группы: хенодезоксихолевая кислота, натриевая соль хенодезоксихолевой кислоты, холевая кислота, дегидрохолевая кислота, дезоксихолевая кислота, метиловый эфир дезоксихолевой кислоты, дигитонин, дигитоксигенин, N,N-диметилдодециламина N-оксид, докузат натрия, натриевая соль гликохенодезоксихолевой кислоты, гидрат гликохолевой кислоты, моногидрат гликодезоксихолевой кислоты, натриевая соль гликодезоксихолевой кислоты, динатриевая соль 3-сульфат гликолитохолевой кислоты, этиловый эфир гликолитохолевой кислоты, натриевая соль N-лауроилсаркозина, N-лауроилсаркозин, додецилсульфат лития, люголь, натриевая соль 1-октансульфоной кислоты, 1-бутансульфонат натрия, 1-декансульфонат натрия, 1-додекансульфонат натрия, 1-гептансульфонат натрия, 1-нонансульфонат натрия, моногидрат 1-пропансульфоната натрия, 2-бромэтансульфонат натрия, гидрат холата натрия, воловья или овечья желчь, гидрат холата натрия, холеат натрия, дезоксихолат натрия, додецилсульфат натрия, гексансульфонат натрия, октилсульфат натрия, пентансульфонат натрия, таурохолат натрия, натриевая соль таурохенодезоксихолевой кислоты, моногидрат натриевой соли тауродезоксихолевой кислоты, динатриевая соль 3-сульфат тауролитохолевой кислоты, натриевая соль тауроурсодезоксихолевой кислоты, Trizma® додецилсульфат, DSS (докузат натрия, регистрационный номер CAS [577-11-7], докузат кальция, регистрационный номер CAS [128-49-4], докузат калия, регистрационный номер CAS [7491-09-0]), SDS (додецилсульфат натрия или лаурилсульфат натрия), додецилфосфохолин (FOS-Choline-12), децилфосфохолин (FOS-Choline-10), нонилфосфохолин (FOS-Choline-9), дипальмитоилфосфатидная кислота, каприлат натрия и/или урсодезоксихолевая кислота.

Катионные поверхностно-активные вещества можно выбрать из группы: алкилтриметиламмоний бромид, бензалконий хлорид, бензилдиметилгексадециламмоний хлорид, бензилдиметилтетрадециламмоний хлорид, бензилтриметиламмоний тетрахлороиодат, диметилдиоктадециламмоний бромид, додецилэтилдиметиламмоний бромид, додецилтриметиламмоний бромид, этилгексадецилдиметиламмоний бромид, гексадецилтриметиламмоний бромид, полиоксиэтилен(10)-N-алкил-1,3-диаминопропан, тонзония бромид и/или триметил(тетрадецил)аммоний бромид.

Неионные поверхностно-активные вещества можно выбрать из группы: BigCHAP, бис(полиэтиленгликоль бис[имидазолил карбонил]), блоксополимеры как полиэтиленоксид/полипропиленоксид блоксополимеры, такие как полоксамеры, полоксамер 188, полоксамер 407, Brij® 35, Brij® 56, Brij® 72, Brij® 76, Brij® 92V, Brij® 97, Brij® 58P, Кремофор® EL, монододециловый эфир декаэтиленгликоля, N-деканоил-N-метилглюкамин, н-додеканоил-N-метилглюкамид, алкилполиглюкозиды, этоксилированное касторовое масло, монодециловый эфир гептаэтиленгликоля, монододециловый эфир гептаэтиленгликоля, монотетрадециловый эфир гептаэтиленгликоля, монододециловый эфир гексаэтиленгликоля, моногексадециловый эфир гексаэтиленгликоля, монооктадециловый эфир гексаэтиленгликоля, монотетрадециловый эфир гексаэтиленгликоля, Igepal CA-630, метил-6-O-(N-гептилкарбамоил)-бета-O-глюкопиранозид, монододециловый эфир нонаэтиленгликоля, N-нонаноил-N-метилглюкамин, монодециловый эфир октаэтиленгликоля, монододециловый эфир октаэтиленгликоля, моногексадециловый эфир октаэтиленгликоля, монооктадециловый эфир октаэтиленгликоля, монотетрадециловый эфир октаэтиленгликоля, октил-β-D-глюкопиранозид, монодециловый эфир пентаэтиленгликоля, монододециловый эфир пентаэтиленгликоля, моногексадециловый эфир пентаэтиленгликоля, моногексиловый эфир пентаэтиленгликоля, монооктадециловый эфир пентаэтиленгликоля, монооктиловый эфир пентаэтиленгликоля, диглицидиловый эфир полиэтиленгликоля, эфир W-1 полиэтиленгликоля, тридециловый эфир полиоксиэтилена 10, полиоксиэтилен 100 стеарат, изогексадециловый эфир полиоксиэтилена 20, олеиловый эфир полиоксиэтилена 20, полиоксиэтилен 40 стеарат, полиоксиэтилен 50 стеарат, полиоксиэтилен 8 стеарат, полиоксиэтилен бис(имидазолил карбонил), полиоксиэтилен 25 пропиленгликоль стеарат, сапонин из коры килайи, Спан® 20, Спан® 40, Спан® 60, Спан® 65, Спан® 80, Спан® 85, Тергитол 15-S-12, Тергитол 15-S-30, Тергитол 15-S-5, Тергитол 15-S-7, Тергитол 15-S-9, Тергитол NP-10, Тергитол NP-4, Тергитол NP-40, Тергитол NP-7, Тергитол NP-9, тетрадецил-β-D-мальтозид, монодециловый эфир тетраэтиленгликоля, монододециловый эфир тетраэтиленгликоля, монотетрадециловый эфир тетраэтиленгликоля, монодециловый эфир триэтиленгликоля, монододециловый эфир триэтиленгликоля, моногексадециловый эфир триэтиленгликоля, монооктиловый эфир триэтиленгликоля, монотетрадециловый эфир триэтиленгликоля, Тритон CF-21, Тритон CF-32, Тритон DF-12, Тритон DF-16, Тритон GR-5M, Тритон QS-15, Тритон QS-44, Тритон Х-100, Тритон Х-102, Тритон Х-15, Тритон Х-151, Тритон Х-200, Тритон Х-207, Тритон® Х-100, Тритон® Х-114, раствор Тритона® Х-165, раствор Тритона® Х-305, Тритон® Х-405, Тритон® Х-45, Тритон® Х-705-70, Твин® 20, Твин® 40, Твин® 60, Твин® 6, Твин® 65, Твин® 80, Твин® 81, Твин® 85, тилоксапол, сфингофосфолипиды (сфингомиелин) и сфингогликолипиды (церамиды, ганглиозиды), фосфолипиды и/или н-ундецил-β-D-глюкопиранозид.

Цвиттер-ионные поверхностно-активные вещества можно выбрать из группы: CHAPS, CHAPSO, внутренняя соль 3-(децилдиметиламмонио)-пропансульфоната, внутренняя соль 3-(додецилдиметиламмонио)-пропансульфоната, 3-(N,N-диметилмиристиламмонио)-пропансульфонат, 3-(N,N-диметилоктадециламмонио)-пропансульфонат, внутренняя соль 3-(N,N-диметилоктиламмонио)-пропансульфоната, 3-(N,N-диметилпальмитиламмонио)-пропансульфонат, N-алкил-N,N-диметиламмонио-1-пропансульфонаты, 3-холамидо-1-пропилдиметиламмонио-1-пропансульфонат, додецилфосфохолин, миристоил лизофосфатидилхолин, цвиттергент 3-12 (N-додецил-N,N-диметил-3-аммонио-1-пропансульфонат), цвиттергент 3-10 (внутренняя соль 3-(децилдиметиламмонио)-пропансульфоната), цвиттергент 3-08 (3-(октилдиметиламмонио)-пропансульфонат), глицерофосфолипиды (лецитины, кефалины, фосфатидилсерин), глицерогликолипиды (галактопиранозид), алкил, алкоксил (алкиловый эфир), алкокси (алкиловый эфир) - производные лизофосфатидил- и фосфатидилхолинов, например лауроил и миристоил производные лизофосфатидилхолина, дипальмитоилфосфатидилхолин, и модификации полярной головной группы, то есть холины, этаноламины, фосфатидная кислота, серины, треонины, глицерин, инозитол, лизофосфатидилсерин и лизофосфатидилтреонин, ацилкарнитины и производные, Nбета-ацилированные производные лизина, аргинина или гистидина, или производные лизина или аргинина, ацилированные в боковой цепи, Nбета-ацилированные производные дипептидов, включающие любую комбинацию лизина, аргинина или гистидина и нейтральной или кислой аминокислоты, Nбета-ацилированные производные трипептида, включающие любую комбинацию нейтральной аминокислоты и двух заряженных аминокислот, или поверхностно-активное вещество можно выбрать из группы имидазолиновых производных, длинноцепочечных жирных кислот и их солей C6-C12 (например, олеиновая кислота и каприловая кислота), N-гексадецил-N,N-диметил-3-аммонио-1-пропансульфонат, анионные (алкил-арил-сульфонаты) одновалентные поверхностно-активные вещества, пальмитоил лизофосфатидил-1-серин, лизофосфолипиды (например, 1-ацил-sn-глицеро-3-фосфатные эфиры этаноламина, холина, серина или треонина) или их смеси.

