Получение ароматических углеводородов из метана



Получение ароматических углеводородов из метана
Получение ароматических углеводородов из метана
Получение ароматических углеводородов из метана

 


Владельцы патента RU 2418780:

ЭКСОНМОБИЛ КЕМИКЭЛ ПЕЙТЕНТС, ИНК. (US)

Изобретение относится к способам получения ароматических углеводородов из метана и, в частности, из природного газа. Описан способ превращения метана из потока природного газа в более высокомолекулярные углеводороды, включая ароматические углеводороды, включающий: (а) контактирование исходного материала, содержащего метан, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и получения первого отходящего потока, включающего ароматические углеводороды и водород, где упомянутый первый отходящий поток включает по меньшей мере на 5 мас.% ароматических колец больше, чем упомянутый исходный материал; и (б) взаимодействие по меньшей мере части водорода из упомянутого первого отходящего потока с диоксидом углерода, вводимым в процесс в виде части потока природного газа, в условиях, эффективных для получения второго отходящего потока, обладающего пониженным содержанием водорода в сравнении с упомянутым первым отходящим потоком; где взаимодействие (б) включает: (1) реакцию водорода с получением углеводородов и воды, (2) удаление из упомянутого второго отходящего потока по меньшей мере части воды и (3) возврат по меньшей мере части углеводородов из упомянутого второго отходящего потока в упомянутое контактирование (а). Технический результат - превращение метана в ароматические углеводороды, когда метан содержится в потоке природного газа, включающем большое количество диоксида углерода. 20 з.п. ф-лы, 3 ил.

 

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к способу получения ароматических углеводородов из метана и, в частности, из природного газа.

ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ

Ароматические углеводороды, в особенности бензол, толуол, этилбензол и ксилолы, являются важными химическими продуктами массового производства в нефтехимической промышленности. В настоящее время ароматические соединения наиболее часто получают из материалов на основе нефтяного сырья по разнообразным методам, включающим каталитический риформинг и каталитический крекинг. Однако по мере того как мировые поставки нефтяного сырья уменьшаются, все более возрастает потребность найти альтернативные источники ароматических углеводородов.

Одним возможным альтернативным источником ароматических углеводородов служит метан, который является основным компонентом природного газа и биогаза. Объем разведанных мировых запасов природного газа постоянно увеличивается, и в настоящее время открывают больше месторождений природного газа, чем нефти. Из-за проблем, связанных с транспортировкой больших объемов природного газа, большую часть природного газа, добываемого вместе с нефтью, в особенности в отдаленных местах, сжигают в факеле и направляют в отход. Следовательно, особенно привлекательным методом повышения сортности природного газа является превращение алканов, содержащихся в природном газе, непосредственно в более высокомолекулярные углеводороды, такие как ароматические соединения, при условии, что могут быть преодолены сопутствующие этому технические трудности.

Значительная часть основных способов превращения метана в жидкие углеводороды включает вначале превращение метана в синтез-газ, смесь Н2 и СО. Получение синтез-газа связано с большими капитальными затратами и является энергоемким; следовательно, предпочтительны пути, которые не требуют генерирования синтез-газа.

Предложен ряд альтернативных способов превращения метана в более высокомолекулярные углеводороды. Один такой способ включает каталитическое окислительное сочетание метана до олефинов с последующим каталитическим превращением олефинов в жидкие углеводороды, включающие ароматические углеводороды. Так, например, в US №5336825 описан двухстадийный способ окислительного превращения метана в углеводороды с пределами кипения бензиновой фракции, включающие ароматические углеводороды. На первой стадии в присутствии свободного кислорода с использованием промотированного редкоземельным металлом катализатора из оксида щелочно-земельного металла при температуре в пределах от 500 до 1000°С метан превращают в этилен и небольшие количества С3- и С4олефинов. Затем этилен и более высокомолекулярные олефины, образовавшиеся на первой стадии, над кислым твердым катализатором, включающим пентасиловый цеолит с высоким содержанием диоксида кремния, превращают в жидкие углеводороды с пределами кипения бензиновой фракции.

В качестве пути повышения сортности метана до более высокомолекулярных углеводородов, в особенности этилена, бензола и нафталина, предложена также дегидроароматизация метана посредством высокотемпературного восстановительного сочетания. Так, например в US №4727206 описан способ получения жидких продуктов, богатых ароматическими углеводородами, введением метана при температуре в пределах от 600 до 800°С в отсутствие кислорода в контакт с каталитической композицией, включающей алюмосиликат, обладающий молярным отношением диоксида кремния к оксиду алюминия по меньшей мере 5:1, причем в упомянутый алюмосиликат вводят (I) галлий или его соединение и (II) металл группы VIIB Периодической таблицы элементов или его соединение.

В US №5026937 описан способ ароматизации метана, который включает стадии подачи потока исходных материалов, который включает больше 0,5 мольного % водорода и 50 мольных % метана, в реакционную зону, содержащую по меньшей мере один слой твердого катализатора, включающего ZSM-5 и фосфорсодержащий оксид алюминия, в условиях превращения, которые включают температуру от 550 до 750°С, абсолютное давление ниже 10 ат (1000 кПа) и среднечасовую скорость подачи газа от 400 до 7500 ч-1. Отходящий поток продуктов включает, как сказано, метан, водород, по меньшей мере 3 мольных % С2углеводородов и по меньшей мере 5 мольных % ароматических C68углеводородов. После конденсации для удаления фракции С4+ с целью выделить водород и легкие углеводороды (метан, этан, этилен и т.д.), содержащиеся в отходящем потоке продуктов, предложены криогенные методы.

В US №5936135 описан низкотемпературный неокислительный способ превращения низшего алкана, такого как метан и этан, в ароматические углеводороды. В этом способе низший алкан смешивают с более высокомолекулярным олефином или парафином, таким как пропилен и бутен, и смесь вводят в контакт с предварительно обработанным бифункциональным пентасиловым цеолитным катализатором, таким как GaZSM-5, при температуре от 300 до 600°С, среднечасовой скорости подачи газа от 1000 до 100000 см3·г-1ч-1 и под давлением от 1 до 5 ат (от 100 до 500 кПа). Предварительная обработка катализатора включает контактирование катализатора со смесью водорода и водяного пара при температуре от 400 до 800°С, под давлением от 1 до 5 ат (от 100 до 500 кПа) и при среднечасовой скорости подачи газа по меньшей мере 500 см3·г-1ч-1 в течение периода по меньшей мере 0,5 ч, а затем контактирование катализатора с воздухом или кислородом при температуре от 400 до 800°С, среднечасовой скорости подачи газа по меньшей мере 200 см3·г-1ч-1 и под давлением от 1 до 5 ат (от 100 до 500 кПа) в течение периода по меньшей мере 0,2 ч.

В US №№6239057 и 6426442 описан способ получения углеводородов с более высоким числом углеродных атомов, например бензола, из углеводородов с низким числом углеродных атомов, таких как метан, введением этого последнего в контакт с катализатором, включающим пористый носитель, такой как ZSM-5, который содержит диспергированный на нем рений и промоторный металл, такой как железо, кобальт, ванадий, марганец, молибден, вольфрам или их смесь. Добавление СО или СО2 в исходный материал повышает, как сказано, выход бензола и стабильность катализатора.

В US №6552243 описан способ неокислительной ароматизации метана, в котором каталитическую композицию, включающую кристаллическое алюмосиликатное молекулярное сито с введенным металлом, первоначально активируют обработкой смесью водорода и алкана с С2 по С4, предпочтительно бутана, а затем активированный катализатор вводят в контакт с потоком исходных материалов, включающим по меньшей мере 40 мольных % метана, при температуре от 600 до 800°С, под абсолютным давлением ниже 5 ат (500 кПа) и при среднечасовой скорости подачи сырья (ССПС) от 0,1 до 10 ч-1.

В RU №2135441 описан способ превращения метана в более тяжелые углеводороды, в котором метан смешивают с по меньшей мере 5 мас.% углеводорода С3+, такого как бензол, а затем в мультистадийной реакторной системе вводят в контакт с катализатором, включающим металлическую пластину, обладающим под парциальным давлением метана по меньшей мере 0,05 МПа и температуре по меньшей мере 440°С степенью окисления выше нуля. Водород, образующийся в процессе, может быть введен в контакт с оксидами углерода с получением дополнительного метана, который после удаления одновременно получаемой воды можно добавлять в метановый исходный материал. Продукты превращения метана представляют собой газообразную фазу С24 и жидкую фазу С5+, но, в соответствии с примерами, при этом мало (меньше 5 мас.%) или отсутствует фактическое увеличение количества ароматических колец в сравнении с исходным материалом.

Существующие предложения по превращению метана в ароматические углеводороды страдают наличием нескольких проблем, которые ограничивают их технический потенциал. Методы окислительного сочетания обычно включают высокоэкзотермические и потенциально опасные реакции горения метана, часто требующие наличия дорогостоящего оборудования для генерирования кислорода и получения больших количеств экологически нежелательных оксидов углерода. С другой стороны, существующие методы восстановительного сочетания часто характеризуются низкой селективностью в отношении ароматических соединений и могут требовать дорогостоящих совместных исходных материалов для улучшения превращения и/или селективности в отношении ароматических соединений. Более того, в любом процессе восстановительного сочетания получают большие количества водорода, вследствие чего для экономической жизнеспособности необходим путь для эффективной утилизации водорода как побочного продукта. Поскольку месторождения природного газа часто находятся в отдаленных районах, эффективная утилизация водорода может оказаться довольно сложной задачей.

