Способ получения безводного фтороводорода и плавиковой кислоты

Изобретение относится к технологии неорганических веществ и может быть использовано для получения плавиковой кислоты и безводного фтороводорода. В способе получения безводного фтороводорода и плавиковой кислоты ректификацией фтороводородной кислоты, содержащей свыше 65 мас.% фтороводорода, с получением в дистилляте фтороводорода и плавиковой кислоты в кубовом остатке колонны процесс проводят при температуре паров в кубовой части колонны в интервале 115-130°С в интервале значений флегмового числа, равного 2-5, при этом содержание основного вещества во фтороводороде не менее 99,95% и плавиковой кислоты 40-45%. Способ позволяет получить из водных растворов, содержащих свыше 65 мас.% HF, 40-45% плавиковую кислоту и безводный фтороводород с содержанием основного вещества не менее 99,95% за одну стадию ректификационного разделения. 3 табл.

 

Изобретение относится к технологии неорганических веществ и может быть использовано для получения плавиковой кислоты и безводного фтороводорода с содержанием основного вещества не менее 99,95 мас.% из продуктов конверсии обедненного гексафторида урана.

При конверсии обедненного гексафторида урана, помимо твердых урансодержащих продуктов, образуется фтороводородная кислота, содержащая свыше 65 мас.% HF. В России такие растворы не являются товарными продуктами и не могут быть реализованы в больших количествах на рынке неорганических материалов, так как отсутствуют необходимые нормативные документы и транспортные средства для их перевозки.

Известен способ получения безводного фтороводорода (патент США №3140152, 1962 г.) путем осаждения кислых фторидов щелочных металлов с последующим их разложением при 300-500°С. Недостатком способа является его многостадийность и применение высоких температур в атмосфере, содержащей HF и воду, что является сильной коррозионной средой. Известен способ обезвоживания HF пропусканием его водного раствора через раскаленный до 900°С кокс (Галкин Н.П., Шубин В.А., Крылов А.С. Химическая промышленность, 1962 г., №10, с.750). Недостатками способа являются многостадийность процесса, а также высокие энергозатраты.

Известен способ получения безводного фтороводорода (Позин М.Е. Технология минеральных солей. Л.: Химия, 1974, т.2, с.1121), принятый за прототип, в котором для переработки 80 мас.% фтороводородной кислоты используют процесс ректификации с получением в дистилляте жидкого фтороводорода, содержащего примеси воды, и 60 мас.% кислоты в кубовом остатке колонны. Для получения безводного фтороводорода используется дополнительная операция - обработка жидкого фтороводорода концентрированной серной кислотой, а 60 мас.% кислота возвращается в производственный цикл. Недостатками этого способа являются отсутствие возможности получить за одну стадию ректификационного разделения безводный фтороводород и плавиковую кислоту и возврат в технологический цикл половины от всего количества перерабатываемого HF.

При ректификации фтороводородной кислоты, содержащей свыше 65 мас.% HF, путем подбора флегмового числа можно добиться получения в дистилляте безводного фтороводорода, однако при этом в кубе колонны будет образовываться 46-50 мас.% кислота. Такой результат объясняется снижением интенсивности процессов массообмена при приближении неравновесной системы к состоянию равновесия. В этих условиях получение 40-45% плавиковой кислоты возможно в результате интенсификации процесса массообмена в кубе ректификационной колонны.

Технический результат предлагаемого способа заключается в получении из водных растворов, содержащих свыше 65 мас.% HF, в одной ректификационной колонне товарных продуктов - 40-45% плавиковой кислоты и безводного фтороводорода с содержанием основного вещества не менее 99,95%.

Технический результат предлагаемого способа достигается тем, что процесс ректификации фтороводородной кислоты, содержащей свыше 65% HF, проводят в условиях повышенной интенсивности тепло-массообменных процессов в кубе колонны путем поддержания в нем температуры паров 115-130°С в интервале значений флегмового числа, равного 2-5.

Исходная фтороводородная кислота, содержащая свыше 65 мас.% фтороводорода, направляется в среднюю часть ректификационной колонны колпачкового типа. Колонна изготовлена из стали и футерована фторопластом. Нижняя часть колонны теплоизолирована. Часть безводного фтороводорода из верхней части колонны направляют в дефлегматор, а затем для получения потока флегмы в разделитель конденсата. Поток жидкой флегмы возвращают в верхнюю часть колонны.