Используемый здесь термин «алкилполиглюкозиды» относится к неразветвленной или разветвленной С5-20-алкильной, -алкенильной или -алкинильной цепи, которая замещена одним или более глюкозидными остатками, такими как мальтозид, сахарид и т.п. Воплощения этих алкилполиглюкозидов включают С6-18-алкилполиглюкозиды. Конкретные воплощения этих алкилполиглюкозидов включают цепи с четным числом углеродных атомов, такие как С6, С8, С10, C12, C14, C16, C18 и C20 алкильные цепи. Конкретные воплощения глюкозидных остатков включают пиранозид, глюкопиранозид, мальтозид, мальтотриозид и сахарозу. В воплощениях изобретения менее 6 глюкозидных остатков присоединены к алкильной группе. В воплощениях изобретения менее 5 глюкозидных остатков присоединены к алкильной группе. В воплощениях изобретения менее 4 глюкозидных остатков присоединены к алкильной группе. В воплощениях изобретения менее 3 глюкозидных остатков присоединены к алкильной группе. В воплощениях изобретения менее 2 глюкозидных остатков присоединены к алкильной группе. Конкретные воплощения алкилполиглюкозидов представляют собой алкилглюкозиды, такие как н-децил-β-D-глюкопиранозид, децил-β-D-мальтопиранозид, додецил-β-D-глюкопиранозид, н-додецил-β-D-мальтозид, тетрадецил-β-D-глюкопиранозид, децил-β-D-мальтозид, гексадецил-β-D-мальтозид, децил-β-D-мальтотриозид, додецил-β-D-мальтотриозид, тетрадецил-β-D-мальтотриозид, гексадецил-β-D-мальтотриозид, н-додецил-сахароза, н-децил-сахароза, монокапрат сахарозы, монолаурат сахарозы, мономиристат сахарозы и монопальмитат сахарозы.

Используемый здесь термин «лечение болезни» означает ведение и заботу о пациенте с развитым заболеванием, состоянием или расстройством. Цель лечения заключается в противодействии заболеванию, состоянию или расстройству. Лечение включает введение активных соединений, чтобы устранить или контролировать заболевание, состояние или расстройство, а также облегчить симптомы или осложнения, связанные с заболеванием, состоянием или расстройством, и предотвращение заболевания, состояния или расстройства.

Используемый здесь термин «предотвращение болезни» определен как ведение и забота о человеке с риском развития болезни до клинического проявления болезни. Цель предотвращения заключается в противодействии развитию заболевания, состояния или расстройства, и включает введение активных соединений, чтобы предотвратить или замедлить проявление симптомов или осложнений и предотвратить или замедлить развитие связанных заболеваний, состояний или расстройств.

Используемый здесь термин «аналог», относящийся к пептидам, означает модифицированный пептид, в котором один или более аминокислотных остатков пептида замещены другими аминокислотными остатками, и/или в котором один или более аминокислотных остатков удалены из пептида, и/или в котором один или более аминокислотных остатков добавлены в пептид. Подобное добавление или удаление аминокислотных остатков могут иметь место на N-конце пептида и/или на С-конце пептида. В одном воплощении аналог включает менее 6 модификаций (замещения, удаления, добавления) относительно нативного пептида. В другом воплощении аналог включает менее 5 модификаций (замещения, удаления, добавления) относительно нативного пептида. В другом воплощении аналог включает менее 4 модификаций (замещения, удаления, добавления) относительно нативного пептида. В другом воплощении аналог включает менее 3 модификаций (замещения, удаления, добавления) относительно нативного пептида. В другом воплощении аналог включает менее 2 модификаций (замещения, удаления, добавления) относительно нативного пептида. В другом воплощении аналог включает только одну модификацию (замещение, удаление, добавление) относительно нативного пептида.

Используемый здесь термин «производное» в отношении исходного пептида означает химически модифицированный исходный белок или его аналог, где в исходном белке или его аналоге отсутствует по меньшей мере один заместитель, т.е. исходный белок, который был ковалентно модифицирован. Характерные модификации представляют собой амиды, углеводы, алкильные группы, ацильные группы, эфиры, модификации молекулами ПЭГ и т.п.

Используемый здесь термин «соединение GLP-1» означает GLP-1(7-37) (SEQ ID NO. 1), его инсулинотропный аналог и его инсулинотропные производные. Неограничивающие примеры аналогов GLP-1 представляют собой GLP-1(7-36)-амид, Arg34-GLP-1(7-37), Gly8-GLP-1(7-37), Val8-GLP-1(7-36)-амид и Val8Asp22-GLP-1(7-37). Неограничивающие примеры производных GLP-1 представляют собой дeзaминo-His7,Arg26,Lys34(Nε-(γ-Glu(Nα-гeкcaдeкaнoил)))-GLP-1(7-37), дезамино-His7,Arg26,Lys34(Nε-октаноил)-GLP-1(7-37), Arg26,34,Lys38(Nε-(ω-карбоксипентадеканоил))-GLР-1(7-38), Arg26,34,Lys36(Nε-(γ-Glu(Nα-гексадеканоил)))-GLP-1(7-36) и Arg34,Lys26(Nε(γ-Glu(Nα-гексадеканоил)))-GLP-1(7-37).

Используемый здесь термин «дипептидиламинопептидаза IV защищенный» означает соединение, например аналог GLP-1, которое более устойчиво к дипептидиламинопептидазе IV (DPP-IV), чем нативное соединение, например GLP-1(7-37). Устойчивость соединения GLP-1 к расщеплению под действием дипептидиламинопептидазы IV определяют в ходе следующего анализа расщепления.

Аликвоты соединения GLP-1 (5 нмоль) инкубируют при 37°C с 1 мкл очищенной дипептидиламинопептидазы IV, соответствующей ферментативной активности 5 мЕд, в течение 10-180 минут в 100 мкл 0,1 М триэтиламин - HCl буфера, рН 7,4. Ферментативные реакции завершают добавлением 5 мкл 10% трифторуксусной кислоты, и продукты расщепления пептида разделяют и определяют количественно, используя ВЭЖХ анализ. Один метод проведения этого анализа: смеси вносят в 250×4,6 мм колонку Vydac C18 widepore (поры 30 нм, частицы 5 мкм) и элюируют при скорости потока 1 мл/мин с линейными и ступенчатыми градиентами ацетонитрила в 0,1% трифторуксусной кислоте (0% ацетонитрила в течение 3 минут, 0-24% ацетонитрила в течение 17 минут, 24-48% ацетонитрила в течение 1 минуты) согласно Siegel et al., Regul. Pept. 1999; 79: 93-102 и Mentlein et al. Eur. J. Biochem. 1993; 214: 829-35. Пептиды и продукты их расщепления можно контролировать по их поглощению при 220 нм (пептидные связи) или при 280 нм (ароматические аминокислоты) и определяют количество путем интегрирования площадей их пиков относительно стандартов. Скорость гидролиза соединения GLP-1 под действием дипептидиламинопептидазы IV оценивают в периоды инкубации, которые приводят к менее 10% гидролизованного соединения GLP-1.

Используемый здесь термин «инсулинотропный», относящийся к пептиду или соединению, означает способность стимулировать секрецию инсулина в ответ на повышенный уровень глюкозы в плазме. Инсулинотропные пептиды и соединения являются агонистами рецептора GLP-1. Инсулинотропное свойство соединения можно определить анализами in vitro или in vivo, известными из предшествующего уровня техники. Следующий анализ in vitro можно использовать, чтобы определить инсулинотропную природу соединения, такого как пептид. Предпочтительно инсулинотропные соединения показывают значение ЭК50 в нижеприведенном анализе менее 5 нМ, даже более предпочтительно значение ЭК50 менее 500 пМ.

Клетки почек детеныша хомяка (ВНК), экспрессирующие клонированный рецептор GLP-1 человека (ВНК 467-12А), выращивают в среде DMEM (модифицированная по способу Дульбекко среда Игла) с добавлением 100 МЕ/мл пенициллина, 100 мкл/мл стрептомицина, 10% эмбриональной телячьей сыворотки и 1 мг/мл генетецина G-418 (Life Technologies). Цитоплазматические мембраны получают гомогенизацией в буфере (10 мМ Tris-HCl, 30 мМ NaCl и 1 мМ дитиотреитол, рН 7,4, содержащий дополнительно 5 мг/мл лейпептина (Sigma), 5 мг/л пепстатина (Sigma), 100 мг/л бацитрацина (Sigma) и 16 мг/л апротинина (Calbiochem-Novabiochem, La Jolla, CA)). Гомогенат центрифугировали поверх слоя 41% масс./об. сахарозы. Белый слой между двумя слоями растворяли в буфере и центрифугировали. Цитоплазматические мембраны хранили при -80°С до использования.

