Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности



Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности
A61B6 - Приборы для радиодиагностики, например комбинированные с оборудованием для радиотерапии (рентгеноконтрастные препараты A61K 49/04; препараты, содержащие радиоактивные вещества A61K 51/00; радиотерапия как таковая A61N 5/00; приборы для измерения интенсивности излучения, применяемые в ядерной медицине, например измерение радиоактивности живого организма G01T 1/161; аппараты для получения рентгеновских снимков G03B 42/02; способы фотографирования в рентгеновских лучах G03C 5/16; облучающие приборы G21K; рентгеновские приборы и их схемы H05G 1/00)

Владельцы патента RU 2428930:

Учреждение Российской академии медицинских наук Научно-исследовательский институт кардиологии Сибирского отделения РАМН (RU)

Изобретение относится к медицине, кардиологии. Пациентам с признаками скрытой коронарной недостаточности внутривенно вводят радиофармпрепарат 99mTc - Технетрил, активностью 555 МБк. Проводят сцинтиграфию сердца. Вычисляют миокардиальный кровоток по следующей формуле: МК=См/Св·МО·100/ММ (мл/мин/100 г), где - МК - миокардиальный кровоток, См - сцинтилляционный счет зафиксированного миокардом РФП,

Св - сцинтилляционный счет введенного РФП, МО - минутный объем сердечного выброса, MM - масса миокарда. При снижении показателя миокардиального кровотока ниже 60 мл/мин на 100 г миокардиальной ткани в покое выявляют скрытую коронарную недостаточность. Способ позволяет выявить миокардиальный кровоток количественно неинвазивным путем. 7 ил.

 

Изобретение относится к медицине и может быть использовано в кардиологических отделениях лечебно-диагностических учреждений, оснащенных радиоизотопными лабораториями.

На протяжении последних десятилетий ишемическая болезнь сердца (ИБС) и ее осложнения устойчиво лидируют в печальной статистике инвалидизации и смертности трудоспособного населения индустриально развитых стран. Так, если в структуре причин общей смертности в России на долю сердечно-сосудистой патологии приходится более 55%, то внутри класса ИБС занимает основное место (47%) [1], причем явно просматривается тенденция к неуклонному росту этих показателей [2, 3]. В связи с этим становится очевидным, что совершенствование ранней диагностики коронарной недостаточности может явиться важным фактором повышения эффективности вторичной профилактики данной патологии [4].

Как известно, перфузионная сцинтиграфия миокарда (СГМ) является доступным и информативным методом визуализации коронарной микроциркуляции. При этом наибольшее распространение получили радиофармацевтические препараты (РФП) для оценки миокардиальной перфузии, меченные 99mТехнецием (99mTc, метоксиизобутилизонитрил; 99mTc, тетрафосмин; 99mTc, технетрил и др.) [5, 6, 7]. Чувствительность и специфичность СГМ с использованием указанных РФП в диагностике ИБС составляет 86% и 87% соответственно. Однако при диффузном или многососудистом атеросклерозе венечных артерий возникают трудности в интерпретации полученной информации [8, 9], что приводит к получению ложноположительных или ложноотрицательных результатов [10].

Существенным недостатком традиционных радионуклидных методов является полуколичественный анализ результатов исследования, основанный на пространственной аккумуляции РФП относительно максимальных значений. Поэтому количественное определение миокардиального кровотока у больных с коронарной недостаточностью является актуальной проблемой современной кардиологии.

Известен способ сцинтиграфического количественного определения миокардиального (коронарного) кровотока с помощью макроагрегатов альбумина человеческой сыворотки крови, меченных 99mТехнецием (99mTc-МАА) [11]. Суть способа заключается в сцинтиграфии всего тела после внутрижелудочкового введения через катетер 2-5 мл взвеси 99mTc-МАА, содержащей 1,0-1,5 млн меченых микрочастиц общей активностью 185-222 МБк. Инъекцию данного РФП в полость левого желудочка сердца производят в процессе ангиографического исследования через катетер, спустя 5-10 мин после введения контрастного агента.