Особая трудность при применении природного газа как источника ароматических соединений заключается в том факте, что многие месторождения природного газа по всему миру содержат большие количества, иногда больше 50%, диоксида углерода. Диоксид углерода является не только объектом ужесточения правительственных требований вследствие его потенциальной ответственности за глобальное изменение климата, но, вероятно, экономически запретным оказывается также любой способ, осуществление которого требует выделения из природного газа и устранения больших количеств диоксида углерода. В действительности некоторые месторождения природного газа характеризуются настолько высокими концентрациями диоксида углерода, что в настоящее время рассматриваются как экономически безвозвратно утраченные.

Следовательно, все еще существует потребность в разработке усовершенствованного способа превращения метана в ароматические углеводороды, в особенности когда метан содержится в потоке природного газа, включающем большие количества диоксида углерода.

КРАТКОЕ ИЗЛОЖЕНИЕ СУЩНОСТИ ИЗОБРЕТЕНИЯ

В одном отношении в данной заявке описан способ превращения метана в более высокомолекулярные углеводороды, включая ароматические углеводороды, включающий:

(а) контактирование исходного материала, содержащего метан, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и получения первого отходящего потока, включающего ароматические углеводороды и водород, где упомянутый первый отходящий поток включает по меньшей мере на 5 мас.% ароматических колец больше, чем упомянутый исходный материал; и

(б) взаимодействие по меньшей мере части водорода из упомянутого первого отходящего потока с кислородсодержащими материалами с получением второго отходящего потока, обладающего пониженным содержанием водорода в сравнении с упомянутым первым отходящим потоком.

В подходящем варианте упомянутый исходный материал в (а) содержит также по меньшей мере одно из Н2, Н2О, СО и СО2.

В подходящем варианте упомянутый исходный материал в (а) содержит меньше 5 мас.% углеводородов С3+. Используемое в настоящем описании понятие "углеводороды С3+" означает углеводороды, включающие 4 или большее число углеродных атомов.

В подходящем варианте упомянутые условия в (а) являются неокислительными условиями. Понятием "неокислительные" указывают на то, что окислители (такие как О2, NOx и оксиды металлов, которые способны высвобождать кислород для окисления метана в СОх) содержатся в концентрации ниже 5%, предпочтительно ниже 1%, наиболее предпочтительно ниже 0,1%, от количества, необходимого для стехиометрического окисления метана.

Как правило, упомянутые условия в (а) включают температуру от 400 до 1200°С, в частности от 500 до 975°С, например от 600 до 950°С.

В подходящем варианте упомянутые кислородсодержащие материалы в (б) включают оксид углерода, такой как диоксид углерода и моноксид углерода, например диоксид углерода из потока природного газа, который может также включать по меньшей мере часть метана из исходного материала в (а). В одном варианте при взаимодействии в (б) образуются вода и метан, этан или смесь метана и этана, и способ дополнительно включает удаление из упомянутого второго отходящего потока воды и подачу по меньшей мере части метана и/или этана из второго отходящего потока на упомянутое контактирование (а). В другом варианте при взаимодействии (б) образуется один или несколько парафинов и олефинов с С2 по С5, моноциклические ароматические углеводороды и спирты с C1 по С3.

В подходящем варианте способ также включает выделение из упомянутого первого отходящего потока по меньшей мере части ароматического углеводорода, как правило, бензола и/или нафталина. Перед или после упомянутого выделения по меньшей мере часть ароматических соединений в упомянутом первом отходящем потоке может быть алкилирована алкилирующим агентом. В одном варианте алкилирующий агент представляет собой этилен, получаемый при упомянутом контактировании (а). В другом варианте алкилирующий агент включает моноксид углерода и водород или продукт их взаимодействия, где часть моноксида углерода может быть получена в результате упомянутого взаимодействия (б).

В одном варианте по меньшей мере часть бензола и/или нафталина, выделенного из первого отходящего водяного пара, взаимодействует с водородом из первого отходящего потока с образованием одного или нескольких из циклогексана, дигидронафталина (бензилциклогексена), тетрагидронафталина (тетралина), гексагидронафталина (дициклогексена), октагидронафталина и декагидронафталина (декалина).

В другом отношении в данной заявке описан способ превращения метана в более высокомолекулярные углеводороды, включая ароматические углеводороды, включающий:

(а) контактирование исходного материала, содержащего метан и СО и/или СО2, с катализатором дегидроциклизации в неокислительных условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и образования первого отходящего потока, включающего ароматические углеводороды и водород, где упомянутый первый отходящий поток включает по меньшей мере на 5 мас.% ароматических колец больше, чем упомянутый исходный материал;

(б) выделение из упомянутого первого отходящего потока по меньшей мере части ароматических углеводородов;

(в) взаимодействие по меньшей мере части водорода из упомянутого первого отходящего потока с СО2 с образованием второго отходящего потока, включающего воду и метан; и

(г) возврат по меньшей мере части метана из упомянутого второго отходящего потока на упомянутое контактирование (а).

Тем не менее в еще одном варианте в данной заявке описан способ превращения метана в более высокомолекулярные углеводороды, включая ароматические углеводороды, включающий:

(а) контактирование исходного материала, содержащего метан, с катализатором дегидроциклизации в неокислительных условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и образования первого отходящего потока, включающего ароматические углеводороды и водород, где упомянутый исходный материал содержит меньше 5 мас.% углеводородов С3+;

(б) выделение из упомянутого первого отходящего потока по меньшей мере части ароматических углеводородов;

(в) взаимодействие по меньшей мере части водорода из упомянутого первого отходящего потока с СО2 с образованием второго отходящего потока, включающего воду и метан; и

(г) возврат по меньшей мере части метана в упомянутом втором отходящем потоке на упомянутое контактирование (а).

В подходящем варианте упомянутый первый отходящий поток подвергают обработке на стадии алкилирования ароматических соединений для алкилирования по меньшей мере части ароматических углеводородов в упомянутом первом отходящем потоке перед упомянутым выделением (б).

Необходимо иметь в виду, что в настоящем описании ссылки на первый отходящий поток, включающий по меньшей мере на 5 мас.% ароматических колец больше, чем исходный материал, следует воспринимать как означающие, что общее количество ароматических колец в первом отходящем потоке должно превышать общее количество ароматических колец в исходном материале по меньшей мере на 5 мас.%. Так, например, если исходный материал содержит 1 мас.% ароматических колец, первый отходящий поток обычно содержит по меньшей мере 6 мас.% ароматических колец. Изменения среди заместителей на любых ароматических кольцах при переходе от исходного материала к первому отходящему потоку этими расчетами не охватываются.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На фиг.1 представлена блок-схема осуществления способа превращения метана в ароматические углеводороды в соответствии с первым примером по изобретению.

На фиг.2 представлена блок-схема осуществления способа превращения метана в ароматические углеводороды в соответствии с вторым примером по изобретению.

На фиг.3 представлена блок-схема осуществления способа превращения метана в ароматические углеводороды в соответствии с третьим примером по изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТОВ ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ

В данной заявке описан способ превращения метана в ароматические углеводороды обработкой исходного материала, содержащего метан, как правило, совместно с СО и/или СО2, на стадии дегидроциклизации в условиях, эффективных для превращения метана в ароматические углеводороды и образования первого отходящего потока, включающего ароматические углеводороды и водород, где первый отходящий поток включает по меньшей мере на 5 маc.% ароматических колец больше, чем исходный материал. Затем первый отходящий поток подвергают обработке на стадии снижения содержания водорода, на которой по меньшей мере часть водорода в упомянутом первом отходящем потоке вводят в реакцию с кислородсодержащими материалами с получением второго отходящего потока, обладающего пониженным содержанием водорода в сравнении с первым отходящим потоком. Из первого отходящего потока выделяют по меньшей мере часть ароматического углеводорода, такого как бензол, хотя при необходимости перед или после извлечения одной или нескольких фракций ароматических углеводородов первый отходящий поток может быть подвергнут обработке на стадии алкилирования ароматических соединений.

Исходный материал

В способе по изобретению можно использовать любой метансодержащий исходный материал, но в общем предлагаемый способ предусмотрен для применения с исходным природным газом. Другие приемлемые метансодержащие исходные материалы включают те, которые получают из таких источников, как угольные пласты, захоронения отходов, ферментация сельскохозяйственных или муниципальных отходов и/или газообразные потоки нефтепереработки.

Метансодержащие исходные материалы, такие как природный газ, как правило, содержат, в дополнение к метану, диоксид углерода и этан. Этан и другие алифатические углеводороды, которые могут содержаться в исходном материале, на стадии дегидроциклизации могут быть, разумеется, превращены в целевые ароматические продукты. Кроме того, как это обсуждается ниже, диоксид углерода может быть также превращен в полезные ароматические продукты либо непосредственно на стадии дегидроциклизации, либо косвенным путем, посредством превращения в метан и/или этан на стадии снижения содержания водорода.

Перед применением метансодержащих потоков в способе по изобретению азот- и/или серосодержащие примеси, которые также, как правило, находятся в этих потоках, могут быть удалены или их количество может быть уменьшено до низких концентраций. В одном из вариантов исходный материал, подаваемый на стадию дегидроциклизации, содержит меньше 100 ч./млн, например меньше 10 ч./млн, в частности меньше 1 ч./млн, каждого из соединений азота и серы.

В дополнение к метану, с целью содействовать уменьшению коксообразования в исходный материал, подаваемый на стадию дегидроциклизации, можно добавлять по меньшей мере одно из водорода, воды, моноксида углерода и диоксида углерода. Эти добавки могут быть введены в виде отдельных совместно подаваемых исходных материалов или могут находиться в метановом потоке, например таком как в случае, когда метановый поток дериватизируют из природного газа, включающего диоксид углерода. Другие источники диоксида углерода могут включать отходящие газы, установки СПГ, водородные установки, аммиачные установки, гликольные установки и фталевоангидридные установки.