Функциональный анализ рецептора проводят, измеряя цАМФ как отклик на раздражение под действием инсулинотропного пептида или инсулинотропного соединения. Инкубации проводят на 96-луночном планшете микротитратора в общем объеме 140 мл и с последующими конечными концентрациями: 50 мМ Tris-HCl, 1 мМ EGTA, 1,5 мМ MgSO4, 1,7 мМ АТФ, 20 мМ ГТФ, 2 мМ 3-изобутил-1-метилксантин (IBMX), 0,01% масс/об Твин-20, рН 7,4. Соединения растворяют и разбавляют в буфере. ГТФ готовят заново для каждого эксперимента: 2,5 мкг мембраны добавляют в каждую лунку и смесь инкубируют в течение 90 минут при комнатной температуре в темноте, встряхивая. Реакцию останавливают, добавляя 25 мл 0,5 М HCl. Образованную цАМФ измеряют с помощью сцинтилляционного проксимального анализа (RPA 542, Amersham, UK). Строят кривую зависимости доза-эффект для соединения и рассчитывают значение ЭК50, используя программное обеспечение GraphPad Prism.

Используемый здесь термин «пролекарство инсулинотропного соединения» означает химически модифицированное соединение, которое после введения пациенту превращается в инсулинотропное соединение. Подобные пролекарства обычно представляют собой варианты с добавлением аминокислот или эфиры инсулинотропного соединения.

Используемый здесь термин «соединение экзендина-4» определен как экзендин-4(1-39) (SEQ ID NO.2), его инсулинотропные фрагменты, его инсулинотропные аналоги и его инсулинотропные производные. Инсулинотропные фрагменты экзендина-4 представляют собой инсулинотропные пептиды, для которых может быть найдена полная последовательность в последовательности экзендина-4 (SEQ ID NO. 2) и где по меньшей мере одна концевая аминокислота удалена. Примерами инсулинотропных фрагментов экзендина-4(1-39) являются экзендин-4(1-38) и экзендин-4(1-31). Инсулинотропное свойство соединения можно определить анализами in vivo или in vitro, хорошо известными из предшествующего уровня техники. Например, соединение можно вводить животному и контролировать концентрацию инсулина в течение времени. Инсулинотропные аналоги экзендина-4(1-39) - это соответствующие молекулы, в которых один или более аминокислотных остатков заменены другими аминокислотными остатками, и/или из которых один или более аминокислотных остатков удалены, и/или в которые один или более аминокислотных остатков добавлены при условии, что указанный аналог либо является инсулинотропным соединением, либо пролекарством инсулинотропного соединения. Примером инсулинотропного аналога экзендина-4(1-39) является Ser2Аsр3-экзендин-4(1-39), в котором аминокислотные остатки в позиции 2 и 3 заменены на серин и аспарагиновую кислоту соответственно (этот конкретный аналог также известен из предшествующего уровня техники как экзендин-3). Инсулинотропными производными экзендина-4(1-39) и его аналогами являются те соединения, которые квалифицированный специалист в данной области считает производными этих пептидов, т.е. имеющими по меньшей мере один заместитель, которого нет в молекуле исходного пептида при условии, что указанное производное либо является инсулинотропным соединением, либо пролекарством инсулинотропного соединения. Примерами заместителей являются амиды, углеводы, алкильные группы, эфиры и липофильные заместители. Примером инсулинотропных производных экзендина-4(1-39) и его аналогов является Tyr31-экзендин-4(1-31)-амид.

Используемый здесь термин «стабильное соединение экзендина-4» означает химически модифицированный экзендин-4(1-39), т.е. аналог или производное, которое показывает период полужизни в плазме in vivo в человеке по меньшей мере 10 часов, как определено способом, описанным при определении «стабильного соединения GLP-1».

Используемый здесь термин «дипептидиламинопептидаза IV защищенное соединение экзендина-4» означает соединение экзендина-4, которое является более устойчивым к дипептидиламинопептидазе IV (DPP-IV) в плазме, чем экзендин-4 (SEQ ID NO.2), как определено в ходе анализа, описанного при определении дипептидиламинопептидаза IV защищенного соединения GLP-1.

Используемый здесь термин «изоэлектрическая точка» означает значение рН, при котором полный суммарный заряд макромолекулы, такой как пептид, равен нулю. В пептидах может быть несколько заряженных групп, и в изоэлектрической точке сумма всех этих зарядов равна нулю. При рН выше изоэлектрической точки полный суммарный заряд пептида будет отрицательным, тогда как при рН ниже изоэлектрической точки полный суммарный заряд пептида будет положительным.

Используемый здесь термин «восстановленная», относящийся к фармацевтической композиции, означает водную композицию, которую получали при добавлении воды к твердому материалу, включающему активный фармацевтический компонент. Фармацевтические композиции для восстановления применяют, когда жидкая композиция с приемлемым сроком хранения не может быть изготовлена. Пример восстановленной фармацевтической композиции представляет собой раствор, который получают, добавляя воду к лиофилизированной композиции. Этот раствор часто используют для парентерального введения, и, таким образом, для восстановления твердого материала обычно используют воду для инъекций.

Используемый здесь термин «приблизительно» означает в разумной близости от установленного численного значения, такой как плюс или минус 10%.

В первом аспекте настоящее изобретение относится к фармацевтической композиции длительного хранения, включающей инсулинотропный пептид, фармацевтически приемлемый консервант, поверхностно-активное вещество полоксамер или полисорбат 20 в концентрации от приблизительно 10 мг/л до приблизительно 400 мг/л, и возможно фармацевтически приемлемый модификатор тоничности, где рН указанной композиции находится в интервале от приблизительно 7,0 до приблизительно 8,5.

В одном воплощении концентрация поверхностно-активного вещества составляет от приблизительно 20 мг/л до приблизительно 300 мг/л.

В другом воплощении концентрация поверхностно-активного вещества составляет от приблизительно 50 мг/л до приблизительно 200 мг/л.

В другом воплощении концентрация поверхностно-активного вещества составляет от приблизительно 10 мг/л до приблизительно 200 мг/л.

В другом воплощении концентрация поверхностно-активного вещества составляет от приблизительно 50 мг/л до приблизительно 400 мг/л.

В другом воплощении концентрация поверхностно-активного вещества составляет от приблизительно 50 мг/л до приблизительно 300 мг/л.

В другом воплощении поверхностно-активное вещество представляет собой полоксамер 188.

В другом воплощении поверхностно-активное вещество выбрано из группы, состоящей из полоксамера 407, полоксамера 124, полоксамера 181, полоксамера 182, полоксамера 237, полоксамера 331 и полоксамера 338.

В другом воплощении поверхностно-активное вещество представляет собой полисорбат 20.

Одно воплощение изобретения представляет собой композицию, включающую инсулинотропный пептид и алкилполиглюкозид, и возможно фармацевтически приемлемый модификатор тоничности.

Одно воплощение изобретения представляет собой композицию согласно воплощению выше, где рН указанной композиции находится в интервале от приблизительно 7,0 до приблизительно 8,5.

Одно воплощение изобретения представляет собой композицию согласно любому из воплощений выше, где алкилполиглюкозид присутствует в концентрации от приблизительно 10 мг/л.

Одно воплощение изобретения представляет собой композицию согласно любому из воплощений выше, где алкилполиглюкозид присутствует в концентрации от приблизительно 1000 мг/л.

Одно воплощение изобретения представляет собой композицию согласно любому из воплощений выше, где алкилполиглюкозид присутствует в концентрации от приблизительно 10 мг/л до приблизительно 15000 мг/л.

Одно воплощение изобретения представляет собой композицию согласно любому из воплощений выше, где алкилполиглюкозид присутствует в концентрации от приблизительно 1000 мг/л до приблизительно 10000 мг/л.

Одно воплощение изобретения представляет собой композицию согласно любому из воплощений выше, где алкилполиглюкозид присутствует в концентрации от приблизительно 2000 мг/л до приблизительно 5000 мг/л.

Одно воплощение изобретения представляет собой композицию согласно любому из воплощений выше, где алкилполиглюкозид представляет собой С10-20-алкилполиглюкозид.

Одно воплощение изобретения представляет собой композицию согласно любому из воплощений выше, где алкилполиглюкозид выбран из додецил-β-D-глюкопиранозида, додецил-β-D-мальтозида, тетрадецил-β-D-глюкопиранозида, децил-β-D-мальтозида, додецил-β-D-мальтозида, тетрадецил-β-D-мальтозида, гексадецил-β-D-мальтозида, децил-β-D-мальтотриозида, додецил-β-D-мальтотриозида, тетрадецил-β-D-мальтотриозида, гексадецил-β-D-мальтотриозида, н-додецил-сахарозы, н-децил-сахарозы.