После завершения ангиографического исследования больному выполняют сцинтиграфию всего тела в передне-прямой (ANT) проекции при положении больного лежа на спине. При компьютерной обработке сцинтиграмм определяют счет импульсов над всем телом пациента и в «зоне интереса», соответствующей сердцу. Коронарную фракцию сердечного выброса (КФСВ) рассчитывают по формуле:

КФСВ=Сс/Ст·100%,

где КФСВ - коронарная фракция сердечного выброса;

Сс - сцинтилляционный счет в «зоне интереса» над областью сердца;

Ст - сцинтилляционный счет над всем телом.

После завершения сцинтиграфии всего тела больному внутривенно вводят 555 МБк 99mTc-альбумина и проводят радиокардиосцинтиграфию для определения величины сердечного выброса за минуту (МО). Сопоставление величин КФСВ и МО позволяет рассчитать минутный объем коронарного кровотока по формуле:

КК=КФСВ·МО/100% (мл/мин),

где КК - минутный объем коронарного кровотока;

КФСВ - коронарная фракция сердечного выброса;

МО - минутный объем сердечного выброса.

Данный способ является наиболее близким к заявляемому по технической сущности и достигаемому результату и выбран в качестве прототипа.

Недостатком его применительно к количественному определению коронарного кровотока является инвазивность метода и, как следствие этого, небезопасность для пациента, а также повторное введение РФП пациенту для определения МО, вследствие чего применительно к количественному определению коронарного кровотока данная методика не нашла своего применения.

Цель изобретения - повысить точность диагностики коронарной недостаточности.

Указанная цель достигается путем проведения перфузионной сцинтиграфии сердца с помощью РФП Технетрила, 99mTc («Диамед», РФ), который вводят внутривенно и сравнивают сцинтилляционный счет импульсов зафиксированного миокардом пациента указанного РФП, со сцинтилляционным счетом всего введенного его количества, вычисляют количественно миокардиальный кровоток по следующей формуле:

МК=См/Св·МО·100/ММ (мл/мин/100 г),

где МК - миокардиальный кровоток,

См - сцинтилляционный счет зафиксированного миокардом РФП,

Св - сцинтилляционный счет введенного РФП,

МО - минутный объем сердечного выброса,

ММ - масса миокарда.

Снижение показателя миокардиального кровотока ниже 60 мл/мин на 100 г миокардиальной ткани в покое свидетельствует о скрытой коронарной недостаточности.

Новым в предлагаемом способе является неинвазивное количественное определение миокардиального кровотока с помощью отечественного РФП Технетрила, 99mTc, введенного пациенту однократно внутривенно. Критерием, характеризующим коронарную недостаточность, является снижение показателя миокардиального кровотока ниже 60 мл/мин на 100 г миокардиальной ткани в покое [12].

Как известно, неотъемлемым условием для эффективной перфузии миокарда является достаточная циркуляция крови по венечным артериям. Нарушение коронарного кровотока приводит к снижению или даже полному отсутствию накопления РФП кардиомиоцитами в регионе пораженного сосуда. Однако при диффузном многососудистом атеросклерозе коронарных артерий распределение РФП носит относительно равномерный характер, что приводит к получению ложноотрицательных результатов перфузионной сцинтиграфии миокарда. Единственным способом в правильной постановке диагноза является количественное определение миокардиального кровотока.

Новые признаки проявили в заявляемой совокупности новые свойства, явным образом не вытекающие из уровня техники в данной области и не являющиеся очевидными для специалиста.

Идентичной совокупности признаков не обнаружено в патентной и научно-медицинской литературе.

Предлагаемый способ может быть использован в здравоохранении для повышения качества диагностики коронарной недостаточности.

Исходя из вышеизложенного следует считать предлагаемое изобретение соответствующим критериям «Новизна», «Изобретательский уровень», «Промышленная применяемость».

Изобретение будет понятно из следующего описания и предложенных к нему рисунков.

На рис.1 представлен способ математической обработки сцитиграммы больного М. (63 лет) после внутривенно введенного 99mTc-технетрила (для определения сцинтилляционного счета введенного РФП. Запись сцинтиграфических изображений произведена в режиме 1 кадр за 0,5 с (Св=8000·120(с)=960000 имп/мин).

На рис.2 представлен способ математической обработки сцитиграммы миокарда больного М. (63 лет) после внутривенно введенного 99mTc-технетрила (99mTc-ТНЛ) для определения сцинтилляционного счета зафиксированного РФП сердцем - «плато» (См=21500 имп/мин).