В одном варианте исходный материал, подаваемый на стадию дегидроциклизации, содержит диоксид углерода и включает от 90 до 99,9 мольного %, в частности от 97 до 99 мольных %, метана и от 0,1 до 10 мольных %, в частности от 1 до 3 мольных %, СО2. В другом варианте исходный материал, подаваемый на стадию дегидроциклизации, содержит моноксид углерода и включает от 80 до 99,9 мольного %, в частности от 94 до 99 мольных %, метана и от 0,1 до 20 мольных %, в частности от 1 до 6 мольных %, СО. В еще одном варианте исходный материал, подаваемый на стадию дегидроциклизации, содержит водяной пар и включает от 90 до 99,9 мольного %, в частности от 97 до 99 мольных %, метана и от 0,1 до 10 мольных %, в частности от 1 до 5 мольных %, водяного пара. Однако в еще одном варианте исходный материал, подаваемый на стадию дегидроциклизации, содержит водород и включает от 80 до 99,9 мольного %, в частности от 95 до 99 мольных %, метана и от 0,1 до 20 мольных %, в частности от 1 до 5 мольных %, водорода.

Исходный материал, подаваемый на стадию дегидроциклизации, может также включать более высокомолекулярные углеводороды, чем метан, включая ароматические углеводороды. Такие более высокомолекулярные углеводороды могут быть возвращены в процесс со стадии снижения содержания водорода и добавлены в виде отдельных совместно подаваемых исходных материалов или могут находиться в метановом потоке, таком как, например, в случае, когда в исходном природном газе содержится этан. Более высокомолекулярные углеводороды, возвращаемые в процесс со стадии снижения содержания водорода, как правило, включают моноциклические ароматические соединения и/или парафины и олефины, содержащие преимущественно 6 или меньше, в частности 5 или меньше, например 4 или меньше, как правило, 3 или меньше, углеродных атомов. Обычно исходный материал, подаваемый на стадию дегидроциклизации, содержит меньше 5 мас.%, в частности меньше 3 мас.%, углеводородов С3+.

Дегидроциклизация

На стадии дегидроциклизации предлагаемого способа метансодержащий исходный материал вводят в контакт с катализатором дегидроциклизации в условиях, как правило, в неокислительных условиях, а предпочтительно в восстановительных условиях, эффективных для превращения метана в более высокомолекулярные углеводороды, включая бензол и нафталин. В принципе проводят следующие результирующие реакции:

2СН4↔С2H4+2Н2 (реакция 1)

6СН4↔С6Н6+9Н2 (реакция 2)

10СН4↔C10H8+16Н2 (реакция 3)

Моноксид и/или диоксид углерода, который может находиться в исходном материале, повышает активность и стабильность катализатора содействием протеканию реакций, таких как:

СО2+кокс→2СО (реакция 4)

но негативно влияет на равновесие, позволяя протекать параллельным результирующим реакциям, таким как:

СО2+СН4↔СО+2Н2 (реакция 5).

В способе по изобретению можно использовать любой катализатор дегидроциклизации, эффективный для превращения метана в ароматические соединения, хотя обычно катализатор включает металлический компонент, в особенности переходный металл или его соединение, на неорганическом носителе. В подходящем варианте металлический компонент содержится в количестве в пределах от 0,1 до 20%, в частности в пределах от 1 до 10 мас.%, в пересчете на массу катализатора.

Приемлемые для катализатора металлические компоненты включают кальций, магний, барий, иттрий, лантан, скандий, церий, титан, цирконий, гафний, ванадий, ниобий, тантал, хром, молибден, вольфрам, марганец, рений, железо, рутений, кобальт, родий, иридий, никель, палладий, медь, серебро, золото, цинк, алюминий, галлий, кремний, германий, индий, олово, свинец, висмут и трансурановые металлы. Такие металлические компоненты могут содержаться в форме свободных элементов или в виде соединений металлов, таких как оксиды, карбиды, нитриды и/или фосфиды, и их можно использовать самостоятельно или в сочетании. В качестве одного из металлических компонентов могут быть также использованы платина и осмий, но обычно они не предпочтительны.

Неорганический носитель может быть либо аморфным, либо кристаллическим и, в частности, может представлять собой оксид, карбид или нитрид бора, алюминия, кремния, фосфора, титана, скандия, хрома, ванадия, магния, марганца, железа, цинка, галлия, германия, иттрия, циркония, ниобия, молибдена, индия, олова, бария, лантана, гафния, церия, тантала, вольфрама или других трансурановых элементов. Кроме того, носителем может быть пористый материал, такой как микропористый и мезопористый кристаллический материал. Используемое в настоящем описании понятие "микропористый" относится к порам, обладающим диаметром меньше 2 нм, тогда как понятие "мезопористый" относится к порам, обладающим диаметром от 2 до 50 нм.

Приемлемые микропористые кристаллические материалы включают силикаты, алюмосиликаты, титаносиликаты, алюмофосфаты, металлофосфаты, кремнеалюмофосфаты и их смеси. Такие микропористые кристаллические материалы включают материалы, обладающие каркасами типов MFI (например, ZSM-5 и силикалит), MEL (например, ZSM-11), MTW (например, ZSM-12), TON (например, ZSM-22), МТТ (например, ZSM-23), FER (например, ZSM-35), MFS (например, ZSM-57), MWW (например, МСМ-22, PSH-3, SSZ-25, ERB-1, ITQ-1, ITQ-2, МСМ-36, МСМ-49 и МСМ-56), IWR (например, ITQ-24), KFI (например, ZK-5), ВЕА (например, бета-цеолит), ITH (например, ITQ-13), MOR (например, морденит), FAU (например, цеолиты X, Y, ультрастабилизированный Y и деалюминированный Y), LTL (например, цеолит L), IWW (например, ITQ-22), VFI (например, VPI-5), AEL (например, SAPO-11), AFI (например, ALPO-5) и AFO (SAPO-41), а также такие материалы, как МСМ-68, EMM-1, EMM-2, ITQ-23, ITQ-24, ITQ-25, ITQ-26, ETS-2, ETS-10, SAPO-17, SAPO-34 и SAPO-35. Приемлемые мезопористые материалы включают МСМ-41, МСМ-48, МСМ-50 и SBA-15.

Примеры предпочтительных катализаторов включают молибден, вольфрам, рений и их соединения и сочетания на ZSM-5, диоксиде кремния или оксиде алюминия.

Металлический компонент может быть диспергирован на неорганическом носителе с помощью любого средства, хорошо известного в данной области техники, такого как соосаждение, пропитка до начальной влажности, выпаривание, обычная пропитка, распылительная сушка, золь-гелевое, ионообменное, химическое паровое осаждение, диффузионное и физическое смешение. Кроме того, неорганический носитель может быть модифицирован по известным методам, таким как, например, обработка водяным паром, кислотная промывка, промывка каустической содой и/или обработка кремнийсодержащими соединениями, фосфорсодержащими соединениями и/или элементами или соединениями элементов групп 1, 2, 3 и 13 Периодической таблицы элементов. Такие модификации можно использовать для изменения поверхностной активности носителя и препятствия или улучшения доступа к любой внутренней пористой структуре носителя.

Стадия дегидроциклизации может быть осуществлена в широком диапазоне условий, включая температуру от 400 до 1200°С, в частности от 500 до 975°С, например от 600 до 950°С, давление от 1 до 1000 кПа, в частности от 10 до 500 кПа, например от 50 до 200 кПа, и среднечасовую скорость подачи сырья от 0,01 до 1000 ч-1, в частности от 0,1 до 500 ч-1, например от 1 до 20 ч-1. В подходящем варианте стадию дегидроциклизации осуществляют в отсутствие О2.

Стадия дегидроциклизации может быть осуществлена в реакторах с одним или несколькими неподвижными слоями, подвижными слоями или с псевдоожиженными слоями с регенерированием катализатора, проводимом in situ или ex-situ воздухом, кислородом, диоксидом углерода, моноксидом углерода, водой, водородом или их сочетаниями.

Реакция дегидроциклизации является эндотермической, и, следовательно, когда эту реакцию проводят в несколько стадий, для возврата исходного материала к требуемой реакционной температуре может оказаться необходимым применение межстадийного нагрева. Топливо, требующееся для того чтобы обеспечить межстадийный нагрев, может быть с успехом получено удалением и сжиганием отводного потока из отходящего из дегидроциклизации потока после выделения ароматических компонентов и/или алкилированных ароматических компонентов. Кроме того, когда реакция протекает в присутствии подвижного слоя катализатора, часть или все тепло может быть обеспечено удалением из слоя части катализатора, нагреванием катализатора путем, например, сжигания кокса на катализаторе и затем возвратом нагретого катализатора в подвижный каталитический слой.

Основными компонентами отходящего со стадии дегидроциклизации потока являются водород, бензол, нафталин, моноксид углерода, этилен и непрореагировавший метан. Этот отходящий поток, как правило, включает по меньшей мере на 5 мас.%, в частности по меньшей мере на 10 мас.%, например по меньшей мере на 20 мас.%, предпочтительно по меньшей мере на 30 мас.%, ароматических колец больше, чем исходный материал.

Затем из отходящего из дегидроциклизации потока выделяют бензол и нафталин, например экстракцией растворителем с последующим разделением на фракции. Однако, как это обсуждается ниже, перед или после извлечения продуктов по меньшей мере часть этих ароматических компонентов может быть обработана на стадии алкилирования с получением более ценных материалов, таких как ксилолы.