В другом воплощении изобретения фармацевтическая композиция включает два разных поверхностно-активных вещества.

В другом воплощении изобретения фармацевтическая композиция включает два разных поверхностно-активных вещества, где по меньшей мере одно поверхностно-активное вещество является неионным поверхностно-активным веществом.

В другом воплощении изобретения фармацевтическая композиция включает два разных поверхностно-активных вещества, где оба разных поверхностно-активных вещества являются неионными поверхностно-активными веществами.

В другом воплощении изобретения фармацевтическая композиция включает два разных поверхностно-активных вещества, где все поверхностно-активные вещества являются неионными поверхностно-активными веществами.

В другом воплощении изобретения фармацевтическая композиция включает полоксамер 188 и полисорбат 20.

В другом воплощении изобретения рН фармацевтической композиции находится в интервале от приблизительно 7,4 до приблизительно 8,0.

В другом воплощении изобретения рН фармацевтической композиции находится в интервале от приблизительно 7,4 до приблизительно 8,5.

В другом воплощении изобретения рН фармацевтической композиции находится в интервале от приблизительно 7,7 до приблизительно 8,2.

В другом воплощении изобретения фармацевтическая композиция включает буфер, который является фосфатным буфером.

В другом воплощении изобретения фармацевтическая композиция включает буфер, который является цвиттер-ионным буфером.

В другом воплощении изобретения фармацевтическая композиция включает буфер, который выбран из группы, состоящей из глицил-глицина, TRIS, бицина, HEPES, MOBS, MOPS, TES и их смесей.

В другом воплощении изобретения фармацевтическая композиция включает модификатор тоничности, выбранный из группы, состоящей из глицерина, пропиленгликоля и маннита.

В другом воплощении фармацевтической композиции изобретения консервант выбран из группы, состоящей из фенола, м-крезола, метил п-гидроксибензоата, пропил п-гидроксибензоата, 2-феноксиэтанола, бутил п-гидроксибензоата, 2-фенилэтанола, бензилового спирта, хлорбутанола, тиомерсала и их смесей.

В другом воплощении изобретения фармацевтическая композиция включает инсулинотропный пептид, который представляет собой DPP-IV защищенный пептид.

В другом воплощении фармацевтической композиции изобретения инсулинотропный пептид включает липофильный заместитель, выбранный из группы, состоящей из СН3(СН2)nСО-, где n представляет собой от 4 до 38, и НООС(СН2)mСО-, где m представляет собой от 4 до 38.

В другом воплощении фармацевтической композиции изобретения инсулинотропный пептид представляет собой ацилированный GLP-1 или ацилированный аналог GLP-1.

В другом воплощении изобретения фармацевтическая композиция включает инсулинотропный пептид, который представляет собой ацилированный аналог GLP-1, где указанный аналог GLP-1 выбран из группы, состоящей из Arg34-GLP-1(7-37), Gly8-GLP-1(7-36)-aмидa, Сly8-GLP-1(7-37), Val8-GLP-1(7-36)-амида, Val8-GLP-1(7-37), Aib8-GLP-1(7-36)-амида, Aib8-GLP-1(7-37), Val8Asp22-GLP-1(7-36)-амида, Val8Asp22-GLP-1(7-37), Val8Glu22-GLP-1(7-36)-амида, Val8Glu22-GLP-1(7-37), Val8Lys22-GLP-1(7-36)-амида, Val8Lys22-GLP-1(7-37), Val8Arg22-GLP-1(7-36)-амида, Val8Arg22-GLP-1(7-37), Val8His22-GLP-1(7-36)-амида, Val8His22-GLP-1(7-37), Val8Trp19Glu22-GLP-1(7-37), Val8Glu22Val25-GLP-1(7-37), Val8Tyr16Glu22-GLP-1(7-37), Val8Trp16Glu22-GLP-1(7-37), Val8Leu16Glu22-GLP-1(7-37), Val8Tyr18Glu22-GLP-1(7-37), Val8Glu22His37-GLP-1(7-37), Val8Glu22Ile33-GLP-1(7-37), Val8Trp16Glu22Val25Ile33-GLP-1(7-37), Val8Trp16Glu22Ile33-GLP-1(7-37), Val8Glu22Val25Ile33-GLP-1(7-37), Val8Trp16Glu22Val25-GLP-1(7-37) и их аналогов.

В другом воплощении фармацевтической композиции изобретения инсулинотропный пептид представляет собой Arg34,Lys26(Nε-(γ-Glu(Nα-гексадеканоил)))-GLР-1(7-37).

В другом воплощении изобретения концентрация указанного инсулинотропного пептида находится в интервале от приблизительно 0,1 мг/мл до приблизительно 25 мг/мл, в интервале от приблизительно 1 мг/мл до приблизительно 25 мг/мл, в интервале от приблизительно 2 мг/мл до приблизительно 15 мг/мл, в интервале от приблизительно 3 мг/мл до приблизительно 10 мг/мл или в интервале от приблизительно 5 мг/мл до приблизительно 8 мг/мл.

В другом воплощении изобретения инсулинотропный пептид представляет собой экзендин-4 или ZP-10, т.е. HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPSKKKKKK-NH2.

В другом воплощении фармацевтической композиции изобретения инсулинотропный пептид представляет собой ацилированный экзендин-4 или ацилированный аналог экзендина-4.

В другом воплощении фармацевтической композиции изобретения инсулинотропный пептид представляет собой N-эпсилон(17-карбоксигептадекановая кислота)20 экзендин-4(1-39)-амид

или

N-эпсилон32-(17-карбокси-гептадеканоил)[Lys32]экзендин-4(1-39)-амид

В другом воплощении фармацевтической композиции изобретения концентрация инсулинотропного пептида в фармацевтической композиции составляет от приблизительно 5 мкг/мл до приблизительно 10 мг/мл, от приблизительно 5 мкг/мл до приблизительно 5 мг/мл, от приблизительно 5 мкг/мл до приблизительно 5 мг/мл, от приблизительно 0,1 мг/мл до приблизительно 3 мг/мл или от приблизительно 0,2 мг/мл до приблизительно 1 мг/мл.

В другом аспекте настоящее изобретение относится к способу получения фармацевтической композиции по данному изобретению, при котором указанный инсулинотропный пептид растворяют и смешивают с консервантом и модификатором тоничности.

Также настоящее изобретение относится к способу получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1 при щелочном рН при температуре приблизительно 40°С в течение по меньшей мере 5 минут. В целом предпочтительно, чтобы концентрации соединения GLP-1 в течение термической обработки находились в интервале от 10 г/л до 100 г/л. Соединение GLP-1 можно растворить в водном растворе, имеющем конечную температуру, или можно растворить в водном растворе, имеющем комнатную температуру, с последующим нагреванием до соответствующей температуры в течение определенного времени.

Установлено, что физическая стабильность соединения GLP-1, лираглутида, значительно улучшалась, когда температура термической обработки увеличивалась (с 22 до 80°С). Установлено, что для температур 60 и 80°С продолжительность термической обработки оказывает сильное влияние на физическую стабильность лираглутида, так показано, что 120 минут термической обработки значительно улучшают физическую стабильность по сравнению с 1 минутой термической обработки. Также установлено, что физическая стабильность лираглутида значительно улучшалась при увеличении температуры с 22 до 50-80°С при рН 9-10 (см. примеры). Установлено, что для всех температур продолжительность термической обработки оказывает влияние на физическую стабильность лираглутида, так показано, что 15-20 минут термической обработки значительно улучшают физическую стабильность по сравнению с 1 минутой термической обработки.

Показано, что оптимальные условия термической обработки, чтобы растворить зародыши волокон, составляют 3-20 минут при рН 9-10,5 и 70-85°С. В производственном масштабе это может быть выполнено с использованием общих способов быстрого нагревания и охлаждения больших объемов теплообменниками.

В другом аспекте настоящее изобретение относится к способу получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1, имеющий рН 8,0-10,5, при температуре между 50°С и 80°С в течение периода времени, который составляет от 3 минут до 180 минут.

В одном воплощении настоящее изобретение относится к способу получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1, имеющий рН 8,0-10,0, при температуре между 50°С и 80°С в течение периода времени, который составляет от 3 минут до 180 минут.

В другом воплощении настоящее изобретение относится к способу получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1, имеющий рН 8,0-10,0, при температуре между 50°С и 80°С в течение периода времени, который составляет от 3 минут до 120 минут.

В другом воплощении температура составляет от 60°С до 80°С в течение периода времени, который составляет от 5 минут до 15 минут.

В другом воплощении температура составляет от 60°С до 80°С в течение периода времени, который составляет от 1 минуты до 15 минут.

В другом воплощении температура составляет от 60°С до 80°С в течение периода времени, который составляет от 3 минут до 30 минут.

В другом воплощении температура составляет от 60°С до 80°С в течение периода времени, который составляет от 5 минут до 30 минут.