На рис.3 представлены результаты ЭКГ-синхронизированной ОФЭКТ миокарда больного М. (63 лет). Основные показатели данного исследования представлены в верхнем левом углу рисунка: минутный объем сердечного выброса (обозначен как СО) = 3.3 л/мин; масса миокарда (обозначено как Mass) = 144 г.

Следуя формуле по расчету миокардиального кровотока на 100 г миокардиальной ткани:

МК=МО·См/Св·100/ММ (мл/мин/100 г),

производим его количественное определение:

МК=3300·21500/960000·100/144=51 (мл/мин/100 г).

На рис.4 представлен сравнительный анализ количественного определения коронарного кровотока с помощью макроагрегатов альбумина человеческой сыворотки крови, меченных 99mТехнецием, введенных больному М. (63 лет) через катетер в полость левого желудочка сердца во время диагностической ренгеноконтрастной коронароангиовентрикулографии.

Сцинтилляционный счет импульсов всего всего тела пациента (Св, на рис. обозначено как Tot.Counts) составляет 517,559 тыс.имп/мин; сцинтилляционный счет зафиксированного РФП в микроциркуляторном русле сердца (См)=11,239 тыс.имп/мин соответственно. Рассчитываем коронарную фракцию сердечного выброса (КФСВ):

КФСВ=1,239/517,559·100=2,17(%).

Так как у данного пациента минутный объем сердечного выброса (МО) составил 3300 мл/мин, вычисляем его коронарный кровоток (КК):

КК=3300·2,17/100=71,61 (мл/мин).

Зная массу миокарда (144 г), определяем миокардиальный кровоток (МК) на 100 г миокардиальной ткани:

МК=71,61·100/144=50 (мл/мин/100 г).

Таким образом, определенный по предложенной нами методике миокардиальный кровоток практически не отличался от количественного показателя миокардиального кровотока, вычисленного по известной методике.

Способ осуществляют следующим образом:

Пациента обследуют в горизонтальном положении лежа на спине в состоянии покоя. Для уменьшения эмоционального воздействия процедуры на гемодинамику больному необходимо объяснить безвредность, безболезненность и важность данного исследования. Детектор гамма-камеры устанавливают в передне-прямой проекции так, чтобы в поле зрения детектора входила вся грудная клетка. Индикатор (99mTc-Технетрил) активностью 555,0 МБк вводят в локтевую вену болюсно в объеме 0,5-1,0 мл. Регистрация сцинтиграфических изображений осуществляется следующим образом: первоначально записываются 40 кадров с экспозицией 1 кадр за 1 с или 80 кадров: 1 кадр за 0,5 с, затем производится запись 10-15 сцинтиграфических изображений с продолжительностью 1 кадр за 1 мин. После этого выбирается посекундный сцинтиграфический кадр с изображением находящегося в области грудной клетки РФП, обводится все поле видения детектора гамма-камеры и вычисляется счет импульсов введенной активности РФП (Св) за 1 мин. Затем выбирается кадр поминутного сцинтиграфического изображения с наилучшей визуализацией миокарда; обводится миокард левого желудочка сердца и вычисляется счет импульсов зафиксированного миокардом РФП (См) за 1 мин.

Затем по общепринятой методике пациенту проводят однофотонно-эмиссионную компьютерную томографию (ОФЭКТ) миокарда в ЭКГ-синхронизированном режиме. Используя специализированную программу обработки сцинтиграфических изображений, оцениваем особенности перфузии, сократительной способности миокарда, минутный объем сердечного выброса, массу миокарда и иные сердечные параметры.

При отсутствии сцинтиграфической возможности определения МО и массы миокарда можно воспользоваться данными ультразвуковых методов исследования, позволяющих также достаточно точно определить указанные величины.

Клинический пример 1

Больной М., 63 лет, госпитализирован в отделение сердечной недостаточности с жалобами: стенокардия, возникающая при подъеме на второй этаж или интенсивной ходьбе на дистанцию ~ 50 м, купируется в покое с эффектом от нитроглицерина 2 дозы в течение 15 мин, периодичность до 1 раза в сутки. Отдышка смешанного характера, увеличение АД до 200/100 мм рт. ст., боли в правой голени при ходьбе на расстояние ~50 м, проходят в покое в течение 5 мин.