Снижение содержания водорода

Поскольку водород является основным компонентом отходящего из дегидроциклизации потока, после извлечения ароматических продуктов отходящий поток подвергают обработке на стадии снижения содержания водорода с целью понизить содержание водорода в отходящем потоке перед возвратом непрореагировавшего метана на стадию дегидроциклизации и максимизировать утилизацию исходного материала. Стадия снижения содержания водорода, как правило, включает реакцию по меньшей мере части водорода в отходящем из дегидроциклизации потоке с кислородсодержащими материалами, предпочтительно СО и/или СО2, с получением воды и второго отходящего потока, обладающего более низким содержанием водорода в сравнении с первым отходящим (из дегидроциклизации) потоком.

В подходящем варианте стадия снижения содержания водорода включает (I) метанирование и/или этанирование, (II) процесс Фишера-Тропша, (III) синтез спиртов с C1 по С3, в особенности метанола, и других оксигенатов, (IV) синтез легких олефинов, парафинов и/или ароматических соединений посредством метанола или диметилового эфира как промежуточного продукта и/или (V) селективное сжигание водорода. Для достижения наибольшей эффективности эти стадии можно осуществлять последовательно; например, вначале может быть проведен процесс Фишера-Тропша с получением обогащенного С2+ потока с последующим метанированием для достижения высокой степени превращения Н2.

На стадии снижения содержания водорода обычно, как правило, так, как изложено ниже, образуются углеводороды, причем в этом случае после выделения одновременно получаемой воды по меньшей мере часть углеводородов целесообразно возвращать на стадию дегидроциклизации. Так, например, когда углеводороды, получаемые на стадии снижения содержания водорода, включают парафины и олефины, часть, возвращаемая на стадию дегидроциклизации, обычно включает парафины или олефины с 6 или меньшим числом углеродных атомов, в частности с 5 или меньшим числом углеродных атомов, например с 4 или меньшим числом углеродных атомов или с 3 или меньшим числом углеродных атомов. Когда углеводороды, получаемые на стадии снижения содержания водорода, включают ароматические соединения, часть, возвращаемая на стадию дегидроциклизации, обычно включает моноциклические ароматические материалы.

Метанирование/этанирование

В одном варианте стадия снижения содержания водорода включает реакцию по меньшей мере части водорода в отходящем из дегидроциклизации потоке с диоксидом углерода с получением метана и/или этана в соответствии со следующими результирующими реакциями:

СО2+4H2↔СН4+2Н2О (реакция 6)

2CO2+7Н2↔С2Н6+4H2O (реакция 7)

В целесообразном варианте используемый диоксид углерода является частью потока природного газа, а предпочтительно того же потока природного газа, который используют как исходный материал, подаваемый на стадию дегидроциклизации. Когда диоксид углерода является частью метансодержащего потока, СО2/СН4 этого потока в целесообразном варианте сохраняют в пределах от 1/1 до 0,1/1. Смешение содержащего диоксид углерода потока и отходящего из дегидроциклизации потока в целесообразном варианте добиваются подачей газообразных исходных материалов во впускное приспособление струйного насоса.

На стадии снижения содержания водорода с получением метана или этана, как правило, используют молярное соотношение Н2/СО2, близкое к стехиометрическим пропорциям, требуемым для целевой реакции 6 или реакции 7, хотя, если необходимо получить содержащий CO2 или содержащий Н2 второй отходящий поток, в стехиометрическое соотношение могут быть внесены небольшие изменения. Стадию снижения содержания водорода с получением метана или этана в целесообразном варианте осуществляют в присутствии бифункционального катализатора, включающего металлический компонент, в особенности переходный металл или его соединение, на неорганическом носителе. Приемлемые металлические компоненты включают медь, железо, ванадий, хром, цинк, галлий, никель, кобальт, молибден, рутений, родий, палладий, серебро, рений, вольфрам, иридий, платину, золото, галлий и их сочетания и соединения. Неорганическим носителем может быть аморфный материал, такой как диоксид кремния, оксид алюминия и диоксид кремния/оксид алюминия, или подобный тем, которые перечислены для катализатора дегидроароматизации. Кроме того, неорганическим носителем может быть кристаллический материал, такой как микропористый или мезопористый кристаллический материал. Приемлемые пористые кристаллические материалы включают алюмосиликаты, алюмофосфаты и кремнеалюмофосфаты, перечисленные выше для катализатора дегидроциклизации.

Стадия снижения содержания водорода с получением метана и/или этана может быть осуществлена в широком диапазоне условий, включая температуру от 100 до 900°С, в частности от 150 до 500°С, например от 200 до 400°С, давление от 200 до 20000 кПа, в частности от 500 до 5000 кПа, и среднечасовую скорость подачи сырья от 0,1 до 10000 ч-1, в частности от 1 до 1000 ч-1. Значения степени превращения СО2, как правило, находятся в пределах от 20 до 100%, а предпочтительно больше 90%, в частности больше 99%. Эту экзотермическую реакцию можно проводить во множестве каталитических слоев с отводом тепла между слоями. Кроме того, для того чтобы максимизировать кинетические скорости, процесс в переднем слое (слоях) можно проводить при более высоких температурах, а для того чтобы максимизировать термодинамическое превращение, в последнем слое (слоях) его можно проводить при более низких температурах.

Основными продуктами реакции являются вода и, в зависимости от молярного соотношения Н2/СО2, метан, этан и более высокомолекулярные алканы совместно с некоторыми ненасыщенными С2- и более высокомолекулярными углеводородами. Кроме того, предпочтительна некоторая частичная гидрогенизация диоксида углерода до моноксида углерода. После удаления воды метан, моноксид углерода, весь непрореагировавший диоксид углерода и более высокомолекулярные углеводороды можно направлять непосредственно на стадию дегидроциклизации для получения дополнительных ароматических продуктов.

Процесс Фишера-Тропша

В другом варианте стадия снижения содержания водорода включает реакцию по меньшей мере части водорода в отходящем из дегидроциклизации потоке с моноксидом углерода в соответствии с процессом Фишера-Тропша с получением парафинов и олефинов с С2 по C5.

Процесс Фишера-Тропша в данной области техники известен хорошо (см., например, патенты US №№5348982 и 5545674, включенные в настоящее описание в качестве ссылок). Этот процесс, как правило, включает реакцию водорода и моноксида углерода в молярном соотношении от 0,5/1 до 4/1, предпочтительно от 1,5/1 до 2,5/1, при температуре от 175 до 400°С, предпочтительно от 180 до 240°С, и под давлением от 1 до 100 бар (от 100 до 10000 кПа), предпочтительно от 10 до 40 бар (от 1000 до 4000 кПа), в присутствии катализатора Фишера-Тропша, обычно нанесенного или не нанесенного на носитель элемента группы VIII, неблагородного металла, например Fe, Ni, Ru, Co, с промотором или без него, например рутения, рения, гафния, циркония, титана. Носителями, когда их используют, могут служить огнеупорные оксиды металлов, таких как группы IVB, т.е. диоксид титана, диоксид циркония или диоксид кремния, оксид алюминия или диоксид кремния/оксид алюминия. В одном варианте катализатор включает не вызывающий конверсии катализатор, например кобальт или рутений, предпочтительно кобальт, с рением или цирконием в качестве промотора, предпочтительно с кобальтом и рением, нанесенными на диоксид кремния или диоксид титана, предпочтительно диоксид титана.

В другом варианте катализатор синтеза углеводородов включает металл, такой как Сu, Cu/Zn и Cr/Zn, на ZSM-5, и процесс проводят до получения значительных количеств моноциклических ароматических углеводородов. Пример такого процесса описан в работе Jose Erena Study of Physical Mixtures of Cr2O3-ZnO and ZSM-5 Catalysts for the Transformation of Syngas into Liquid Hydrocarbons; Ind. Eng. Chem. Res. 1998, 37, 1211-1219, включенной в настоящее описание в качестве ссылки.

Выделяют жидкости Фишера-Тропша, т.е. С5+, и от более тяжелых углеводородов отделяют легкие газы, например непрореагировавшие водород и СО, с С1 по С3 или С4 и воду. Затем более тяжелые углеводороды могут быть выделены как продукты или направлены на стадию дегидроциклизации для получения дополнительных ароматических продуктов.

Наличие моноксида углерода, требующегося для реакции Фишера-Тропша, может быть полностью или частично обеспечено благодаря имеющемуся или совместно подаваемому с метансодержащим исходным материалом и полученному в качестве побочного продукта на стадии дегидроциклизации моноксиду углерода. Если необходимо, дополнительный моноксид углерода может быть генерирован за счет подачи диоксида углерода, содержащегося, например, в природном газе, к катализатору конверсии, благодаря чему моноксид углерода получают обратной реакцией конверсии водяного газа:

СО22↔СО+Н2О (реакция 8)

и следующей реакцией:

СН4+H2O↔СО+3Н2

Синтез спиртов

В еще одном варианте стадия снижения содержания водорода включает реакцию по меньшей мере части водорода в отходящем из дегидроциклизации потоке с моноксидом углерода с получением спиртов с C1 по С3, в особенности метанола. Получение метанола и других оксигенатов из синтез-газа также хорошо известно и представлено, например, в патентах US №№6114279, 6054497, 5767039, 5045520, 5254520, 5610202, 4666945, 4455394, 4565803, 5385949, описания к которым включены в настоящее описание в качестве ссылок. Используемый синтез-газ, как правило, обладает молярным отношением водорода (H2) к оксидам углерода (СО+СО2) в интервале от 0,5/1 до 20/1, предпочтительно в интервале от 2/1 до 10/1, причем диоксид углерода необязательно содержится в количестве не больше 50 мас.% в пересчете на общую массу синтез-газа.