В другом воплощении настоящее изобретение относится к способу получения стабильного раствора экзендина-4, при котором нагревают раствор экзендина-4, имеющий рН 8,0-10,0, при температуре между 50°С и 80°С в течение периода времени, который составляет от 3 минут до 120 минут.

В другом воплощении настоящее изобретение относится к способу получения стабильного раствора Aib8,35-GLP-1(7-36)-амида, при котором нагревают раствор Aib8,35-GLP-1(7-36)-aмидa, имеющий рН 8,0-10,0, при температуре между 50°С и 80°С в течение периода времени, который составляет от 3 минут до 120 минут.

В другом воплощении соединение GLP-1 представляет собой Arg34,Lys26(Nε-(γ-Glu(Nα-гексадеканоил)))-GLP-1(7-37).

В одном аспекте изобретение относится к способу получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1.

В одном аспекте изобретение относится к способу, как выше, где температура составляет от 50°С до 95°С.

В одном аспекте изобретение относится к способу, как выше, где температура составляет от 60°С до 95°С.

В одном аспекте изобретение относится к способу, как выше, где температура составляет от 50°С до 80°С.

В одном аспекте изобретение относится к способу, как выше, где температура составляет от 70°С до 80°С.

В одном аспекте изобретение относится к способу, как выше, где температура составляет от 60°С до 80°С.

В одном аспекте изобретение относится к способу, как выше, где рН составляет от приблизительно 8,0 до 10,5.

В одном аспекте изобретение относится к способу, как выше, где рН составляет от приблизительно 8,0 до 10,0.

В одном аспекте изобретение относится к способу, как выше, где рН составляет от приблизительно 8,0 до приблизительно 9,7.

В одном аспекте изобретение относится к способу, как выше, где рН составляет от приблизительно 7,5 до 8,5.

В одном аспекте изобретение относится к способу, как выше, где рН составляет приблизительно 7,7.

В одном аспекте изобретение относится к способу, как выше, где рН составляет приблизительно 8,15.

В одном аспекте изобретение относится к способу, как выше, где нагревание осуществляют в течение периода времени, который составляет от 3 минут до 180 минут.

В одном аспекте изобретение относится к способу, как выше, где нагревание осуществляют в течение периода времени, который составляет от 10 минут до 90 минут.

В одном аспекте изобретение относится к способу, как выше, где нагревание осуществляют в течение периода времени, который составляет от 3 минут до 30 минут.

В одном аспекте изобретение относится к способу, как выше, где нагревание осуществляют в течение периода времени, который составляет от 5 минут до 15 минут.

В одном аспекте изобретение относится к способу, как выше, где рН составляет 8,0-10,5, и способ включает нагревание при температуре между 50°С и 85°С в течение периода времени, который составляет от 3 минут до 180 минут.

В другом аспекте настоящее изобретение относится к способу получения фармацевтической композиции длительного хранения соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1, имеющий рН 8,0-10,0, при температуре между 50°С и 80°С в течение периода времени, который составляет от 3 минут до 180 минут.

В одном воплощении настоящее изобретение относится к способу получения фармацевтической композиции длительного хранения соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1, имеющий рН 8,0-10,0, при температуре между 50°С и 80°С в течение периода времени, который составляет от 3 минут до 120 минут.

В одном аспекте изобретение относится к способу получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1, имеющий рН 8,0-10,0, при температуре между 70°С и 80°С в течение периода времени, который составляет от 3 минут до 30 минут.

В одном аспекте изобретение относится к способу получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1, имеющий рН 8,0-10,0, при температуре между 60°С и 80°С в течение периода времени, который составляет от 5 минут до 15 минут.

В одном аспекте изобретение относится к способу получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1 при температуре между 60°С и 95°С в течение периода времени, который составляет от 10 минут до 90 минут.

Вышеприведенный аспект включает значения рН растворов от приблизительно 7,5 до приблизительно 8,5. В одном аспекте изобретения рН составляет приблизительно 7,7. В одном аспекте изобретения значение рН составляет приблизительно 8,15.

В одном аспекте изобретение относится к способу получения фармацевтической композиции длительного хранения соединения GLP-1, который включает один или более способов по любому из вышеприведенных аспектов с последующим добавлением фармацевтически приемлемых эксципиентов.

В одном аспекте изобретение относится к способу получения фармацевтической композиции длительного хранения соединения GLP-1, при котором большое количество продукта пептида получают в ходе процедуры по любому из аспектов выше, после чего проводят лиофилизацию раствора или суспензии указанного глюкагоноподобного пептида.

В одном аспекте изобретение относится к способу получения фармацевтической композиции длительного хранения соединения GLP-1, при котором фармацевтическую композицию получают из лиофилизированного продукта согласно аспекту выше, после чего обрабатывают по любому из аспектов выше.

В одном аспекте изобретение относится к способу получения фармацевтической композиции длительного хранения соединения GLP-1, при котором фармацевтическую композицию получают, как описано в вышеупомянутом аспекте, и затем обрабатывают по любому из аспектов выше, либо до того, как заполнят конечную систему доставки, либо после того, как заполнят конечную систему доставки, либо и до того, и после.

В одном аспекте изобретение относится к способу по любому из аспектов выше, где указанное соединение GLP-1 представляет собой Arg34,Lys26(Nε-(γ-Glu(Nα-гексадеканоил)))-GLP-1(7-37).

В другом аспекте настоящее изобретение относится к способу лечения гипергликемии, при котором парентерально вводят эффективное количество фармацевтической композиции по изобретению млекопитающему, которое нуждается в подобном лечении.

В другом аспекте настоящее изобретение относится к способу лечения ожирения, недостаточности бета-клеток, нарушения толерантности к глюкозе (IGT) или дислипидемии, при котором парентерально вводят эффективное количество фармацевтической композиции по изобретению млекопитающему, которое нуждается в подобном лечении.

Примеры

Общая процедура

Анализ образования волокон с тиофлавином Т (ThT): принцип и примеры

Низкая физическая стабильность пептида может приводить к образованию крахмалоподобных волокон, которые представляют собой упорядоченные нитевидные макромолекулярные структуры в образце, в итоге приводящие к гелеобразованию. Обычно это измеряют при визуальном контроле образца. Однако этот вид измерения является очень субъективным и зависит от наблюдателя. Поэтому применение низкомолекулярной пробы индикатора является намного более выгодным. Тиофлавин Т (ThT) является подобной пробой и дает отчетливую флуоресценцию при связывании с волокнами [Naiki et al. (1989) Anal. Biochem. 177, 244-249; LeVine (1999) Methods. Enzymol. 309, 274-284].

Период времени для образования волокон можно описать сигмоидальной кривой со следующей формулой [Nielsen et al. (2001) Biochemistry 40, 6036-6046], см. Фиг.6:

Здесь F представляет собой флуоресценцию ThT во время t. Константа t0 представляет собой время, необходимое для достижения 50% максимальной флуоресценции. Двумя важными параметрами, описывающими образование волокон, являются время задержки, рассчитываемое как t0 - 2τ, и константа истинной скорости kист=1/τ.

Образование частично складчатого промежуточного соединения пептида предлагается как общий инициирующий механизм для образования волокон. Некоторые из этих промежуточных соединений служат центром для образования ядра, на котором дополнительные промежуточные соединения могут скапливаться и происходит образование волокон. Время задержки соответствует интервалу, при котором формируется критическая масса ядер, а константа истинной скорости является скоростью, с которой образуется само волокно.

Приготовление образцов

Образцы готовили заново перед каждым анализом. Каждая композиция образца описывается в перечне условных обозначений. рН образца доводили до требуемого значения, используя соответствующие количества концентрированных NaOH и НСlO4. Тиофлавин Т добавляли к образцам из основного раствора в Н2О до конечной концентрации 1 мкМ.

Аликвоты образца по 200 мкл помещали на 96-луночный планшет для микротитрования (Packard OptiPlate™-96, белый полистирол). Обычно восемь реплик каждого образца (соответствующих условиям одного теста) помещали в одну колонку лунок. Планшет герметизировали с помощью Scotch Pad (Qiagen).

Инкубация и измерения флуоресценции

Инкубацию при заданной температуре, встряхивание и измерение эмиссии флуоресценции ThT осуществляли на флуориметре для прочтения планшетов Fluoroskan Ascent FL (Thermo Labsystems). Температуру устанавливали 37°С. Орбитальное встряхивание доводили до 960 об/мин с амплитудой 1 мм для всех приведенных данных. Измерение флуоресценции осуществляли, используя возбуждение через 444 нм светофильтр, и измерение эмиссии - через 485 нм светофильтр. Каждый цикл начинали, инкубируя планшет при температуре анализа в течение 10 минут. Планшет измеряли каждые 20 минут обычно в течение 45 часов. Между каждыми измерениями планшет встряхивали и нагревали, как описано.

