Фазовый способ формирования провала в диаграмме направленности плоской фазированной антенной решетки

Изобретение относится к антенной технике и может быть использовано для решения задачи формирования провала в диаграммах направленности (ДН) плоских фазированных антенных решеток (ФАР) путем изменения лишь фаз возбуждений ее элементов. Фазовый способ формирования провала в ДН плоской ФАР состоит в оценке уровня исходной диаграммы направленности N-элементной ФАР в направлении помехи, выделении в раскрыве двух М-элементных подрешеток, расположенных на краях исходной, и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки. Для формирования провала в ДН плоской ФАР в направлении помехи задаются две угловые координаты направления помехи θn и φn, после оценки уровня исходной диаграммы направленности N-элементной ФАР вычисляют возбуждение ее эквивалентного линейного раскрыва в сечении, угол наклона которого равен значению координаты помехи φn, после выделения в эквивалентном линейном раскрыве двух М-элементных подрешеток, расположенных на его краях, величины фазовых поправок этих подрешеток выбирают равными по абсолютному значению из условия заданной глубины провала и координаты помехи θn, фазы излучателей плоской ФАР, образующих М-элементные подрешетки эквивалентного линейного раскрыва, изменяют на величину фазовых поправок. 2 ил.

 

Изобретение относится к антенной технике и может быть использовано для решения задачи формирования провала в диаграммах направленности (ДН) плоских фазированных антенных решеток (ФАР) путем изменения лишь фаз возбуждений ее элементов.

Известен способ [El-Azhary, M.S.Afifi, and P.S.Excell, A simple algorithm for sidelobe cancellation in a partially adaptive linear array, / IEEE Transactions on Antennas and Propagation, vol. Ap-36, No.10, October 1988, pp.1484-1486], в котором используются крайние элементы решетки для формирования протяженной области подавления боковых лепестков ДН линейной ФАР. Суть этого способа заключается в том, что сигналы, проходящие через крайние излучатели, получают фазовые сдвиги, равные по величине, но противоположные по знаку. Максимум ДН, образуемой крайними элементами, смещается так, чтобы он совпал с направлением максимума подавляемого бокового лепестка, угловой диапазон которого охватывает направление прихода сигнала помехи. При этом амплитудная составляющая дополнительной ДН умножается на константу C, такую чтобы дополнительная ДН имела одинаковую амплитуду с подавляемым боковым лепестком ДН всей решетки. Фазовая составляющая дополнительной ДН в области подавляемого бокового лепестка должна отличаться на 180° от фазовой составляющей подавляемого бокового лепестка ДН всей решетки.

Наиболее близким по технической сущности к предлагаемому способу является «Способ формирования нуля диаграммы направленности фазированной антенной решетки» [RU 2123743 C1, опубл. 20.12.1998 г.], основанный на оценке уровня ненормированной исходной диаграммы направленности N-элементной ФАР в направлении помехи f(θn), выделении двух адаптивных M-элементных подрешеток, расположенных на краях исходной, с учетом условия 2M≥f(θn), и введении фазовых поправок в элементы адаптивных подрешеток, причем фазовые поправки для m-ой от края пары излучателей (m=1, 2, .... М) выбираются в соответствии с соотношением

где

λ, x0 - длина волны и шаг решетки;

θ - угол, отсчитываемый от нормали к раскрыву;

θ0, θп - направление главного максимума и помехи соответственно.

Знак минус в соотношении соответствует элементам левой адаптивной подрешетки, а знак плюс - правой.

Недостатком обоих известных способов является то, что формирование нуля гарантируется только для линейных антенных решеток. Кроме того, во втором способе фазовые поправки на крайних излучателях не одинаковы и требуют сложных вычислений.

Техническим результатом предлагаемого способа является формирование провала в ДН плоской ФАР в направлении помехи, имеющей угловые координаты (θn, φn) в сферической системе координат, причем фазы сигналов, проходящих через крайние элементы эквивалентного линейного раскрыва этой ФАР, изменяют на постоянную величину, что позволяет упростить и ускорить процесс формирования провала.

Сущность предлагаемого фазового способа формирования провала в ДН плоской ФАР состоит в оценке уровня исходной диаграммы направленности N-элементной ФАР в направлении помехи, выделении в раскрыве двух M-элементных подрешеток, расположенных на краях исходной, и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки.