Катализатор, используемый в процессе синтеза метанола, обычно включает оксид по меньшей мере одного элемента, выбранного из группы, включающей медь, серебро, цинк, бор, магний, алюминий, ванадий, хром, марганец, галлий, палладий, осмий и цирконий. В подходящем варианте катализатор представляет собой катализатор на основе меди, в частности в форме оксида меди, необязательно в присутствии оксида по меньшей мере одного элемента, выбранного из серебра, цинка, бора, магния, алюминия, ванадия, хрома, марганца, галлия, палладия, осмия и циркония. В подходящем варианте катализатор содержит оксид меди и оксид по меньшей мере одного элемента, выбранного из цинка, магния, алюминия, хрома и циркония. В одном варианте катализатор синтеза метанола выбирают из группы, включающей оксиды меди, оксиды цинка и оксиды алюминия. В более предпочтительном варианте катализатор содержит оксиды меди и цинка.

Процесс синтеза метанола может быть осуществлен в широком интервале температур и давлений. Приемлемые температуры находятся в интервале от 150 до 450°С, в частности от 175 до 350°С, например от 200 до 300°С. Приемлемые давления находятся в интервале от 1500 до 12500 кПа, в частности от 2000 до 10000 кПа, например от 2500 до 7500 кПа. Среднечасовые скорости подачи газа варьируют в зависимости от типа процесса, который проводят, но обычно среднечасовая скорость подачи газа в потоке газа через каталитический слой находится в интервале от 50 до 50000 ч-1, в частности от 250 до 25000 ч-1, более предпочтительно от 500 до 10000 ч-1. Эту экзотермическую реакцию можно проводить либо в неподвижных, либо в псевдоожиженных слоях, включающих множество каталитических слоев, с отводом тепла между слоями. Кроме того, для того чтобы максимизировать кинетические скорости, процесс в переднем слое (слоях) можно проводить при более высоких температурах, а для того чтобы максимизировать термодинамическое превращение, в последнем слое (слоях) его можно проводить при более низких температурах.

Получаемый метанол и/или другие оксигенаты могут быть направлены на продажу как самостоятельный продукт, их можно использовать для алкилирования ароматических соединений, образующихся на стадии дегидроциклизации, до более высокоценных продуктов, таких как ксилолы, или можно использовать в качестве исходного материала для получения более низкомолекулярных олефинов, в особенности этилена и пропилена. Превращение метанола в олефины является хорошо известным процессом, который описан, например, в патенте US №4499327, включенном в настоящее описание в качестве ссылки.

Селективное сжигание водорода

Тем не менее в еще одном варианте стадия снижения содержания водорода включает селективное сжигание водорода, которое представляет собой процесс, в котором водород в смешанном потоке взаимодействует с кислородом с образованием воды или водяного пара без существенного взаимодействия в потоке углеводородов с кислородом с получением моноксида углерода, диоксида углерода и/или оксигенированных углеводородов. Обычно селективное сжигание водорода проводят в присутствии кислородсодержащего твердого материала, такого как смешанный оксид металла, который обычно высвобождает часть связанного кислорода для водорода.

Один приемлемый способ селективного сжигания водорода описан в патенте US №5430210, включенном в настоящее описание в качестве ссылки, он включает контактирование в реакционных условиях первого потока, включающего углеводород и водород, и второго потока, включающего кислород, с раздельными поверхностями мембраны, непроницаемой для не содержащих кислорода газов, где упомянутая мембрана включает оксид металла, селективный в отношении сжигания водорода, и выделение продукта селективного сжигания водорода. Этот оксид металла, как правило, представляет собой смешанный оксид металла висмута, индия, сурьмы, таллия и/или цинка.

В патенте US №5527979, включенном в настоящее описание в качестве ссылки, описан способ чистой каталитической окислительной дегидрогенизации алканов с получением алкенов. Этот способ включает одновременную равновесную дегидрогенизацию алканов до алкенов и селективное сжигание образующегося водорода для проведения равновесной реакции дегидрогенизации с получением алкенов. Так, в частности, алкановый исходный материал дегидрируют над катализатором равновесной дегидрогенизации в первом реакторе, а затем отходящий из первого реактора поток совместно с кислородом направляют во второй реактор, содержащий катализатор из оксида металла, который служит для катализа селективного сжигания водорода. Катализатор равновесной дегидрогенизации может включать платину, а катализатор селективного сжигания из оксида металла может включать висмут, сурьму, индий, цинк, таллий, свинец и теллур или их смесь.

В заявке на патент US №2004/0152586, опубликованной 5 августа 2004 г. и включенной в настоящее описание в качестве ссылки, описан способ снижения содержания водорода в отходящем из крекинг-установки потоке. В этом способе используют каталитическую систему, включающую (1) по меньшей мере один твердый кислотный компонент крекинга и (2) по меньшей мере один компонент селективного сжигания водорода на металлической основе, состоящий по существу из (а) сочетания металлов, выбранных из группы, включающей:

I) по меньшей мере один металл из группы 3 и по меньшей мере один металл из групп с 4 по 15 Периодической таблицы элементов;

II) по меньшей мере один металл из групп с 5 по 15 Периодической таблицы элементов и по меньшей мере один металл из по меньшей мере одной из групп 1, 2 и 4 Периодической таблицы элементов;

III) по меньшей мере один металл из групп 1 и 2, по меньшей мере один металл из группы 3 и по меньшей мере один металл из групп с 4 по 15 Периодической таблицы элементов; и

IV) два или большее число металлов из групп с 4 по 15 Периодической таблицы элементов;

и (б) по меньшей мере одного из кислорода и серы, где этот по меньшей мере один из кислорода и серы химически связан как внутри, так и между металлами.

Реакцию селективного сжигания водорода по настоящему изобретению обычно проводят при температуре в интервале от 300 до 850°С и под давлением в интервале от 1 до 20 ат (от 100 до 2000 кПа).

Выделение/обработка ароматических продуктов

Основными продуктами стадии дегидроциклизации являются бензол и нафталин. Эти продукты могут быть выделены из отходящего из дегидроциклизации потока, как правило, экстракцией растворителем с последующим разделением на фракции, а затем поставлены для продажи непосредственно как химические продукты массового производства. По другому варианту некоторое количество или весь бензол и/или нафталин может быть алкилирован с получением, например, толуола, ксилолов и алкилнафталинов и/или может быть подвергнут гидрогенизации с получением, например, циклогексана, циклогексена, дигидронафталина (бензилциклогексена), тетрагидронафталина (тетралина), гексагидронафталина (дициклогексена), октагидронафталина и/или декагидронафталина (декалина).

Алкилирование ароматических соединений

Алкилирование ароматических соединений, таких как бензол и нафталин, в данной области техники хорошо известно и, как правило, включает реакцию олефина, спирта или алкилгалогенида с ароматическими материалами в газообразной или жидкой фазе в присутствии кислотного катализатора. Приемлемые кислотные катализаторы включают цеолиты со средними порами (т.е. те, которые обладают ограничивающим показателем от 2 до 12, как определено в US №4016218), включая материалы, обладающие каркасами типов MFI (например, ZSM-5 и силикалит), MEL (например, ZSM-11), MTW (например, ZSM-12), TON (например, ZSM-22), МТТ (например, ZSM-23), MFS (например, ZSM-57), FER (например, ZSM-35) и ZSM-48, а также цеолиты с крупными порами (т.е. те, которые обладают ограничивающим показателем меньше 2), такие как материалы, обладающие каркасами типов ВЕА (например, бета-цеолит), FAU (например, ZSM-3, ZSM-20, цеолиты X, Y, ультрастабилизированный Y и деалюминированный Y), MOR (например, морденит), MAZ (например, ZSM-4), MEI (например, ZSM-18) и MWW (например, МСМ-22, PSH-3, SSZ-25, ERB-1, ITQ-1, ITQ-2, МСМ-36, МСМ-49 и МСМ-56).

В одном варианте предлагаемого способа бензол выделяют из отходящего из дегидроциклизации потока и затем алкилируют олефином, таким как этилен, получаемый в качестве побочного продукта на стадии снижения содержания водорода с применением этанирования/метанирования. Типичные условия проведения парофазного алкилирования бензола этиленом включают температуру от 650 до 900°F (от 343 до 482°С), манометрическое давление от атмосферного до 3000 фунтов/кв.дюйм (от 100 до 20800 кПа), ССПС в пересчете на этилен от 0,5 до 2,0 ч-1 и мольное отношение бензола к этилену от 1/1 до 30/1. Жидкофазное алкилирование бензола этиленом можно проводить при температуре в пределах от 300 до 650°F (от 150 до 340°С), под манометрическим давлением до примерно 3000 фунтов/кв.дюйм (20800 кПа), ССПС в пересчете на этилен от 0,1 до 20 ч-1 и при мольном отношении бензола к этилену от 1/1 до 30/1.

В предпочтительном варианте этилирование бензола проводят в условиях по меньшей мере частично жидкой фазы с использованием катализатора, включающего по меньшей мере один из бета-цеолита, цеолита Y, MCM-22, PSH-3, SSZ-25, ERB-1, ITQ-1, ITQ-2, ITQ-13, ZSM-5, МСМ-36, МСМ-49 и МСМ-56.

Этилирование бензола может быть осуществлено по месту процесса дегидроциклизации/снижения содержания водорода или бензол может быть транспортирован в другой регион для превращения в этилбензол. Затем полученный этилбензол может быть поставлен для продажи, использован как предшественник, например при получении стирола, или изомеризован по методам, хорошо известным в данной области техники, в смешанные ксилолы.