Обработка данных

Точки измерения сохраняли в формате Microsoft Excel для дальнейшей обработки и построения кривой, и аппроксимацию осуществляли, используя GraphPad Prism. Фоновая эмиссия от ThT в отсутствие волокон была пренебрежимо малой. Точки на графике обычно являются средним значением восьми образцов и показаны с погрешностями стандартного среднеквадратичного отклонения. На одном графике представлены только данные, полученные в одном эксперименте (т.е. образцы на одном планшете), что обеспечивает соотнесение образования волокон между индивидуальными образцами одного анализа вместо сравнения разных анализов.

Массив данных можно подобрать к Ур. (1). Однако так как полные сигмоидальные кривые в этом случае обычно не получить в течение времени измерения, степень образования волокон выражается как флуоресценция ТhТ в разных точках времени, рассчитанная как среднее значение восьми образцов и показанная со средним квадратичным отклонением.

Пример 1

ТhТ-анализ образования волокон фармацевтической композиции ацилированного аналога GLP-1, лираглутида, показан на Фиг.1 (экспериментально выполненный по процедурам, описанным в «Общей процедуре»). После приблизительно 10 часов эмиссия флуоресценции ThT увеличивается, указывая на начало образования волокон. Этот сигнал увеличивается непрерывно и достигает плато до завершения анализа. Однако в присутствии 200 млн-1 Полоксамера 188 сигнал флюоресценции ThT остается на фоновом уровне. Это указывает на то, что не происходит образования волокон и, следовательно, фармацевтическая композиция является физически стабильной при этих условиях. В фармацевтические композиции, используемые в примере 1 (Фиг.1), буфер не добавляли.

Пример 2

Эффект Полоксамера 188 в фармацевтической композиции лираглутида, содержащей фосфат натрия в качестве буфера, показан на Фиг.2 (экспериментально выполненный по процедурам, описанным в «Общей процедуре»). Здесь присутствие 50 млн-1 Полоксамера 188 продлевает время задержки до начала образования волокон, тогда как 100 млн-1 Полоксамера 188 полностью замедляет образование волокон в течение времени анализа.

Пример 3

Полисорбат 20 также стабилизирует препараты лираглутида. Один такой пример показан на Фиг.3 (экспериментально выполненный по процедурам, описанным в "Общей процедуре"). Присутствие 200 млн-1 Полисорбата 20 замедляет образование волокон, что наблюдается как более медленная скорость роста сигнала флюоресценции ТhТ. Следовательно, значительно меньший сигнал флюоресценции ТhТ наблюдается в образце Полисорбата 20, чем в стандарте после 40 часов инкубации.

Пример 4

Получены две фармацевтические композиции:

F1. 1,2 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 3 Zn/гексамер, как часть 0,6 мМ, 8 мМ бицин, 50 млн-1 Полоксамера 188, рН 7,7.

F2. 1,2 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 3 Zn/гексамер, как часть 0,6 мМ, 8 мМ бицин, рН 7,7.

Физическую стабильность фармацевтических композиций определяют посредством ускоренного стрессового теста. Стрессовый тест выполнен как тест на вращение. 50 мкл воздуха добавляют в 5 ампул (стеклянные пробирки) каждого препарата. Ампулы вращают с частотой 30 оборотов в минуту в течение 4 часов ежедневно. Тест останавливают после 22 дней вращения. Проверку ампул осуществляют ежедневно или как потребуется. Мутность фармацевтических композиций характеризуется нефелометрическим измерением мутности на нефелометре НАСН серии 2100AN. Измерение мутности жидкости выражают в «нефелометрических единицах мутности» (NTU). Физическая нестабильность белка характеризуется измерениями высокой мутности.

Эксперимент показывает, что композиция F2 демонстрирует намного более быстрое увеличение NTU по сравнению с композицией F1.

Пример 5

Получали три фармацевтические композиции:

F1. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, рН 7,7.

F2. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 100 мкг/мл полоксамера 188, рН 7,7.

F3. 1,6, мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 200 мкг/мл полоксамера 188, рН 7,7.

Фармацевтические композиции F1-F3 подвергали тесту на вращение, как описано в примере 4. Полученные в результате зависимости измерения NTU от времени показаны на Фиг.4.

Пример 6

Получали две фармацевтические композиции:

F1. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 0 мкг/мл полоксамера 407 (Pluronic F-127), рН 7,7.

F2. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 200 мкг/мл полоксамера 407 (Pluronic F-127), рН 7,7.

Препараты проверяли относительно физической стабильности, используя анализ тиофлавина Т. Препараты помещают на 96-луночные планшеты (Black NUNC) и инкубируют при 37°С вплоть до 72 часов во флуориметре для микротитрационного планшета BMG FLUOstar, используя следующую программу: [300 об/мин 15 мин, пауза 5 мин]n=72. Полученные в результате измерения показаны на Фиг.5 (нижняя кривая соответствует F2).

Пример 7

Раствор 1 получали, растворяя консервант, изотонический агент и буфер в воде, рН доводили до 7,3. В другом сосуде получали раствор 2: лираглутид растворяли в 60°С горячей воде и держали на водяной бане при 60°С в течение 1, 20 и 120 минут. Термическую обработку лираглутида проводили в растворе с рН приблизительно 8 и 10. После термической обработки раствор 2 охлаждали до 22°С, затем два раствора смешивали и доводили рН до 7,7, используя гидроксид натрия и/или соляную кислоту. В заключение препарат фильтровали через 0,22 мкм фильтр.

Физическую стабильность препаратов лираглутида оценивали при помощи флуоресцентного метода, тиофлавин Т-теста, где гистологический тиазоловый краситель тиофлавин Т (ThT) использовали в качестве индикатора образования волокон. При помощи тиофлавин Т-теста было возможно определить присутствие волокон в разных препаратах. Способ основывался на характеристиках свечения ThT. В присутствии волокон флуоресценция ThT проявляла максимум возбуждения при 450 нм и повышенную эмиссию при 482 нм. Установлено, что интенсивность флуоресценции ThT линейна при увеличении концентрации волокон.

ThT использовали в стрессовом тесте, применяя разные препараты на планшетах для микротитрования с ThT при 35°С и встряхивая с 350 об/мин, до образования волокон в препарате. Были получены графики интенсивности флуоресценции (ИФ) как функции времени (сек). Отклик был переменной от времени (секунды) для достижения интенсивности флуоресценции 400, например, чем больше времени необходимо, чтобы достигнуть ИФ=400, тем более стабилен препарат.

Чистоту препаратов лираглутида измеряли с помощью ОФ - ВЭЖХ.

Результаты экспериментов показаны на Фиг.7 и 8.

Пример 7а

Раствор 1 получают, растворяя консервант, изотонический агент и буфер в воде, рН доводили до 7,9. В другом сосуде получают раствор 2: лираглутид растворяют в 60°С горячей воде и держат на водяной бане при 60°С в течение 1, 20 и 120 минут. Термическую обработку лираглутида проводят в растворе с рН приблизительно 8 и 10. Два раствора смешивают и доводят рН до 8,15, используя гидроксид натрия и/или соляную кислоту. В заключение препарат фильтруют через 0,22 мкм фильтр.

Физическую стабильность препаратов лираглутида оценивают при помощи флуоресцентного метода, тиофлавин Т-теста, где гистологический тиазоловый краситель тиофлавин Т (ThT) используют в качестве индикатора образования волокон. При помощи тиофлавин Т-теста было возможно определить присутствие волокон в разных препаратах. Способ основывается на характеристиках свечения ThT. В присутствии волокон флуоресценция ThT проявляла максимум возбуждения при 450 нм и повышенную эмиссию при 482 нм. Показано, что интенсивность флуоресценции ThT линейна при увеличении концентрации волокон.

Пример 8

Раствор 1 получали, растворяя консервант, изотонический агент и буфер в воде, рН доводили до 7,3. В другом сосуде получали раствор 2; лираглутид растворяли в 80°С горячей воде и держали на водяной бане при 80°С в течение 1, 30 и 120 минут. Термическую обработку лираглутида проводили в растворе с рН приблизительно 8 и 10. После термической обработки раствор 2 охлаждали до 22°С, затем два раствора смешивали и доводили рН до 7,7, используя гидроксид натрия и/или соляную кислоту. В заключение препарат фильтровали через 0,22 мкм фильтр.

Физическую стабильность и чистоту препаратов измеряли, как описано в примере 7.

Результаты экспериментов показаны на Фиг.9 и 10.

Пример 8а

Раствор 1 получают, растворяя консервант, изотонический агент и буфер в воде, рН доводили до 7,9. В другом сосуде получают раствор 2: лираглутид растворяют в 80°С горячей воде и держат на водяной бане при 80°С в течение 1, 20 и 120 минут. Термическую обработку лираглутида проводят в растворе с рН приблизительно 8 и 10. Два раствора смешивают и доводят рН до 8,15, используя гидроксид натрия и/или соляную кислоту. В заключение препарат фильтруют через 0,22 мкм фильтр.