Считает себя больным два года, когда впервые ощутил дискомфорт за грудиной, обследование не проходил. В 2007 году приступы загрудинных болей участились, амбулаторно принимал кардиомагнил, эналоприл. На фоне приема лекарственных средств наблюдалось незначительное улучшение в состоянии здоровья. В январе 2008 года проконсультирован врачом-кардиологом в связи с участившимися приступами стенокардии, снижением толерантности к физической нагрузке, болезненность в икроножной мышце справа при ходьбе. Наряду с этим отметил нестабильность уровня АД 150-200/100-120 мм рт. ст.

По данным УЗИ артерий нижних конечностей выявлены признаки атеросклероза артерий правой голени и бедра. Для исключения коронароангиосклероза рекомендовано обследование в специализированном мед. учреждении (НИИ кардиологии СО РАМН). Пациент госпитализирован в феврале 2009 года для диагностического выполнения рентгеноконтрастной коронароангиовентрикулографии.

Из вредных привычек больной отмечает курение с 1965 года (в течение 44 лет) по 2 пачки сигарет в день, употребление алкоголя в умеренных количествах.

По данным физического исследования: верхушечный толчок не пальпируется. Левая граница относительной тупости расположена на 1 см кнаружи от левой срединно-ключной линии, верхняя - на уровне нижнего края 3 ребра; правая - по срединно-грудинной линии. Тоны ритмичные, приглушенные. ЧСС 68 в мин, АД 130/80 мм рт. ст.

Больному были проведены: общий анализ крови, мочи, биохимический анализ крови, ЭКГ, рентгенографическое исследование органов грудной клетки, компьютерная томография легких, УЗИ сердца и сосудов, ОФЭКТ-миокарда с 99mTc-Технетрилом.

В анализах крови все показатели в пределах нормы. При рентгенологическом исследовании органов грудной клетки был выявлен пневмосклероз. По данным ОФЭКТ-миокарда с 99mTc-Технетрилом была выявлена зона гипоперфузии незначительных размеров в нижневерхушечной области левого желудочка порядка 3-4%. Рассчитанный миокардиальный кровоток был снижен и составил 51 мл/мин/100 г (рис.1-3).

По результатам рентгеноконтрасной коронароангиовентрикулографии был выявлен стенозирующий атеросклероз коронарных артерий: ствол левой коронарной артери 50%, огибающей артерии до 50% и правой коронарной артерии 70%.

По окончании процедуры коронароангиовентрикулографии через катетер в полость левого желудочка сердца введено 185 МБк 99mTc-МАА, после чего проведена сцинтиграфия всего тела пациента для определения сцинтилляционного счета импульсов введенного РФП и в «зоне интереса» над областью сердца (рис.4). Вычисленный коронарный кровоток был снижен и составил 50 мл/мин/100 г.

Окончательный диагноз: ИБС: стенокардия напряжения ФК 3. Стенозирующий атеросклероз коронарных артерий.

Как следует из примера, общепринятый метод ОФЭКТ-миокарда с 99mTc-Технетрилом оказался неинформативным, поскольку зона гипоперфузии сердечной мышцы составила всего лишь 3-4% и была статистичски незначимой. Однако снижение миокардиального кровотока, вычисленного по предлагаемому методу, позволило предположить многососудистое поражение коронарных артерий, что впоследствии было подтверждено данными рентгеноконтрастной коронароангиографии.

Клинический пример 2

Пациент С., 30 лет, здоровый доброволец.

По данным ЭКГ - изменений не выявлено.

По данным ОФЭКТ сердца - распределение индикатора равномерное, дефектов перфузии миокарда нет.

На рис.5 представлен способ математической обработки сцитиграммы пациента С. (30 лет) после внутривенно введенного 99mTc-технетрила (для определения сцинтилляционного счета введенного РФП). Запись сцинтиграфических изображений произведена в режиме 1 кадр за 1 с (Св=18500 60(с)=1110000 имп/мин).

На рис.6 представлен способ математической обработки сцитиграммы миокарда пациента С. (30 лет) после внутривенно введенного 99mTc-технетрила (99mTc-ТНЛ) для определения сцинтилляционного счета зафиксированного РФП сердцем -«плато» (См=25500 имп/мин).

На рис.7 представлены результаты ЭКГ-синхронизированной ОФЭКТ миокарда пациента С. (30 лет). Основные показатели данного исследования представлены в верхнем левом углу рисунка: минутный объем сердечного выброса (обозначен как СО)=5.2 л/мин; масса миокарда (обозначено как Mass)=160 г.