В другом варианте предлагаемого способа алкилирующий агент представляет собой метанол или диметиловый эфир (ДМЭ), его используют для алкилирования бензола и/или нафталина, выделяемого из отходящего из дегидроциклизации потока, с получением толуола, ксилолов, метилнафталинов и/или диметилнафталинов. Когда метанол или ДМЭ используют для алкилирования бензола, в целесообразном варианте это осуществляют в присутствии катализатора, включающего цеолит, такой как ZSM-5, бета-цеолит, ITQ-13, MCM-22, МСМ-49, ZSM-11, ZSM-12, ZSM-22, ZSM-23, ZSM-35 и ZSM-48, который предварительно модифицируют обработкой водяным паром таким образом, чтобы он обладал диффузионным параметром для 2,2-диметилбутана примерно от 0,1 до 15 с-1, когда его определяют при температуре 120°С и давлении 2,2-диметилбутана 60 торр (8 кПа). Такой способ селективен в отношении получения параксилола, он изложен, например, в патенте US №6504272, включенном в настоящее описание в качестве ссылки. Когда метанол используют для алкилирования нафталина, в целесообразном варианте это осуществляют в присутствии катализатора, включающего ZSM-5, MCM-22, PSH-3, SSZ-25, ERB-1, ITQ-1, ITQ-2, ITQ-13, МСМ-36, МСМ-49 или МСМ-56. Такой способ можно применять для селективного получения 2,6-диметилнафталина, он изложен, например, в патентах US №№4795847 и 5001295, включенных в настоящее описание в качестве ссылок.

Когда в способе по изобретению в качестве алкилирующего агента используют метанол или ДМЭ, его можно вводить в процесс как отдельный исходный материал или он может быть по меньшей мере частично получен in situ добавлением содержащего диоксид углерода газообразного исходного материала, такого как поток природного газа, в часть или весь отходящий со стадии дегидроциклизации поток. Так, в частности, отходящий из дегидроциклизации поток перед каким-либо выделением ароматических компонентов можно направлять в реактор обратной конверсии и проводить реакцию с содержащим диоксид углерода исходным материалом в условиях повышения содержания моноксида углерода в этом отходящем потоке, т.е. такими реакциями, как вышеприведенные реакции 5 и 8.

Кроме того, в реактор обратной конверсии можно направлять метан и СО2 и/или водяной пар с получением синтез-газа, который затем может быть смешан с частью отходящего из дегидроциклизации потока для регулирования соотношений Н2/СО/СО2 в зависимости от потребности для стадии алкилирования.

Как правило, реактор обратной конверсии содержит катализатор, включающий переходный металл на носителе, такой как Fe, Ni, Cr, Zn на оксиде алюминия, диоксиде кремния или диоксиде титана, и работает в условиях, включающих температуру от 500 до 1200°С, в частности от 600 до 1000°С, например от 700 до 950°С, и давление от 1 до 10000 кПа, в частности от 2000 до 10000 кПа, например от 3000 до 5000 кПа. Среднечасовые скорости подачи газа можно варьировать в зависимости от типа применяемого способа, но обычно среднечасовая скорость подачи газа в потоке газа через каталитический слой находится в интервале от 50 до 50000 ч-1, в частности от 250 до 25000 ч-1, более предпочтительно от 500 до 10000 ч-1.

Затем отходящий из реактора обратной конверсии поток может быть направлен в реактор алкилирования, работающий в условиях, обеспечивающих протекание таких реакций, как следующие:

СО+2Н2↔СН3ОН (реакция 9)

СН3ОН+С6Н6↔толуол+Н2O (реакция 10)

2СН3ОН+С6Н6↔ксилолы+2H2O (реакция 11)

Приемлемые для такого реактора условия алкилирования включают, по-видимому, температуру от 100 до 700°С, давление от 1 до 300 ат (от 100 до 30000 кПа) и ССПС для ароматического углеводорода от 0,01 до 100 ч-1. Приемлемый катализатор включает, по-видимому, молекулярное сито, обладающее ограничивающим показателем от 1 до 12, такое как ZSM-5, как правило, совместно с одним из металлов или оксидов металлов, таких как медь, хром и/или оксид цинка.

Когда в предпочтительном варианте катализатор алкилирования включает молекулярное сито, это последнее модифицируют для изменения его диффузионных характеристик таким образом, чтобы превалирующим изомером ксилола, получаемого реакцией 11, был параксилол. Приемлемое средство диффузионной модификации включает обработку водяным паром и осаждение ex-situ или in situ соединений кремния, кокса, оксидов металлов, таких как MgO, и/или Р на поверхности или на входах в поры молекулярного сита. Предпочтительно также то, что активный металл вводят в молекулярное сито таким образом, чтобы обеспечить насыщение более высокореакционноспособных материалов, таких как олефины, которые могут быть образованы в качестве побочных продуктов и которые в противном случае могли бы вызвать дезактивацию катализатора.

Затем отходящий из реактора алкилирования поток можно было бы направить в секцию разделения, в которой ароматические продукты вначале отделяли бы от водорода и других низкомолекулярных материалов, целесообразно экстракцией растворителем. Далее ароматические продукты можно было бы разделить на бензольную фракцию, толуольную фракцию, С8фракцию и тяжелую фракцию, включающую нафталин и алкилированные нафталины. Затем ароматическая С8фракция могла бы быть направлена в процесс кристаллизации или сорбции для отделения ценного п-ксилольного компонента, а оставшиеся смешанные ксилолы либо поставлены для продажи как продукт, либо направлены в контур изомеризации для получения дополнительного количества п-ксилола. Толуольная фракция могла бы быть либо удалена как находящий сбыт продукт, либо возвращена в реактор алкилирования, либо направлена в установку диспропорционирования толуола, а предпочтительно в установку селективного диспропорционирования толуола для получения дополнительного количества п-ксилола.

Гидрогенизация ароматических соединений

В дополнение к стадии алкилирования или вместо нее по меньшей мере часть ароматических компонентов в отходящем из дегидроциклизации потоке может быть гидрирована с получением полезных продуктов, таких как циклогексан, циклогексен, дигидронафталин (бензилциклогексен), тетрагидронафталин (тетралин), гексагидронафталин (дициклогексен), октагидронафталин и/или декагидронафталин (декалин). Эти продукты можно использовать в качестве топлив и химических промежуточных продуктов, а в случае тетралина и декалина эти последние можно использовать в качестве растворителя для экстракции из отходящего из дегидроциклизации потока ароматических компонентов.

Гидрогенизацию целесообразно, но необязательно, проводить после выделения из отходящего из дегидроциклизации потока ароматических компонентов и целесообразно использовать часть водорода, образуемого реакцией дегидроциклизации. Приемлемые способы гидрогенизации ароматических соединений в данной области техники известны хорошо, и в них, как правило, используют катализатор, включающий Ni, Pd, Pt, Ni/Mo или сульфидированные Ni/Mo, нанесенные на оксид алюминия или диоксид кремния как носитель. Приемлемые для процесса гидрогенизации рабочие условия включают температуру от 300 до 1000°F (от 150 до 540°С), в частности от 500 до 700°F (от 260 до 370°С), манометрическое давление от 50 до 2000 фунтов/кв.дюйм (от 445 до 13890 кПа), в частности от 100 до 500 фунтов/кв.дюйм (от 790 до 3550 кПа), и ССПС от 0,5 до 50 ч-1, в частности от 2 до 10 ч-1.

Для того чтобы получить материалы, приемлемые для полимеризации или другого последующего химического превращения, может оказаться также необходимой частичная гидрогенизация с целью оставить в продукте одну или несколько олефиновых углерод-углеродных связей. Приемлемые способы частичной гидрогенизации в данной области техники известны хорошо, и в них, как правило, используют катализатор, включающий благородные металлы, причем рутений в предпочтительном варианте наносят на оксиды металлов, такие как La2O3/ZnO. Могут быть также использованы гомогенные каталитические системы с благородными металлами. Примеры способов частичной гидрогенизации описаны в патентах US №№4678861, 4734536, 5457251, 5656761, 5969202 и 5973218, содержания которых в полном объеме включены в настоящее описание в качестве ссылок.

Альтернативный способ гидрогенизации включает гидрокрекинг низкого давления нафталинового компонента с получением алкилбензолов над таким катализатором, как сульфидированные Ni/W или сульфидированный Ni, нанесенный на аморфный алюмосиликат или цеолит, такой как цеолит X, цеолит Y и бета-цеолит. Приемлемые для гидрокрекинга низкого давления рабочие условия включают температуру от 300 до 1000°F (от 150 до 540°С), в частности от 500 до 700°F (от 260 до 370°С), манометрическое давление от 50 до 2000 фунтов/кв.дюйм (от 445 до 13890 кПа), в частности от 100 до 500 фунтов/кв.дюйм (от 790 до 3550 кПа), и ССПС от 0,5 до 50 ч-1, в частности от 2 до 10 ч-1.

Если теперь обратиться к чертежам, то первый пример по изобретению представлен на фиг.1, на которой исходный природный газ 11 совместно с рецикловым потоком 12 из реактора 13 восстановительного сочетания направляют в реактор 14 метанирования. В реакторе 14 метанирования диоксид углерода в исходном материале 11 взаимодействует с водородом в рецикловом потоке 12 с повышением концентрации метана в исходном материале 11 и образованием в качестве побочного продукта воды в соответствии с приведенной выше реакцией 6. Отходящий поток 15 из реактора 14 метанирования направляют в конденсатор 16, где удаляют воду 17, а затем оставшийся отходящий поток направляют в печь 18, где температуру отходящего потока перед подачей в реактор 13 восстановительного сочетания повышают. Отводной поток 19 из рециклового потока 12 направляют в печь 18 для обеспечения топливом печи.