Физическую стабильность препаратов лираглутида оценивают при помощи флуоресцентного метода, тиофлавин Т-теста, где гистологический тиазоловый краситель тиофлавин Т (ThT) используют в качестве индикатора образования волокон. При помощи тиофлавин Т-теста было возможно определить присутствие волокон в разных препаратах. Способ основывается на характеристиках свечения ThT. В присутствии волокон флуоресценция ThT проявляла максимум возбуждения при 450 нм и повышенную эмиссию при 482 нм. Показано, что интенсивность флуоресценции ThT линейна при увеличении концентрации волокон.

Пример 9

Раствор 1 получали, растворяя консервант, изотонический агент и буфер в воде, рН доводили до 7,3. В другом сосуде получали раствор 2: лираглутид растворяли в воде разных температур: 22, 40, 60 и 80°С и держали на водяной бане в течение 15 минут для всех исследуемых температур. Термическую обработку лираглутида проводили в растворе с рН приблизительно 10. После термической обработки раствор 2 охлаждали до 22°С, затем два раствора смешивали и доводили рН до 7,7, используя гидроксид натрия и/или соляную кислоту. В заключение препарат фильтровали через 0,22 мкм фильтр.

Физическую стабильность препаратов измеряли, как описано в примере 7.

Результаты экспериментов показаны на Фиг.11.

Пример 10

До лиофилизации лекарственное вещество лираглутид растворяют в 70-80°С горячей воде при рН приблизительно 8,0-10,0 до концентрации 10-100 г/л. Термическую обработку проводят в течение 3-30 минут. После чего ЛВ лиофилизируют. Затем лиофилизированное лекарственное вещество растворяют в воде. Концентрация составляет приблизительно 10-100 г/л, и рН раствора (раствор 2) составляет приблизительно 8-10. Другой раствор (раствор 1) получают, растворяя консервант, изотонический агент и буфер в воде. рН доводят до 7,9. Два раствора смешивают и доводят рН до 8,15, используя гидроксид натрия и/или соляную кислоту.

Пример 10а

Основную обработку примера 10а можно осуществить с или без описанной термической обработки примера 10 до лиофилизации. В специальном воплощении обработку лекарственного вещества в примере 10а можно осуществить при 75°С в течение 8 мин до лиофилизации.

Пример 10б

До лиофилизации лекарственное вещество лираглутид растворяют в 70-80°С горячей воде при рН приблизительно 8,0-10,0 до концентрации 10-100 г/л. Термическую обработку проводят в течение 3-30 минут. После чего ЛВ лиофилизируют. Затем лиофилизированное лекарственное вещество растворяют в воде. Концентрация составляет приблизительно 10-100 г/л и рН раствора (раствор 2) составляет приблизительно 8-10. Другой раствор (раствор 1) получают, растворяя консервант, изотонический агент и буфер в воде. рН доводят до 7,3. Два раствора смешивают и доводят рН до 7,7, используя гидроксид натрия и/или соляную кислоту.

Пример 10в

Основную обработку примера 10в можно осуществить с или без описанной термической обработки примера 106 до лиофилизации. В специальном воплощении обработку лекарственного вещества в примере 10в можно осуществить при 75°С в течение 8 мин до лиофилизации.

Пример 11

Лираглутид растворяли в воде при комнатной температуре и рН доводили до 10. Раствор нагревали на водяной бане при 50 и 80°С в течение 1, 3, 5 и 20 минут. После термической обработки раствор охлаждали до 22°С на водяной бане. Затем раствор фильтровали через 0,22 мкм фильтр и лиофилизировали. Порошок растворяли в растворе, содержащем консервант, изотонический агент и буферные компоненты, и рН доводили до 7,7, используя гидроксид натрия и/или соляную кислоту.

Физическую стабильность термически обработанных препаратов лираглутида оценивали при помощи тиофлавин Т метода, описанного в примере 7. Химическую стабильность препаратов измеряли, используя обращенно-фазовую ВЭЖХ.

Результаты показаны на Фиг.12 и 13.

Пример 12

Лираглутид растворяли в воде при комнатной температуре и рН доводили до 9 и 10. Раствор нагревали на водяной бане при 60 и 80°С в течение 1 и 15 минут. После термической обработки раствор охлаждали до 22°С на водяной бане. Затем раствор фильтровали через 0,22 мкм фильтр и лиофилизировали. Порошок растворяли в растворе, содержащем консервант, изотонический агент и буферные компоненты, и рН доводили до 7,7.

Физическую стабильность термически обработанных препаратов лираглутида оценивали при помощи тиофлавин Т метода, описанного в примере 7. Химическую стабильность препаратов измеряли, используя обращенно-фазовую ВЭЖХ.

Результаты показаны на Фиг.14.

Пример 13

Препараты смешивали согласно таблицам 1 и 2.

Таблица 1
Эксципиенты оставались постоянными
Параметр Концентрация
Лираглутид 6,25 мг/мл
Пропиленгликоль 14,0 мг/мл
Фенол 5,50 мг/мл
Тиофлавин Т 1 мМ
pН=7,7
Таблица 2
Конкретные эксципиенты
Эксципиенты Концентрация
Solutol HS-15 100 или 200 мкг/мл
Pluronic F-127 (Полоксамер 407) 100 или 200 мкг/мл
Гидрофосфат динатрия, дигидрат 8 мМ
Трицин 10 мМ

8×250 мкл каждого препарата (8 повторов) капали пипеткой на 96-луночный планшет (Black NUNC). Затем планшеты герметизировали, используя «Герметизирующую ленту для планшетов, NUNC». Планшет помещали во флуориметр для микротитрационного планшета BMG FLUOstar. Возбуждение измеряли при 440±10 мм и эмиссию - при 480±10 мм. Данные фиксировали в течение 72 ч (приблизительно 260,000 сек). Флуориметр для микротитрационного планшета BMG FLUOstar программировали, как здесь указано: [600 об/мин в течение 300 сек, пауза 100 сек]n=72, используя двойное орбитальное вращение.

Как можно видеть из фиг.15 и 16, препараты, содержащие Solutol HS-15 в фосфатном буфере, только немного более стабильны, чем стандартный препарат. Препараты, содержащие либо 100, либо 200 мкг/мл Pluronic F-127 в фосфатном буфере, более стабильны. Интересно, что препараты, содержащие либо Solutol HS-15, либо Pluronic F-127 в трицин буфере, исключительно стабильны, особенно последние.

Пример 14

Раствор 1 получали, растворяя консервант, изотонический агент и буфер в воде, рН доводили до 7,9. В другом сосуде получали раствор 2: лираглутид растворяли в 60-70°С горячей воде и держали на водяной бане при 50, 60 и 70°С в течение 60, 90 и 120 минут. Термическую обработку лираглутида проводили в растворе с рН приблизительно 8 и 10. После термической обработки раствор 2 охлаждали до 22°С, затем два раствора смешивали и доводили рН до 8,15, используя гидроксид натрия и/или соляную кислоту. В заключение препарат фильтровали через 0,22 мкм фильтр.

Физическую стабильность препаратов лираглутида оценивали при помощи флуоресцентного метода, тиофлавин Т-теста, где гистологический тиазоловый краситель тиофлавин Т (ThT) использовали в качестве индикатора образования волокон. При помощи тиофлавин Т-теста было возможно определить присутствие волокон в разных препаратах. Способ основывался на характеристиках свечения ThT. В присутствии волокон флуоресценция ThT проявляла максимум возбуждения при 450 нм и повышенную эмиссию при 482 нм. Установлено, что интенсивность флуоресценции ThT линейна при увеличении концентрации волокон.

ThT использовали в стрессовом тесте, применяя разные препараты на планшетах для микротитрования с ThT при 35°С и встряхивая с 350 об/мин до образования волокон в препаратах. Были получены графики интенсивности флуоресценции (ИФ) как функции времени (сек). Отклик был переменной от времени (секунды) для достижения интенсивности флуоресценции 400, например, чем больше времени необходимо, чтобы достигнуть ИФ=400, тем более стабилен препарат.

Результаты показаны на Фиг.17.

Пример 15

Раствор 1 получали, растворяя консервант, изотонический агент и буфер в воде, рН доводили до 7,9. В другом сосуде получали раствор 2: лираглутид растворяли в 60-70°С горячей воде и держали на водяной бане при 50, 60, 65 и 70°С в течение 30, 45, 150 и 180 минут. Термическую обработку лираглутида проводили в растворе с рН приблизительно 8 и 10. После термической обработки раствор 2 охлаждали до 22°С, затем два раствора смешивали и доводили рН до 8,15, используя гидроксид натрия и/или соляную кислоту. В заключение препарат фильтровали через 0,22 мкм фильтр.

Физическую стабильность препаратов лираглутида оценивали при помощи флуоресцентного метода, как описано в примере 14.

Препараты, как описано выше, могут вполне включать поверхностно-активные вещества, как описано ранее в примерах 8-15, и поверхностно-активные вещества, как описано выше. Поверхностно-активные вещества растворяют в растворе 1 и затем смешивают с раствором 2, получая в результате конечный препарат. В одном аспекте изобретения поверхностно-активные вещества могут быть в концентрациях 0-50 мг/мл.