Новым в заявляемом изобретении является то, что для определения направления помехи задаются две угловые координаты θn, и φn, после оценки уровня исходной диаграммы направленности N-элементной ФАР вычисляют возбуждение ее эквивалентного линейного раскрыва в сечении, угол наклона которого равен значению координаты помехи φn, после выделения в эквивалентном линейном раскрыве двух M-элементных подрешеток, расположенных на его краях, величины фазовых поправок этих подрешеток выбирают равными по абсолютному значению из условия заданной глубины провала и координаты помехи θn, фазы излучателей плоской ФАР, образующих M-элементные подрешетки эквивалентного линейного раскрыва, изменяют на величину фазовых поправок, где θn, φn - координаты направления помехи в сферической системе координат.

На фиг.1 показаны варианты формирования эквивалентного линейного раскрыва, где A0, A1…AN-1, AN - амплитуды элементов эквивалентного линейного раскрыва, φn - угол наклона эквивалентного линейного раскрыва.

На фиг.2 приведены примеры формирования провалов в ДН ФАР с эллиптической формой раскрыва, на которой расположены N=334 излучателя (элемента), где:

а) - соответствует ДН ФАР в угломестном сечении;

б) - соответствует пространственной ДН ФАР;

в) - соответствует ДН ФАР в азимутальном сечении;

г) - соответствует раскрыву ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в азимутальном сечении;

д) - соответствует пространственной ДН ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в азимутальном сечении, окружность показывает область, где формируется провал при θn≈11°, φn=0°;

е) - соответствует ДН в азимутальном сечении для ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в азимутальном сечении, стрелка указывает направление провала в данном сечении ДН при θn≈11°;

ж) - соответствует раскрыву ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в угломестном сечении;

з) - соответствует пространственной ДН ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в угломестном сечении, окружность показывает область, где формируется провал при θn≈11°, φn=90°;

и) - соответствует ДН в угломестном сечении для ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в угломестном сечении, стрелка указывает направление провала в данном сечении ДН при θn≈11°;

к) - соответствует раскрыву ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в сечении, угол наклона которого равен значению координаты помехи φn=37°;

л) - соответствует пространственной ДН ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в сечении, угол наклона которого равен значению координаты помехи φn=37°, окружность показывает область, где формируется провал при θn≈11°, φn=37°;

м) - соответствует ДН в сечении, угол наклона которого равен значению координаты помехи φn=37° для ФАР с измененным фазовым распределением по эквивалентному линейному раскрыву в сечении, угол наклона которого равен значению координаты помехи φn=37°; стрелка указывает направление провала в данном сечении ДН при θn≈11°.

Характерной чертой данного способа является неизменность возбуждения основной части излучателей, поскольку возбуждение меняется лишь у тех излучателей, которые образуют крайние элементы эквивалентного линейного раскрыва.

В ФАР, имеющей треугольную или прямоугольную структуру расположения излучателей, провалы наиболее просто формировать в главных угловых сечениях (Фиг.1а). Однако применить рассмотренный способ можно и для других сечений (Фиг.1б, в).

На Фиг.2 представлены примеры формирования провалов в ДН ФАР, имеющей раскрыв эллиптической формы. В раскрыве ФАР создано спадающее к краям амплитудное распределение с КИП≈0.94. На Фиг.2а, б, в приведены пространственная ДН ФАР и ДН в главных - угломестном (Фиг.2а) и азимутальном (Фиг.2в) - сечениях. Исходный уровень максимальных боковых лепестков составляет ≈-25 дБ.

Случай формирования провала в азимутальном сечении на угле, равном значению координаты помехи θn≈11°, представлен на Фиг.2 г, д, е. Фазовое распределение изменяют у M=4 крайних излучателей эквивалентного линейного раскрыва в сечении, угол наклона которого равен значению координаты помехи φn=0°. В пространственной ДН (Фиг.2д) хорошо видна угловая область провала. Снижение бокового излучения в области провала составило ≈18 дБ, уровень главного луча уменьшился на 0.1 дБ. С противоположной стороны относительно луча боковые лепестки возросли на ≈5 дБ. Приблизительно такие же характеристики провала можно получить и при формировании провала в угломестном сечении (φn=90°, θn≈11°, Фиг.2ж-и).

На Фиг.2к-м представлен случай формирования провала в косом сечении пространственной ДН, угол наклона которого равен значению координаты помехи φn=37°, а значение θn≈11°. В соответствующем эквивалентном линейном раскрыве возбуждение изменялось у M=2 крайних излучателей с каждой стороны (Фиг.2к). Представленные характеристики излучения показывают, что сформированный провал имеет приблизительно такие же параметры, что и рассмотренный выше.

Предлагаемый способ свободен от недостатков, присущих прототипу, поскольку формирование провала осуществляется в ДН плоской ФАР в направлении помехи, имеющей угловые координаты (θn, φn) в сферической системе координат, причем фазы сигналов, проходящих через крайние элементы эквивалентного линейного раскрыва этой ФАР, изменяют на постоянную величину, что позволяет упростить и ускорить процесс формирования провала.