В реакторе 13 метан в исходном природном газе дегидроциклизуют с получением водорода и ароматических соединений, таких как бензол и нафталин, вышеприведенными реакциями 2 и 3, а также побочных продуктов, таких как этилен и моноксид углерода, в результате вышеприведенных реакций 1, 4 и 5. Как правило, несколько реакторов 13 соединяют последовательно с печью 18, предусмотренной между последовательными реакторами 13 для поддержания целевой температуры исходного материала, поскольку он участвует в эндотермической реакции дегидроциклизации в реакторах 13.

Отходящий поток 21 из реактора (реакторов) 13 восстановительного сочетания направляют в колонну 22 экстракции растворителем, в которой ароматические соединения растворяют и удаляют в виде потока 23 нижней фракции, в то время как остаток отходящего потока (включающий водород, моноксид углерода, этан, этилен и непрореагировавший метан) направляют в виде верхней фракции из колонны 22 как рецикловый поток 12. Затем поток 23 нижней фракции направляют в одну или несколько фракционирующих колонн 24, где поток 23 разделяют на бензолсодержащую фракцию 25, нафталинсодержащую фракцию 26 и фракцию 27 растворителя. Фракцию 27 растворителя возвращают в колонну 22.

В модификации (не показана) варианта, представленного на фиг.1, отходящий поток 21 из реактора (реакторов) 13 восстановительного сочетания охлаждают для конденсации части ароматического компонента, а затем перед подачей в экстракционную колонну 22 остающийся отходящий поток сжимают.

Если теперь обратиться к фиг.2, то в способе второго примера по изобретению газообразный поток 31, содержащий CO2 и, возможно, метан, направляют в реактор 32 обратной конверсии совместно с богатым водородом содержащим ароматические соединения отходящим из реактора 33 восстановительного сочетания потоком. В реакторе 32 обратной конверсии диоксид углерода взаимодействует с метаном с образованием моноксида углерода и водорода благодаря таким реакциям, как вышеприведенная реакция 5. Затем отходящий из реактора 32 поток направляют в реактор 34 алкилирования, в котором бензол и нафталин, получаемые в реакторе 33 восстановительного сочетания, алкилируют в соответствии с такими реакциями, как вышеприведенные реакции с 9 по 11.

Отходящий из реактора 34 алкилирования поток направляют в колонну 35 экстракции растворителем, в которой ароматические соединения растворяют и направляют во фракционирующую колонну (колонны) 36, где их разделяют на бензолсодержащую фракцию 37, нафталинсодержащую фракцию 38, фракцию 39 растворителя, толуолсодержащую фракцию 41 и С8фракцию 42.

Толуолсодержащую фракцию 41 либо возвращают в реактор 34 алкилирования, либо удаляют как продукт, в то время как С8фракцию 42 направляют в кристаллизатор 43, где из остатка С8фракции п-изомер ксилола удаляют технологией либо кристаллизации, либо сорбции. Фракцию 39 растворителя возвращают в экстракционную колонну 35.

Верхнюю фракцию из экстракционной колонны 35 (включающую водород, моноксид углерода, этан, этилен и непрореагировавший метан) направляют частично в виде рециклового потока 45 в реактор 44 метанирования и частично в качестве скользящих потоков 46, 47 в печи 48, 49 для обеспечения теплом соответственно реактора 33 восстановительного сочетания и реактора 32 обратной конверсии. В реакторе 44 метанирования находящиеся в рецикловом потоке 45 диоксид углерода, моноксид углерода и водород взаимодействуют с повышением концентрации метана в рецикловом потоке и получением в качестве побочного продукта воды. В реактор 44 может быть также направлен дополнительный газообразный поток 50, содержащий СО2 и, возможно, метан, с целью добиться большего превращения возвращаемого в процесс водорода. Необходимо иметь в виду, что по меньшей мере один из газообразных потоков 31 и 50 содержит метан.

Отходящий из реактора 44 метанирования поток 51 направляют в конденсатор 52, в котором удаляют воду 53, а затем остающийся отходящий поток направляют в печь 48, где температуру отходящего потока перед подачей в реактор 33 восстановительного сочетания повышают.

Если теперь обратиться к фиг.3, то в способе третьего примера по изобретению содержащий СО2 поток 61 природного газа направляют в реактор 62 обратной конверсии совместно с богатым водородом, обедненным ароматическими соединениями отводным потоком 63 из отходящего из реактора 65 восстановительного сочетания потока 64. В этом примере, однако, отходящий из реактора 65 восстановительного сочетания поток 64 первоначально охлаждают для конденсации первого содержащего бензол и нафталин потока 66, а затем перед удалением отводного потока 63, сжимают для конденсации второго содержащего бензол и нафталин потока 67.

В реакторе 62 обратной конверсии диоксид углерода в природном газе взаимодействует с метаном с образованием моноксида углерода и водорода благодаря таким реакциям, как вышеприведенная реакция 5. Затем отходящий из реактора 62 поток, а также первый и второй бензол- и нафталинсодержащие потоки 66, 67 направляют в реактор 68 алкилирования, где бензол и нафталин в потоках 66, 67 алкилируют в соответствии с такими реакциями, как вышеприведенные реакции с 9 по 11. При необходимости для регулирования соотношения Н2/СО+СО2 в исходном материале для реактора 68 алкилирования и/или реактора 62 обратной конверсии часть отводного потока 63 можно объединять с отходящим из реактора 62 потоком и/или потоком 61 природного газа.

Отходящий из реактора 68 алкилирования поток 70 объединяют с частью отходящего потока 64, остающегося после конденсации потоков 66, 67 и удаления отводного потока 63, и полученный объединенный поток 69 направляют в колонну 71 экстракции растворителем. Ароматические соединения, содержащиеся в объединенном потоке 69, растворяют в колонне 71 и направляют в виде потока 76 во фракционирующую колонну (колонны) (не показанную) для разделения на бензолсодержащую фракцию, толуолсодержащую фракцию, С8фракцию, нафталинсодержащую фракцию и фракцию растворителя. Далее с этими фракциями можно осуществлять такие же манипуляции, как во втором примере.

Верхнюю фракцию из экстракционной колонны 71 (включающую водород, моноксид углерода, этан, этилен и непрореагировавший метан) частично направляют как рецикловый поток 72 в реактор 73 метанирования и частично как топливный поток 74 в печь (не показана) для снабжения теплом реактора 65 восстановительного сочетания. В реакторе 73 метанирования диоксид углерода, моноксид углерода и водород в рецикловом потоке 72 взаимодействуют с повышением концентрации метана в рецикловом потоке и образованием в качестве побочного продукта воды. С целью добиться большего превращения возвращаемого в процесс водорода в реактор 73 может быть также направлен дополнительный газообразный поток 77, содержащий СО2 и, возможно, метан. Отходящий из реактора 73 метанирования поток направляют в конденсатор 74, в котором удаляют воду, а затем остающийся отходящий поток направляют в реактор 65 восстановительного сочетания.

Далее изобретение более конкретно представлено со ссылкой на следующие примеры.

Пример 1

В практическом варианте первого примера по изобретению, представленном на фиг.1, исходный материал 11 включает 100 кг метана и 176 кг диоксида углерода. Реактор 14 метанирования содержит катализатор Cu/Zn и работает при температуре 300°С, ССПС 1 и под абсолютным давлением 350 фунтов/кв.дюйм (2413 кПа). Реактор 13 восстановительного сочетания содержит катализатор, включающий 3 мас.% Мо на HZSM-5 (молярное отношение диоксида кремния к оксиду алюминия: 25), и работает при температуре примерно 800°С, ССПС 1 и под абсолютным давлением 20 фунтов/кв.дюйм (от 138 кПа). Ароматические продукты, выделенные во фракционирующей колонне (колоннах) 24, включают 93 кг бензола и 22 кг нафталина.

Пример 2 (сравнительный)

В этом сравнительном примере повторяют процесс примера 1, но без стадии снижения содержания водорода. Таким образом, исходный материал, включающий 100 кг метана, направляют непосредственно в реактор 13 восстановительного сочетания, работающий так, как изложено в примере 1, без первоначального прохождения через реактор 14 метанирования и без возврата в процесс получаемого водорода. Весь продукт состоит из ароматического компонента, включающего 10,78 кг бензола и 2,45 кг нафталина, и топливного компонента, включающего 79,62 кг непрореагировавшего метана, 4,01 кг водорода и 0,85 кг этилена.

Из примеров 1 и 2 очевидно, что стадия снижения содержания водорода, представленная на фиг.1, обеспечивает увеличение почти на порядок количества ароматического продукта, получаемого проведением этого процесса.

Хотя настоящее изобретение описано и проиллюстрировано со ссылкой на конкретные варианты его выполнения, для обычных специалистов в данной области техники вполне очевидно, что сама сущность изобретения приводит к вариантам, которые нет необходимости иллюстрировать в настоящем описании. По этой причине с целью определить фактический объем настоящего изобретения следует обращаться только к прилагаемой формуле изобретения.

1. Способ превращения метана из потока природного газа в более высокомолекулярные углеводороды, включая ароматические углеводороды, включающий:
(а) контактирование исходного материала, содержащего метан, с катализатором дегидроциклизации в условиях, эффективных для превращения упомянутого метана в ароматические углеводороды и получения первого отходящего потока, включающего ароматические углеводороды и водород, где упомянутый первый отходящий поток включает по меньшей мере на 5 мас.% ароматических колец больше, чем упомянутый исходный материал; и
(б) взаимодействие по меньшей мере части водорода из упомянутого первого отходящего потока с диоксидом углерода, вводимым в процесс в виде части потока природного газа, в условиях, эффективных для получения второго отходящего потока, обладающего пониженным содержанием водорода в сравнении с упомянутым первым отходящим потоком; где взаимодействие (б) включает:
(I) (1) реакцию водорода с получением углеводородов и воды, (2) удаление из упомянутого второго отходящего потока по меньшей мере части воды и (3) возврат по меньшей мере части углеводородов из упомянутого второго отходящего потока в упомянутое контактирование (а).