Процесс ректификации проводят в интервале флегмового числа, равного 2-5. Температура в дефлегматоре колонны равна температуре конденсации чистого фтороводорода, равной 19,6°С. Температуру паров, выходящих из куба колонны, поддерживают в пределах 115-130°С. В результате получают в дистилляте безводный фтороводород с содержанием основного вещества не менее 99,95 мас.%, а в кубе колонны 40-45% плавиковую кислоту.

При увеличении температуры исходящих паров в кубе ректификационной колонны свыше 130°С вода частично переходит в дистиллят, в результате чего содержание в нем фтороводорода будет менее 99,95% HF. В кубе ректификационной колонны образуется плавиковая кислота с содержанием HF в пределах 40-45%.

При уменьшении температуры исходящих паров в кубе ректификационной колонны ниже 115°С происходит неполная отгонка фтороводорода из кубового остатка, в результате чего его содержание увеличивается до 46 мас.% и более. В дистилляте образуется безводный фтороводород с содержанием HF не менее 99,95 мас.%.

Таким образом, при выходе температуры паров в кубе из заявляемого интервала, как свыше 130°С, так и менее 115°С, заявленный технический результат достигнут не будет.

Пример 1

Исходную фтороводородную кислоту, содержащую 70 мас.% HF, вводят в среднюю часть ректификационной колонны. В кубовой части поддерживают температуру паров 125°С, а в верхней - (19±1)°С. Процесс осуществляют при флегмовом числе, равном 3,5±0,1. Полученные безводный фтороводород и плавиковая кислота проанализированы на содержание компонентов в соответствии с требованиями ГОСТ 14022-89 и ГОСТ 2567-89. Результаты химического анализа представлены в табл.1.

Пример 2

Исходную фтороводородную кислоту, содержащую 80 мас.% HF, вводят в среднюю часть ректификационной колонны. В кубовой части поддерживают температуру паров 115°С, а в верхней - (19±1)°С. Процесс осуществляют при флегмовом числе, равном 2,6±0,1. Полученные безводный фтороводород и плавиковая кислота, проанализированные на содержание компонентов, соответствуют требованиям ГОСТ 14022-89 и ГОСТ 2567-89. Результаты химического анализа представлены в табл.2.

Пример 3

Исходную фтороводородную кислоту, содержащую 65 мас.% HF, вводят в среднюю часть ректификационной колонны. В кубовой части поддерживают температуру паров 130±С, а в верхней - (19±1)°С. Процесс осуществляют при флегмовом числе, равном 4,8±0,1. Полученные безводный фтороводород и плавиковая кислота проанализированы на содержание компонентов в соответствии с требованиями ГОСТ 14022-89 и ГОСТ 2567-89. Результаты химического анализа представлены в табл.3.

Полученные в интервале заявляемых условий приведенные в примерах 1-3 безводный фтороводород и плавиковая кислота удовлетворяют ГОСТ 14022-89 и ГОСТ 2567-89, соответственно.

Пример 4

Исходную кислоту, содержащую 70 мас.% HF, вводят в среднюю часть колонны. В кубе колонны температура паров равна 135°С. Флегмовое число равно 3,5. Полученный в конденсаторе фтороводород содержит 99,05 мас.% HF и до 0,92 мас.% H2O, что не соответствует заявленному техническому результату. В кубовом продукте образуется плавиковая кислота, содержащая 40,12 мас.% HF.

Пример 5

Исходную кислоту, содержащую 70 мас.% HF, подвергают ректификации при температуре паров в кубе 110°С. Образующийся в конденсате безводный фтороводород содержит не менее 99,95 мас.% HF с примесью не более 0,03 мас.% влаги. Получаемая в кубовой части колонны плавиковая кислота содержит не менее 46 мас.% HF, что не соответствует заявленному техническому результату.

Таким образом, при выходе температуры паров в кубе из заявляемого интервала, как свыше 130°С, так и менее 115°С, заявленный технический результат достигнут не будет.

Способ получения безводного фтороводорода и плавиковой кислоты ректификацией фтороводородной кислоты, содержащей свыше 65 мас.% фтороводорода с получением в дистилляте фтороводорода и плавиковой кислоты в кубовом остатке колонны, отличающийся тем, что процесс проводят при температуре паров в кубовой части колонны 115-130°С в интервале значений флегмового числа, равного 2-5, при этом содержание основного вещества во фтороводороде не менее 99,95% и плавиковой кислоты 40-45%.