Фазовый способ формирования провала в диаграмме направленности плоской фазированной антенной решетки (ФАР), основанный на оценке уровня исходной диаграммы направленности N-элементной ФАР в направлении помехи, выделении в раскрыве двух М-элементных подрешеток, расположенных на краях исходной, и введении фазовых поправок, со знаком минус для элементов одной подрешетки и со знаком плюс для элементов другой подрешетки, отличающийся тем, что для определения направления помехи задаются две угловые координаты направления помехи θn, и φn, после оценки уровня исходной диаграммы направленности N-элементной ФАР вычисляют возбуждение ее эквивалентного линейного раскрыва в сечении, угол наклона которого равен значению координаты помехи φn, после выделения в эквивалентном линейном раскрыве двух М-элементных подрешеток, расположенных на его краях, величины фазовых поправок этих подрешеток выбирают равными по абсолютному значению из условия заданной глубины провала и координаты помехи θn, фазы излучателей плоской ФАР, образующих М-элементные подрешетки эквивалентного линейного раскрыва, изменяют на величину фазовых поправок, где θn, φn - координаты направления помехи в сферической системе координат.



 

Похожие патенты:

Изобретение относится к антенной технике и может быть использовано для оптимального управления комплексными взвешивающими устройствами в каналах моноимпульсных антенных решеток (MAP).

Изобретение относится к радиолокации, в частности к активной фазированной антенной решетке (АФАР), управляемой как по направлению излучения и приема, так и по параметрам зондирующего сигнала, работающей в составе импульсно-доплеровской бортовой радиолокационной станции (БРЛС).

Изобретение относится к области способов управления формированием требуемых характеристик амплитудно-фазового распределения поля (АФР) в раскрыве адаптивной антенной решетки (ААР).

Изобретение относится к антенной технике и может быть использовано для решения задачи подавления бокового излучения диаграмм направленности (ДН) линейных фазированных антенных решеток путем изменения лишь фаз возбуждений элементов ФАР.

Изобретение относится к области самофазирующихся антенных решеток для ретрансляторов связи. .

Изобретение относится к радиотехнической промышленности и может использоваться в волноводной СВЧ антенной технике в составе фазированных антенных решеток. .

Изобретение относится к радиотехнике и может использоваться в многофункциональных радиолокационных станциях для формирования многолучевой диаграммы направленности в активных фазированных решетках.

Изобретение относится к радиотехнической промышленности и может быть использовано в волноводной СВЧ-антенной технике в составе распределительных систем для фазированных антенных решеток.

Изобретение относится к радиолокации, в частности к приемопередающим модулям (ППМ) активной фазированной антенной решетки (АФАР), управляемой как по направлению излучения и приема, так и по параметрам модуляции зондирующего сигнала, работающей в составе импульсно-доплеровской бортовой радиолокационной станции (БРЛС).

Изобретение относится к антенному устройству и системе беспроводной связи

Изобретение относится к антенной технике и может быть использовано в радиотехнических системах связи при приеме широкополосных сигналов в условиях воздействия широкополосных помех

Изобретение относится к антенной технике и может быть использовано для оптимального управления комплексными взвешивающими устройствами в каналах антенных решеток по критерию максимума отношения сигнал/шум + помеха

Изобретение относится к антенной технике, в частности к активным пространственным передающим антенным решеткам миллиметрового диапазона волн, и может быть использовано при создании антенн с немеханическим качанием луча антенны для сверхскоростной (более 15 Гбит/с) спутниковой информации

Изобретение относится к антенной технике и может быть использовано для управления комплексными взвешивающими устройствами в каналах антенных решеток по критерию максимума заданного энергетического функционала

Изобретение относится к антенной технике и может быть использовано для пространственного подавления помех путем формирования провалов («нулей») в диаграммах направленности фазированных антенных решеток (ФАР) в направлениях источников помех. Технический результат - повышение оперативности управления решеткой за счет возможности подавления лепестков высокого уровня. Для этого способ основан на взвешивании сигналов, принятых каждым излучателем, с помощью весовых коэффициентов, весовые коэффициенты находят как вектор, минимизирующий функционал ошибки, при определении которого используют информацию о направлении на источник сигнала и о распределении источников помех, в качестве максимизируемого функционала выбирают отношение мощности сигнала, принимаемого с заданного направления, к сумме мощностей шумов и помех, принимаемых антенной, а в качестве оптимального вектора весовых коэффициентов выбирают вектор, минимизирующий функционал ошибки. 1 ил., 1 табл.