2. Способ по п.1, в котором упомянутый исходный материал в (а) содержит также по меньшей мере один из Н2, Н2О, СО и СО2.

3. Способ по п.1 или 2, в котором упомянутый исходный материал в (а) содержит меньше 5 мас.% углеводородов С3+.

4. Способ по п.1 или 2, в котором упомянутые условия в (а) являются неокислительными условиями.

5. Способ п.1 или 2, в котором упомянутые условия в (а) включают температуру от примерно 400 до примерно 1200°С, давление от примерно 1 до примерно 1000 кПа и среднечасовую скорость подачи сырья от примерно 0,1 до примерно 1000 ч1.

6. Способ п.1 или 2, в котором упомянутый катализатор дегидроциклизации включает металл или его соединение на неорганическом носителе.

7. Способ по п.6, в котором упомянутый металл или его соединение включает по меньшей мере один из кальция, магния, бария, иттрия, лантана, скандия, церия, титана, циркония, гафния, ванадия, ниобия, тантала, хрома, молибдена, вольфрама, марганца, рения, железа, рутения, кобальта, родия, иридия, никеля, палладия, меди, серебра, золота, цинка, алюминия, галлия, германия, индия, олова, свинца, висмута и трансуранового элемента.

8. Способ по п.6, в котором упомянутый неорганический носитель включает микропористый или мезопористый материал.

9. Способ п.1 или 2, в котором упомянутый катализатор дегидроциклизации включает по меньшей мере один из молибдена, вольфрама, рения, соединения молибдена, соединения вольфрама и соединения рения на ZSM 5, диоксиде кремния или оксиде алюминия.

10. Способ п.1, в котором упомянутые углеводороды в упомянутом втором отходящем потоке, получаемые в результате упомянутого взаимодействия (б), включают метан, этан или смесь метана и этана.

11. Способ п.1, в котором упомянутые углеводороды в упомянутом втором отходящем потоке, получаемые в результате упомянутого взаимодействия (б), включают один или несколько парафинов и олефинов с С2 по C5, моноциклических ароматических углеводородов и спиртов с C1 по С3.

12. Способ п.1, в котором часть упомянутого первого отходящего потока используют в качестве топлива для обеспечения теплом упомянутого контактирования (а).

13. Способ п.1 или 2, дополнительно включающий выделение из упомянутого первого отходящего потока ароматических углеводородов.

14. Способ по п.13, дополнительно включающий алкилирование по меньшей мере части упомянутых ароматических углеводородов в упомянутом первом отходящем потоке алкилирующим агентом перед или после упомянутого выделения.

15. Способ по п.14, в котором упомянутый алкилирующий агент включает этилен.

16. Способ по п.14, в котором упомянутый алкилирующий агент включает моноксид углерода и водород или продукт их взаимодействия.

17. Способ по п.16, в котором по меньшей мере часть моноксида углерода получают реакцией диоксида углерода с водородом и/или метаном.

18. Способ по п.14, в котором упомянутый алкилирующий агент включает метанол и/или диметиловый эфир.

19. Способ по п.13, дополнительно включающий реакцию по меньшей мере части выделенных ароматических углеводородов с водородом из упомянутого первого отходящего потока.

20. Способ по п.19, в котором упомянутой реакцией с водородом получают по меньшей мере один из циклогексена, циклогексана, дигидронафталина (бензилциклогексена), тетрагидронафталина (тетралина), гексагидронафталина (дициклогексена), октагидронафталина и декагидронафталина (декалина).

21. Способ по п.19, в котором упомянутая по меньшей мере часть упомянутых выделенных ароматических углеводородов включает нафталин, а упомянутой реакцией с водородом получают алкилированные бензолы.



 

Похожие патенты:

Изобретение относится к способу получения ароматических углеводородов из метана. .
Изобретение относится к нефтехимической и химической промышленности, в частности к созданию катализатора конверсии метана, способу его получения и способу превращения метана в ароматические углеводороды в неокислительных условиях.

Изобретение относится к способам получения жидких углеводородов из метана. .

Изобретение относится к способу получения ароматических углеводородов и водорода, при котором газообразное сырье, содержащее низшие углеводороды, подвергают реформингу путем подачи и ввода в контакт с катализатором при высокой температуре, в результате чего получают ароматические углеводороды и водород, при этом указанный способ характеризуется тем, что включает операции: подачи вместе с газообразным сырьем газообразного водорода при загрузке газообразного сырья в количестве более 2% об.
Изобретение относится к нефтехимической и химической промышленности, в частности к способу получения катализаторов конверсии метана в ароматические углеводороды в неокислительных условиях.
Изобретение относится к каталитической конверсии парафиновых, олефиновых углеводородов или их смесей и может быть использовано для получения высокооктанового моторного топлива и индивидуальных ароматических соединений.
Изобретение относится к каталитической обработке природного газа для удаления из него высших углеводородов. .
Изобретение относится к нефтехимической и химической промышленности, в частности к способу получения катализаторов конверсии метана в ароматические углеводороды в неокислительных условиях.
Изобретение относится к способам получения жидких углеводородных продуктов из газов, в частности из диоксида углерода, и может найти применение в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Изобретение относится к органической химии, а именно к нефтехимии и, в частности, к способу получения углеводородных бензиновых фракций каталитической конверсией смеси CO2 и H2 и/или смеси CO2, CO и H2.
Изобретение относится к способу пуска процесса в стационарном состоянии для получения обычно газообразных, обычно жидких и необязательно обычно твердых углеводородов из синтез-газа, где указанный процесс является процессом Фишера-Тропша, который включает: (i) получение синтез-газа и (ii) каталитическое превращение синтез-газа посредством проведения реакции Фишера-Тропша при повышенной температуре и при стационарном состоянии общего давления в реакторе с целью получения обычно газообразных, обычно жидких и необязательно обычно твердых углеводородов, причем смешивают синтез-газ на стадии (i) с одним или несколькими инертными газами с образованием смешанного потока перед каталитическим превращением синтез-газа на стадии (ii) в стационарном состоянии общего давления в реакторе, где по мере достижения стационарной активности катализатора превращения синтез-газа, количество инертного газа (газов) в смешанном потоке снижается; при этом стадию (ii) проводят по меньшей мере в трех реакторах превращения; начальное парциальное давление синтез-газа в реакторе превращения на 20-70% ниже, чем общее давление в реакторе в стационарном состоянии; способ пуска со смешанным потоком синтез-газа и одного или нескольких инертных газов используют по меньшей мере в двух, но не всех реакторах превращения, и способ пуска со смешанным потоком не используют в остальных реакторах превращения; при этом в одном или нескольких реакторах превращения уже проводится каталитическое превращение синтез-газа и все реакторы превращения имеют общую систему рециркуляции газа.
Изобретение относится к способу пуска процесса в стационарном состоянии для получения обычно газообразных, обычно жидких и необязательно обычно твердых углеводородов из синтез-газа, где указанный процесс является процессом Фишера-Тропша, при этом способ включает следующие стадии: (i) предоставление активированного катализатора в трубках реактора с неподвижным слоем, причем этот катализатор является подходящим для превращения синтез-газа в обычно газообразные, обычно жидкие и необязательно обычно твердые углеводороды; (ii) введение в контакт активированного катализатора с жидкостью с целью получения смоченного активированного катализатора; (iii) введение в контакт смоченного активированного катализатора с синтез-газом и каталитическое превращение синтез-газа посредством проведения реакции Фишера-Тропша при повышенной температуре и давлении с получением обычно газообразных, обычно жидких и необязательно обычно твердых углеводородов, при этом жидкость на стадии (ii) является углеводородом или смесью углеводородов, жидкость вводят в контакт с катализатором при температуре ниже точки кипения жидкости и давлении в диапазоне от 1 до 50 бар (абс.) (от 0,1 до 5 МПа).
Изобретение относится к способу пуска процесса в стационарном состоянии для получения обычно газообразных, обычно жидких и необязательно обычно твердых углеводородов из синтез-газа, где указанный процесс является процессом Фишера-Тропша, причем процесс включает следующие стадии: (i) подачу синтез-газа; (ii) каталитическое превращение синтез-газа посредством проведения реакции Фишера-Тропша в одном или более реакторов превращения при повышенных температуре и давлении с получением обычно газообразных, обычно жидких и необязательно обычно твердых углеводородов; и (iii) использование, по меньшей мере, части газообразных углеводородов, полученных на стадии (ii), в качестве рециркулирующего потока, который повторно вводят в реактор (реакторы) превращения на стадии (ii); способ включает смешивание потока водорода с рециркулирующим потоком стадии (iii), которое проводят до его повторного введения в реактор (реакторы) превращения на стадии (ii), где по мере приближения активности катализатора превращения синтез-газа к стационарному значению уменьшают количество рециркулирующего потока, при этом начальное парциальное давление синтез-газа в реакторе превращения составляет 30-80% от стационарного значения парциального давления синтез-газа, предпочтительно 40-60%; скорость потока синтез-газа поддерживают постоянной, и температура в реакторе превращения при пуске является такой же, как температура в стационарном состоянии или на 0-30°С ниже температуры в стационарном состоянии.
Изобретение относится к нефтехимии, газохимии и касается носителя для катализатора экзотермических процессов, в частности синтеза Фишера-Тропша, синтеза метанола, гидрирования, очистки выхлопных газов.
Изобретение относится к области каталитической химии. .
Наверх