 

Похожие патенты:

Изобретение относится к азеотропным смесям гептафторида йода и фтористого водорода, которые могут быть использованы при получении фторирующих реагентов. .
Изобретение относится к области переработки рудных концентратов и химической технологии соединений кремния и фтора, в частности получению кремнефтористоводородной кислоты.

Изобретение относится к области неорганической химии, а именно к совместному способу получения безводного фтористого водорода и плавиковой кислоты, которые широко используются в алюминиевой промышленности, а также для получения фторуглеродов, фторопластов, элементного фтора и неорганических фторидов /ЖВХО им.

Изобретение относится к технологии переработки смеси гексафторида урана с фторидом водорода, а именно к способу выделения гексафторида урана из его смеси с фторидом водорода.

Изобретение относится к разделению смеси, содержащей гидрофторалкан и фтористый водород, к способу получения гидрофторалкана и азеотропной композиции. .

Изобретение относится к области химической технологии, в частности к получению безводного фтористого водорода с пониженным содержанием мышьяка и диоксида серы. .

Изобретение относится к способу отделения фтористого водорода от газообразных органических соединений и извлечения отделенного фтористого водорода из смеси. .
Изобретение относится к производству фтористого водорода сернокислотным разложением фторсодержащих соединений

Изобретение может быть использовано в химической промышленности. Способ получения фтористого водорода включает сернокислотное разложение фторсодержащего материала алюминиевого производства при нагревании реакционной смеси. В качестве фторсодержащего материала используют высокодисперсные фторуглеродсодержащие отходы алюминиевого производства и/или вторичные фторсодержащие продукты алюминиевого производства. В составе используемых материалов определяют содержание фторидов и оксидов металлов, а оптимальную дозировку серной кислоты рассчитывают. Изобретение позволяет расширить сырьевую базу для производства фтористого водорода, утилизировать вторичные фторсодержащие продукты и отходы электролитического производства алюминия. 11 з.п. ф-лы, 2 табл., 1 пр.
Изобретение может быть использовано в неорганической химии. Способ очистки фтористого водорода от фторидов кремния и фосфора включает пропускание газовой смеси, содержащей фториды водорода, кремния, фосфора, через фторид натрия. Смесь контактируют с фторидом натрия при температуре 20-40°С и давлении 100-200 мм рт.ст. до образования полигидрофторидов натрия и комплексных фторидов примесных элементов. После этого повышают температуру до 55-70°С и проводят десорбцию фтористого водорода. Изобретение позволяет повысить эффективность очистки с получением фтористого водорода, содержащего примеси SiF4 и PF5 не более 20 ppm, уменьшить энергозатраты за счет снижения температуры процесса. 3 пр.
Изобретение может быть использовано в химической промышленности. Способ получения фторида водорода из отходов алюминиевого производства включает сернокислотное разложение криолитсодержащих отходов. В качестве отходов алюминиевого производства берут пыль электрофильтров. Отходы предварительно измельчают до размера частиц 0,2 мм, помещают на поддоны слоем высотой не более 0,5 см и подвергают обжигу при температуре 800-850°C в подовых печах. Сернокислотное разложение концентрата, полученного после обжига отходов, проводят при температуре 240-260°C. Изобретение позволяет снизить расход серной кислоты, повысить выход фторида водорода. 1 пр.

Изобретение может быть использовано в неорганической химии. Для получения фторида водорода проводят взаимодействие газообразных и летучих фторидов с кислородсодержащими и водородсодержащими веществами в режиме горения при температуре 1000-4000°C. В качестве кислородсодержащих веществ-окислителей используют кислород, воздух, закись азота. В качестве водородсодержащих веществ-горючего используют водород, газообразные углеводороды метан, этан, пропан, бутан, аммиак или их смеси. На 1 моль фторида подают горючее и окислитель из расчета 1-5 моль водорода и 0,05-4 моль кислорода. Изобретение позволяет получать фторид водорода из широкого диапазона исходных фторидов при минимальном количестве образующейся в процессе воды, утилизировать отходы фторидов, в случае переработки твердых летучих фторидов получать мелкодисперсные порошки оксидов соответствующих элементов. 1 ил., 1 табл., 5 пр.