Изобретение относится к фазированным (ФАР) и активным фазированным антенным решеткам (АФАР), состоящим из приемных каналов, выходные сигналы которых оцифровываются с помощью аналогово-цифровых преобразователей и обрабатываются в процессорах бортовых цифровых вычислительных машин радиолокационных станций, головок самонаведения или систем радиопротиводействия. Техническим результатом является обеспечение углового сверхразрешения, мерой которого является ширина «сжатой» диаграммы направленности антенны (ДНАСЖ); уменьшение шумовой ошибки измерения угловых координат; и уменьшение времени обзора заданного сектора пространства за счет расширения диаграммы направленности антенны (ДНА). Это достигается за счет дополнительной обработки кодов цифровых выходных сигналов приемных каналов цифровой ФАР (АФАР) и формирования «сжатой» ДНАСЖ параллельно с обычной (несжатой) ДНА и совместной их обработки, а также формирования расширенной диаграммы направленности ФАР (АФАР). 7 ил.

Изобретение относится к области радиотехники. Технический результат - повышение предела подавления помеховой импульсной мощности в узкополосных приемно-передающих каналах радиотехнических систем, работающих в диапазоне СВЧ, в условиях короткоимпульсных помеховых воздействий большой мощности при проведении испытаний на электромагнитную совместимость. Устройство защиты узкополосных приемно-передающих каналов радиотехнических систем, содержащее основную и дополнительную антенны, соединенные вычитающим элементом, содержит еще N≥1 пару из основной и дополнительной антенн и N≥1 вычитающий элемент, а также (N+1) узкополосных фильтров, которые образуют (N+1) взаимно ортогональных идентичных плеча устройства, состоящих каждое из одной пары основной и дополнительной антенн и последовательно включенных вычитающего элемента и узкополосного фильтра, при этом все антенны выполнены резонансными и идентичны друг другу, антенны попарно - основная и дополнительная - связаны с вычитающим элементом и фильтром, выполненными в виде объединенных отрезков экранированного волновода, в котором установлен режим бегущей волны, связь основной и дополнительной антенн с соответствующим волноводным вычитающим элементом в каждом плече осуществляется таким образом, чтобы синфазные сигналы с этих антенн возбуждали в волноводе противофазные поперечные пучности волноводного распределения электромагнитного поля. 3 ил.

Изобретение относится к радиолокации, а именно к широкополосным антенным системам, рабочий диапазон частот которых перекрывает несколько октав. Технический результат - расширение диапазона рабочих частот комбинированной антенной системы, работающей в активном и пассивном режимах. Широкополосная антенная система содержит комбинированную моноимпульсную антенну Кассегрена с возбуждением от фазированной антенной решетки, работающую в высокочастотном диапазоне, в которую вводится кольцевая антенная решетка из K логопериодических вибраторных антенн и широкополосный приемник, при этом логопериодические вибраторные антенны расположены между параболическим цилиндром и плоскостью, ортогональной продольной оси антенны и проходящей через ось вращения твист-рефлектора, ориентированы параллельно оси антенной системы в направлении полета летательного аппарата и находятся в плоскости, касательной к образующей цилиндра, ограничивающего поперечные размеры антенной системы, элементы логопериодических вибраторных антенн выполнены в виде полосковых проводников, расположенных с двух сторон плоской диэлектрической платы. 3 ил.

Изобретение относится к радиолокации, точнее к фазированным антенным решеткам (ФАР) СВЧ диапазона, и может быть использовано в пассивной и активной радиолокации для осуществления непрерывного параллельного контроля пространства. Технический результат - возможность формирования одновременно существующего веера (пучка) остронаправленных лучей, покрывающих весь контролируемый телесный угол как одномерной (линейной), так и двумерной антенной решеткой. Для этого многолучевая СВЧ линейная антенная решетка включает N приемопередающих модулей, каждый из которых имеет антенный элемент, усилитель с СВЧ переключателями, делитель СВЧ и диаграммообразующее устройство. Двумерная антенная решетка содержит P линейных многолучевых СВЧ антенных решеток. Каждая линейная решетка является строкой, при этом на каждой M плате элементарных сумматоров дополнительно выполнен делитель СВЧ на K каналов, подключенный к выходу монолитного усилителя. Выходы каналов делителей каждой платы в каждой строке сдвинуты на шаг, равный L/M, где L - длина платы. Выходы строки соединены вертикальными столбцами, являющимися диаграммообразующими устройствами. Общее число выходов плат слолбцов в режиме приема равно M×K, причем каждый выход соответствует своему лучу в пространстве. В режиме передачи выходы К плат М столбцов преобразуются во входы каналов (лучей), излучаемых АФАР. 2 н.п. ф-лы, 7 ил.
Наверх