Следуя формуле по расчету миокардиального кровотока на 100 г миокардиальной ткани:

МК=МО·См/Св·100/ММ (мл/мин/100 г),

производим его количественное определение: 5200·25500/1110000·100/160=75 мл/мин/100 г миокардиальной ткани (вариант «норма»).

Указанный метод был применен у 18 пациентов. По данным сцинтиграфических исследований, коронарная фракция аккумуляции 99mTc-ТНЛ варьировала от 1,9 до 2,95% в зависимости от состояния перфузии сердечной мышцы. По данным сцинтиграфии миокарда с 99mTc-МАА, КФСВ, также напрямую зависела от миокардиальной микроциркуляции. При этом минимальное значение КФСВ составило 1,9%, максимальное - 3,05%. Проведенный непараметрический анализ по критерию Вилкоксона не выявил статистических значимых различий (р=0,866) между коронарной фракцией аккумуляции 99mTc-ТНЛ и коронарной фракцией сердечного выброса 99mTc-МАА. Значения минутного миокардиального кровотока, вычисленные нами с использованием 99mTc-МАА и 99mTc-ТНЛ, также статистически значимо не различались между собой (р=0,886) и варьировали в пределах 45-76 мл/мин/100 г миокардиальной ткани.

Предлагаемый способ позволяет с высокой точностью оценить количественно миокардиальный кровоток у больных со скрытой коронарной недостаточностью.

Способ неинвазивного количественного определения миокардиального кровотока для выявления коронарной недостаточности, заключающийся в сравнении счета импульсов зафиксированного миокардом радиофармпрепарата (РФП) с общим сцинтилляционным счетом введенного пациенту РФП, отличающийся тем, что в качестве РФП используют 99mТс-Технетрил активностью 555 МБк, который вводят внутривенно, а количественное определение миокардиального кровотока осуществляют по формуле
МК=См/Св·МО·100/ММ (мл/мин/100 г),
где - МК - миокардиальный кровоток,
См - сцинтилляционный счет зафиксированного миокардом РФП,
Св - сцинтилляционный счет введенного РФП,
МО - минутный объем сердечного выброса, ММ - масса миокарда,
и при снижении показателя миокардиального кровотока ниже 60 мл/мин на 100 г миокардиальной ткани в покое выявляют скрытую коронарную недостаточность.



 

Похожие патенты:

Изобретение относится к рентгеновской технике, в том числе к медицинской, а именно к устройствам для контроля технических характеристик цифровых рентгеновских аппаратов.

Изобретение относится к медицинской технике. .
Изобретение относится к медицине, а именно к вертебрологии. .

Изобретение относится к медицине, а именно к лучевой диагностике состояния костной ткани, и может быть использовано при определении таких заболеваний, как остеопороз и остеопатия.

Изобретение относится к медицинской технике, а именно к рентгеновским флюорографическим аппаратам. .

Изобретение относится к медицине, а именно лучевой диагностике, и может быть использовано для оптимизации обследования детей при синдроме головной боли. .

Изобретение относится к медицине, диагностике тяжести рассеянного склероза. .
Изобретение относится к медицине и может быть использовано для своевременного выявления и лечения несостоятельности связочного аппарата лонного сочленения в акушерско-гинекологической и травматологической практике.

Изобретение относится к хирургии и может быть использовано для введения контраста в свищевой ход при выполнении фистулографии под контролем рентгена или компьютерного томографа.

Изобретение относится к области медицины, а именно кардиологии. .

Изобретение относится к области медицины, а именно кардиологии. .

Изобретение относится к области медицины, а именно к кардиологии. .
Изобретение относится к области медицины, а именно к терапии, кардиологии, функциональной диагностике. .
Изобретение относится к медицине, а именно к анестезиологии, и может быть использовано при проведении общей анестезии у пациентов с онкоабдоминальной патологией. .

Изобретение относится к медицине, а именно лучевой диагностике, и может быть использовано для оптимизации обследования детей при синдроме головной боли. .

Изобретение относится к медицине, а именно лучевой диагностике, и может быть использовано для оптимизации обследования детей при синдроме головной боли. .
Изобретение относится к медицине, а именно к кардиологии
Наверх