Изобретение относится к способам производства фтороводорода взаимодействием фторида кальция с серной кислотой. В соответствии с первым способом производства фтороводорода осуществляют следующие стадии: (a) стадию смешивания частиц источника фторида кальция со средним диаметром 1-40 мкм с серной кислотой, в молярном отношении серная кислота/фторид кальция 0,9-1,1 при температуре 0-40°С и затем нагревания полученной смеси до более высокой температуры, чем при смешивании исходных материалов, но не выше 70°С, с целью осуществления реакции и получения реакционной смеси в твердом состоянии; и (b) стадию нагревания реакционной смеси в твердом состоянии до температуры 100-200°С с целью получения фтороводорода в газовой фазе. Второй вариант способа производства фтороводорода включает следующие стадии: (c) стадию смешивания и осуществления реакции частиц источника фторида кальция со средним диаметром 1-40 мкм с серной кислотой в молярном отношении серная кислота/фторид кальция 1,1-2,2 при температуре 0-70°С с получением реакционной смеси в твердом состоянии; и (d) стадию добавления и примешивания частиц источника фторида кальция со средним диаметром 1-40 мкм к реакционной смеси в твердом состоянии при молярном отношении серная кислота/фторид кальция на стадиях (с) и (d), вместе взятых, составляющем 0,9-1,1, и затем нагревания полученной смеси до температуры 100-200°С с целью получения фтороводорода в газовой фазе. Технический результат - усовершенствованный способ получения фтороводорода, позволяющий предотвращать появление второго пастообразного состояния, облегчая проблему коррозии. 2 н. и 2 з.п. ф-лы, 1 ил., 3 табл., 9 пр.
Изобретение может быть использовано в неорганической химии. Для получения чистого фторида водорода и/или фтороводородной кислоты из неочищенного фторида водорода используют полигидрофториды калия. Способ проводят в две стадии. На первой стадии при температуре -10°С конденсируют неочищенный фторид водорода с низшим полигидрофторидом калия. Затем нагревают до 60°C, выдерживают при этой температуре в течение 8 часов и получают высшие полигидрофториды калия. На второй стадии высшие полигидрофториды калия подвергают разложению, нагревая до 100-155°C с получением чистого фторида водорода и низшего полигидрофторида калия. Чистый фторид водорода отгоняют и собирают и/или поглощают дистиллированной водой с получением фтороводородной кислоты. Полученный на второй стадии низший полигидрофторид калия может быть использован на первой стадии многократно, что не отражается на чистоте получаемого продукта. Изобретение позволяет упростить получение чистого фторида водорода. 1 з.п. ф-лы, 10 табл., 52 пр.

Изобретение может быть использовано в химической промышленности. Способ извлечения фторида водорода из его водных растворов включает восстановление воды углеродом при повышенной температуре. Предварительно испаренную или распыленную смесь фторида водорода и воды приводят в контакт с углеродом, нагретым выше 1000 К, в массовом соотношении вода:углерод от 1:0,5 до 1:2. Полученные газообразный фторид водорода и пары воды конденсируют и ректификуют, извлекают безводный фторид водорода. Азеотропную смесь направляют в рецикл. Несконденсированные газы нейтрализуют и утилизируют. Изобретение позволяет извлекать фторид водорода из его водных смесей, в том числе трудно разделяемых азеотропных, и получать безводный фторид водорода и/или концентрированную плавиковую кислоту. 1 ил., 1 табл., 8 пр.
Изобретение относится к неорганической химии. Способ переработки отработанного бифторида калия включает его измельчение, обработку серной кислотой концентрации 95-100% в мольном соотношении серная кислота: бифторид калия 1:1,02. Полученную массу нагревают до 130-150°С и выдерживают в течение 3-4 часов. Образующийся фторид водорода отгоняют. Возможно поглощение фторида водорода водой с получением плавиковой кислоты. Нейтрализацию оставшейся после отгонки фторида водорода массы осуществляют водным раствором гидроксида или карбоната калия до рН 7-7,5. Полученный сульфат калия сушат. Изобретение позволяет переработать отработанный бифторид калия, обладающий высокой кислотностью и токсичностью, на товарные продукты – фоторид водорода и/или плавиковую кислоту и чистый сульфат калия. 5 табл., 4 пр.
Наверх