Пример 16

Пенфилл®, содержащий волокнистый лираглутид, термически обрабатывали в течение 30 мин при 85°С. Свежеполученная лекарственная форма лираглутида обладала мутностью приблиз. 0,2-1,0 NTU. Таким образом, при термической обработке лекарственной формы сильно волокнистого лираглутида волоконная структура, которая в иных случаях является весьма стабильной, может растворяться (см. ниже).

Пенфилл до термической обработки (NTU) Пенфилл после термической обработки (NTU)
Приблиз. 50 (среднее значение 10 образцов пенфилла, содержащего ЛФ волокнистого лираглутида) 0,382
0,182
0,275
0,174
0,284
0,356
0,24
0,326
0,19
0,836

Фиг.18 показывает Пенфилл®, термически обработанный при разных температурах и времени, который затем подвергали вращению.

Примеры, данные выше, могут быть выполнены отдельно или в комбинации.

В одном аспекте изобретения процедура представляет собой следующее.

До лиофилизации лекарственное вещество лираглутид растворяют в 70-80°С горячей воде при рН приблизительно 8,0-10,0 до концентрации 10-100 г/л. Термическую обработку проводят в течение 3-30 минут. После чего лекарственное вещество лиофилизируют. Затем лиофилизированное лекарственное вещество растворяют в 50-80°С горячей воде в течение 30-180 мин. Концентрация составляет приблизительно 10-100 г/ли рН раствора (раствор 2) составляет приблизительно 8-10. Другой раствор (раствор 1) получают, растворяя консервант, изотонический агент и буфер в воде. рН доводят до 7,9. Два раствора смешивают и доводят рН до 8,15, используя гидроксид натрия и/или соляную кислоту. В заключение препарат фильтруют через 0,22 мкм фильтр. Либо до, либо после заполнения систем закрытых сосудов полученную в результате лекарственную форму лираглутида можно подвергнуть термической обработки при 60-95°С в течение 10-90 мин.

Пример 17

Применение н-додецил-β-D-мальтозида (ДДМ) и цвиттергента 3-10 в препаратах, включающих лираглутид: препараты F1, F2 и F3 анализировали.

Физическую стабильность препаратов определяют посредством ускоренного стрессового теста. Стрессовый тест выполнен как тест на вращение при 37°С. 50 мкл воздуха добавляют в 5 ампул (3 мл стеклянные пробирки) каждого препарата. Ампулы вращают с частотой 30 оборотов в минуту в течение 4 часов ежедневно. Тест останавливают после 37 дней вращения. Проверку ампул осуществляют ежедневно или как потребуется. Мутность препарата характеризуется нефелометрическим измерением мутности на нефелометре НАСН серии 2100AN. Измерение мутности жидкости выражают в «нефелометрических единицах мутности» (NTU). Физическая нестабильность белка характеризуется измерениями высокой мутности.

Следующие эксперименты осуществляли:

Станд.: 6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, рН 7,7.

F1. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 10 мМ цвиттергент 3-10, рН 7,7.

F2. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 10 мМ ДДМ, рН 7,7.

F3. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 25 мМ ДДМ, рН 7,7.

Результаты показаны на Фиг.19.

Пример 18

После 37 дней вращения при 37°С один Пенфилл® из каждого препарата (F1, F2 и F3) анализировали относительно общего количества лираглутида. Измеряли содержание (мг/мл), чистоту (%) и количество примесей (%). Проводили следующие эксперименты:

F1. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 10 мМ цвиттергент 3-10, рН 7,7.

F2. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 10 мМ ДДМ, рН 7,7.

F3. 1,6 мМ лираглутид, 14 мг/мл пропиленгликоля, 40 мМ фенол, 8 мМ фосфат натрия, 25 мМ ДДМ, рН 7,7.

Результаты показаны на Фиг.20.

1. Способ получения стабильного раствора соединения GLP-1, при котором нагревают раствор указанного соединения GLP-1, причем температура находится между 50 до 95°С, рН находится между примерно 8,0 и 10,5, и нагревание осуществляют в течение периода времени, составляющего между 3 и 180 мин.

2. Способ по п.1, отличающийся тем, что температура составляет от 50 до 95°С, или от 60 до 95°С, или от 50 до 80°С, или от 70 до 80°С, или от 60 до 80°С.

3. Способ по п.1, отличающийся тем, что рН составляет от приблизительно 8,0 до 10,5, или от приблизительно 8,0 до 10,0, или от приблизительно 7,5 до 8,5, или составляет приблизительно 7,7, или приблизительно 8,15.

4. Способ по п.1, отличающийся тем, что нагревание осуществляют в течение периода времени, который составляет от 3 до 180 мин, или от 15 до 120 мин, или от 10 до 90 мин, или от 3 до 30 мин, или от 5 до 15 мин.

5. Способ получения стабильного соединения GLP-1, при котором массу продукта пептида получают в ходе процедуры по любому из пп.1-4, после чего проводят лиофилизацию раствора или суспензии указанного глюкагоноподобного пептида.

6. Способ получения фармацевтической композиции длительного хранения соединения GLP-1, при котором фармацевтическую композицию получают из лиофилизированного продукта по п.5 и затем одним или более способами по любому из пп.1-4.

7. Способ по п.6, который осуществляют либо до того, как заполнят конечную систему доставки, либо после того, как заполнят конечную систему доставки, либо и до того, и после.

8. Способ получения фармацевтической композиции длительного хранения соединения GLP-1, который включает способы по любому из пп.1-7 с последующим добавлением других фармацевтически приемлемых эксципиентов.

9. Способ по любому из пп.1-8, отличающийся тем, что указанное соединение GLP-1 представляет собой Arg34, Lys26(Nε-(γ-Glu(Nα-гексадеканоил)))-GlP-1(7-37).

10. Стабильный раствор соединения GLP-1, получаемый способами по пп.1-9.

11. Применение стабильного раствора соединения GLP-1 по п.10 для получения фармацевтической композиции длительного хранения.

12. Фармацевтическая композиция длительного хранения соединения GLP-1, получаемая способами по пп.1-9.



 

Похожие патенты:
Изобретение относится к низкогликемической доступной углеводной композиции. .

Изобретение относится к химико-фармацевтической промышленности, а именно к созданию фармацевтической композиции для регулирования сахара и жира в крови, к способу получения фармацевтической композиции, к ее применению.

Изобретение относится к области фармации, а именно к созданию средства на основе растительного компонента, обладающего анорексическим, гипогликемическим и гиполипидемическим действием.

Изобретение относится к химико-фармацевтической промышленности и касается пероральных трансмукозальных фармацевтических композиций, содержащих метформин или его фармацевтически приемлемую соль, в присутствии по меньшей мере одного усилителя абсорбции, выбранного из алкилсульфата щелочного металла, глицерина, желчной кислоты или соли желчной кислоты, а также к способам применения таких композиций для лечения диабета у субъекта, к способу приготовления композиций.

Изобретение относится к (5-метил-2-оксо-1,3-диоксол-4-ил)метил 2-циклопропил-1-{[2'-(5-оксо-4,5-дигидро-1,2,4-оксадиазол-3-ил)бифенил-4-ил]метил}-1Н-бензимидазол-7-карбоксилату, представленному формулой Изобретение также относится к солям и сольватам указанного соединения, к его способу получения, к фармацевтическому средству, обладающему ангиотензина II антагонистической активностью, на основе указанного соединения.

Изобретение относится к соединениям формулы (I) и к их фармацевтически приемлемым солям, где заместители R 1-R4 имеют значения, определенные в п.1 формулы изобретения. .

Изобретение относится к растворимым или диспергируемым в воде порошкам и таблеткам на основе углеводной матрицы и к способу их изготовления, в которой углевод составляет 50 мас.% от массы матрицы.
Изобретение относится к химико-фармацевтической промышленности и касается композиции геля димексида для наружного применения, обладающей противовоспалительным действием при комплексной терапии для снятия болевого синдрома различной этиологии (ревматоидного артрита, деформирующего остеоартроза, артропатии, радикулита, невралгии тройничного нерва и др.), для лечения ушибов, растяжения связок, травматических инфильтратов, при терапии узловатой эритемы.
Изобретение относится к области фармацевтической промышленности и касается твердой лекарственной формы аторвастатина кальция. .

Изобретение относится к фармакологическим средствам. .

Изобретение относится к области фармацевтики, более конкретно к пероральной лекарственной форме, представляющей собой быстро образующую гель твердую гранулированную смесь, пригодную для получения суспензии.

Изобретение относится к таблетке ингибитора ДПП-IV и способу приготовления спрессованной таблетки методом прямого прессования в виде разовой дозировочной формы. .

Изобретение относится к капсуле в качестве первичной упаковки, в особенности для фармацевтических композиций для ингаляции. .
Наверх